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Abstract: When a new solid dosage form is developed, it is very important to study drug release or dissolution. The 

quantitative analysis of values obtained in dissolution or release rates is easier when mathematical formulae are used to 
describe the process. The mathematical modeling helps to optimize the design of a therapeutic device to yield 

information on the efficacy of various release models. In this paper we review the different mathematical models used to 

determine the kinetics of drug release from drug delivery systems such as, zero order, first order, Hixson-Crowell, 

Higuchi, Weibull, Korsemeyer-Peppas, Hopfenberg, Baker-Lonsdale and Gompertz model. 
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INTRODUCTION 

Drug dissolution is important test used to 

evaluate drug release of solid and semisolid dosage 

forms. This test is developed for quantification of the 

amount and extent of drug release from dosage forms. 

The values that are obtained from the dissolution study 

can be quantitatively analyzed by using different 

mathematical formulae. Because qualitative and 
quantitative changes in a formulation may alter release 

of drug and in vivo performance, developing tools that 

facilitate product development by reducing the 

necessity of bio-studies is always desirable. Thus 

mathematical models can be developed. This 

development requires the comprehension of all 

phenomena affecting drug release kinetics and this has a 

very important value in the formulation optimization. 

The model can be simply thought as a ‘mathematical 

metaphor of some aspects of reality’. For this 

generality, mathematical modeling is widely employed 

in different disciplines such as genetics, medicine, 
psychology, biology, economy and obviously 

engineering and technology [1-6]. Model dependent 

methods are based on different mathematical functions, 

which describe the dissolution profile. Once a suitable 

function has been selected, the dissolution profiles are 

evaluated depending on the derived model parameters. 

To compare dissolution profiles between two drug 

products model dependent (curve fitting), statistic 

analysis and model independent methods can be used. 

 

MATHEMATICAL MODELS 
 

 

Zero order model: 

Dissolution of the drug from pharmaceutical 

dosage forms that do not disaggregate and release the 

drug slowly can be represented by the following 

equation: 

W0 – Wt = Kt ------------------------------------ (1) 

 

Where, W0 is the initial amount of drug in the 
pharmaceutical dosage form Wt is the amount of drug in 

the pharmaceutical dosage form at time t and K is 

proportionality constant. Dividing this equation by W0 

and simplifying: 

ft = K0t ---------------------------------------------(2) 

 

where ft = 1- (Wt /W0 ) and ft represents the 

fraction of drug dissolved in time t and K0 the apparent 

dissolution rate constant or zero order release constant. 

In this way, a graphic of the drug-dissolved fraction 

versus time will be linear if the previously established 

conditions were fulfilled [7]. 
 

The pharmaceutical dosage forms following 

this profiles release the same amount of drug by unit of 

time and it is the ideal method of drug release in order 

to achieve a pharmacological prolonged action. The 

following relation can, in a simple way, express this 

model: 

Qt = Q0 + K0t ------------------------------------(3) 

 

Where, Qt is the amount of drug dissolved in 

time t, Q0 is the initial amount of drug in the solution 
and K0 is the zero order release constant. 
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To study the release kinetics, data obtained 

from in vitro drug release studies were plotted as 

cumulative amount of drug released versus time [8-9]. 

 

Applications: 

This relation can be used to describe the drug 

dissolution of several types of modified release 

pharmaceutical dosage forms, as in the case of some 

transdermal systems, as well as matrix tablets with low 
soluble drugs, coated forms, osmotic systems, etc [10-

11]. 

 

First order model: 
The application of this model to drug 

dissolution studies was first proposed by Gibaldi and 

Feldman (1967) and later by Wagner (1969). This 

model has been also used to describe absorption and/or 

elimination of some drugs, although it is difficult to 

conceptualise this mechanism in a theoretical basis [12]. 

The dissolution phenomena of a solid particle in a 
liquid media imply a surface action, as can be seen by 

the Noyes–Whitney Equation: 

dc/dt = K (CS - C)  ------------------------------(4) 

 

Where C is the concentration of the solute in 

time t, Cs is s order the solubility in the equilibrium at 

experience temperature and K is first order 

proportionality constant. This equation was altered by 

Brunner et al. (1900), to incorporate the value of the 

solid area accessible to dissolution, S, getting: 

 dc/dt = K1 S (CS - C) ------------------------(5) 

 
Where, k1 is a new proportionality constant. 

Using the Fick first law, it is possible to establish the 

following relation for the constant k1: 

 k1 = D/Vh ---------------------------------------(6) 

 

Where, D is the solute diffusion coefficient in 

the dissolution media, V is the liquid dissolution 

volume and h is the width of the diffusion layer. Hixson 

and Crowell adapted the Noyes–Whitney equation in 

the following manner: 

dW/ dt = KS(Cs -C)   ------------------------- (7) 
 

Where, W is the amount of solute in solution at 

time t, dW/dt is the passage rate of the solute into 

solution in time t and K is a constant. This last equation 

is obtained from the Noyes–Whitney equation by 

multiplying both terms of equation by V and making K 

equal to k1V. Comparing these terms, the following 

relation is obtained: 

K = D/h  ---------------------------------------(8) 

 

In this manner, Hixson and Crowell equation (eq.7) can 

be written as: 
dW/ dt = KS/V (VCs-W) = k (VCs-W)-------(9) 

 

Where, k = k1S. If one pharmaceutical dosage 

form with constant area is studied in ideal conditions 

(sink conditions), it is possible to use this last equation 

that, after integration, will become: 

W = VCs (1 – e-kt) -----------------------------(10) 

 

This equation can be transformed, applying decimal 

logarithms in both terms, into: 

Log (VCs- W) = log VCs- (kt/2.303)--------(11) 

 

The following relation can also express this 
model: 

Qt = Q0e
-K

1
t     or     ln (Qt/Q0) = K1t     or    

 ln Qt = ln Q0 K1t 

 

Or in decimal logarithms: 

log Qt = logQ0 + (K1/2.303)------------------(12) 

 

Where, Qt is the amount of drug released in 

time t, Q0 is the initial amount of drug in the solution 

and K1 is the first order release constant. The data 

obtained are plotted as log cumulative percentage of 
drug remaining vs. time which would yield a straight 

line with a slope of-K/2.303[13]. 

 

Applications: 

This relationship can be used to describe the 

drug dissolution in pharmaceutical dosage forms such 

as those containing water soluble drugs in porous 

matrices [14-15]. 

 

N. Ahuja, Om Prakash Katare, B. Singh, was 

studied dissolution enhancement and mathematical 

modelling of drug release of a poorly water-soluble 
drug using water-soluble carriers. They studied 

dissolution profile of drug by using zero order, first 

order and Hixson- Crowell model and they found that 

first order model fitted well at early time periods. 

 

The table 1 shows the kinetics parameters of different 

formulations which from that it is concluded that the 

first order model show best results than the other two 

[16]. 

 

Hixson and Crowell model: 
  Drug powder that having uniformed size particles, 

Hixson and Crowell derived the equation which 

expresses rate of dissolution based on cube root of 

weight of particles and the radius of particle is not 

assumed to be constant. 

This is expressed by the equation, 

M0
1/3 - Mt

1/3 = κ t -----------------------------(13) 

 

Where, M0 is the initial amount of drug in the 

pharmaceutical dosage form, Mt is remaining amount of 

drug in the pharmaceutical dosage form at time ‘t’ and κ 

is proportionality constant. 
 

The above equation can be rewritten as, 

M0
1/3 - Mt

1/3 = K׳ N1/3DCst/δ------------------(14) 
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Where K׳ is a constant related to the surface, 

shape and density of particle, N is number of particles, 

D is diffusion coefficient, Cs is solubility in the 

equilibrium at experience temperature and δ is thickness 

of diffusion layer. 

 

To study the release kinetics, data obtained from in 

vitro drug release studies were plotted as cube root of 

drug percentage remaining in matrix versus time [17]. 
 

Applications: 

This is applies to different pharmaceutical 

dosage form such as tablets, where the dissolution 

occurs in planes which are parallel to the drug surface if 

the tablet dimensions diminish proportionally, in such a 

way that the initial geometrical form keeps constant all 

the time [18]. 

 

I. Jalal, E. Zmaily and N. Najib was studied 

dissolution kinetics  of  commercially  available 
controlled-release theophylline  preparations by using 

Hixson and Crowell model. The  dissolution  data  are  

plotted  in  accordance  with  the  Hixson-Crowell  cube  

root  law,  i.e. the  cube  root  of  the  initial  

concentration  minus  the  cube  root  of  percent  

remained,  as  a  function of  time. The results as shown 

in table 2  indicates  that  a  linear  relationship was  

obtained  in  all  cases [19]. 

 

Higuchi model: 

This is the first mathematical model that 

describes drug release from a matrix system, proposed 
by Higuchi in 1961 [20]. This model is based on 

different hypothesis that (1) Initial drug concentration 

in the matrix is much higher than drug solubility, (2) 

Drug diffusion takes place only in one dimension (Edge 

effect should be avoided), (3) Drug particles are much 

smaller than thickness of system, (4) swelling of matrix 

and dissolution are less or negligible, (5) Drug 

diffusivity is constant, (6) Perfect sink condition are 

always attained in the release environment. 

 

The study of dissolution from a planar system 
having a homogeneous matrix can be obtained by the 

equation: 

ft = Q = A√D(2C-Cs) Cst --------------------(15) 

 

Where, Q is amount of drug release in time t 

per unit area A, D is diffusion coefficient of drug 

molecules, C is initial concentration of drug and Cs is 

solubility of drug in matrix media. 

 

This relation is valid during all the time, 

except when the total depletion of the drug in the 

therapeutic system is achieved. To study the dissolution 
from a planar heterogeneous matrix system, where the 

drug concentration in the matrix is lower than its 

solubility and the release occurs through pores in the 

matrix, the expression is given by equation: 

ft = Q = √Dδ/τ (2C- δCs) t --------------------(16) 

Where, D is the diffusion coefficient of the 

drug molecule in the solvent, δ is the porosity of the 

matrix, τ is the tortuisity of the matrix and Q, A, Cs and 

t have the meaning assigned above. 

 

Tortuisity is defined as the dimensions of 

radius and branching of the pores and canals in the 

matrix and the Porosity is function of matrix that exist 

as pores or channels from which liquid penetrate inside 
for release of drug from granular matrix. In a general 

way it is possible to simplify the Higuchi model as: 

f t = Q = KH √ t --------------------------------(17) 

 

Where,   KH is the Higuchi dissolution 

constant. 

 

Higuchi describes drug release as a diffusion 

process based in the Fick’s law, square root time 

dependent. The data obtained were plotted as 

cumulative percentage drug release versus square root 
of time [21-23]. 

 

Applications: 

This relationship can be used to describe the 

drug dissolution from several types of modified release 

pharmaceutical dosage forms, as in the case of some 

transdermal systems and matrix tablets with water 

soluble drugs [24-25]. 

 

A. Minhaz, S. Islam, H. Rahman were studied 

an In vitro Release of Ketorolac from Extended Release 

Capsules. They found the 96.23% release of KT within 
8 hrs. They applied different models for kinetic study 

(zero-order, first-order and Higuchi's equation).They 

found best fit with higher correlation with the Higuchi's 

equation for almost all the formulations. The result of 

study can be shown in table 3[26]. 

 

Weibull model: 

The Weibull equation can be applied to almost 

all kinds of dissolution curves [27-28]. If applied to 

dissolution of pharmaceutical dosage form, this 

equation expresses the accumulation of fraction of drug 
in solution and is given by equation: 

M = M0 [1-e-(t-T/a)b] --------------------------(18) 

 

Where, M is the amount of drug dissolved as a 

function of time t. M0 is total amount of drug being 

released. T accounts for the lag time measured as a 

result of the dissolution process. Parameter ‘a’ denotes 

a scale parameter that describes the time dependence, 

while ‘b’ describes the shape of the dissolution curve 

progression. For b = 1, the shape of the curve 

corresponds exactly to the shape of an exponential 

profile with the constant k = 1/a (equation 19). 
M = M0 (1 – e-k (t-T) --------------------------(19) 

 

If ‘b’ has a higher value than 1, the shape of 

the curve gets sigmoidal with a turning point, whereas 
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the shape of the curve with  ‘b’  lower than 1 would 

show a steeper increase than the one with b = 1. 

 

The time, when 50% (w/w) and 90% (w/w) of 

drug being in each formulation was released, was 

calculated using the inverse function of the Weibull 

equation: 

t(50% resp. 90% dissolved) = 

 (- a ln M- M0 / M0 )
1/b + T------------------------(20) 

 

The equation (18) may rearrange into 

logarithmic form, 

log[-ln(1- m)] = b log (t- Ti) - log a -------(21) 

 

From this equation a linear relation can be 

obtained for a log–log plot of -ln (1-m) versus time, t. 

The shape parameter (b) is obtained from the slope of 

the line and the scale parameter, a, is estimated from the 

ordinate value (1/a) at time t=1. The parameter, a, can 

be replaced by the more informative dissolution time, 
Td, that is defined by a= (Td) d and is read from the 

graph as the time value corresponding to the ordinate -

ln (1- m) = 1. Since -ln (1 - m) = 1 is equivalent to 

m=0.632, Td represents the time interval necessary to 

dissolve or release 63.2% of the drug present in the 

pharmaceutical dosage form. To pharmaceuticals 

systems following this model, the logarithm of the 

dissolved amount of drug versus the logarithm of time 

plot will be linear [29-30]. 

 

Applications: 

The Weibull model is more useful for 
comparing the release profiles of matrix type drug 

delivery [31-32].  

 

Kevin J. Carroll, M.Sc. was done the analysis of 

survival data arising in clinical trial by using Weibull 

model. He found that Weibull analysis allows direct 

assessment and quantification of proportionality, or lack 

thereof and also Weibull analysis offers the opportunity 

to predict how data might mature over time, something 

that is of great interest within oncology trials, especially 

where a series of interim analyses are planned. The 
result can be shown in table 4[33]. 

 

Korsemeyer- peppas model: 
Korsemeyer et al. (1983) derived a simple 

relationship which described drug release from a 

polymeric system equation.  

ft =  Ktn  --------------------------------------(22) 

 

Where, ft is fraction of drug released at time t, 

k is release rate constant and n is the release exponent.  

The drug diffusion from a controlled release polymeric 

system with the form of a plane sheet, of thickness δ 
can be represented by: 

∂c / ∂t = D (∂2c / ∂x2) -----------------------(23) 

 

Where D is the drug diffusion coefficient 

(concentration independent). If drug release occurs 

under perfect sink conditions, the following initial and 

boundary conditions can be assumed: 

t = 0       -d / 2 < x < d/2       c = c0 

t > 0        x = ± d / 2             c = c1 

 

Where c0 is the initial drug concentration in the 

device and c1 is the concentration of drug at the 

polymer–water interface. The solution equation under 

these conditions was proposed initially by Crank 
(1975): 

 
Mt

M∞
= 2 (

Dt

δ2 )
1

2
   𝜋 −

1

2
+  (−1)n  𝑖 𝑒𝑟𝑓𝑐 

nδ

2 Dt
∞
n=1   (24) 

 

A sufficiently accurate expression can be 

obtained for small values of t since the second term of 

Eq. (24) disappears and then it becomes: 

 
Mt

M∞
= 2 (

Dt

δ2 )
1

2
 =  a𝑡

1

2 --------------------------------(25) 

 

Then, if the diffusion is the main drug release 

mechanism, a graphic representing the drug amount 

released, in the referred conditions, versus the square 

root of time should originate a straight line. Under some 

experimental situations the release mechanism deviates 

from the Ficks equation, following an anomalous 

behavior (non-Fickian)[34-38]. In these cases a more 

generic equation can be used: 

 
Mt

M∞
= a𝑡n  -----------------------------------------------(26) 

 

‘n’ value is used to characterize different 

release for cylindrical shaped matrices; and it is 

describe in table 5. For the case of cylindrical tablets, 

0.45 ≤ n corresponds to a Fickian diffusion mechanism, 

0.45 < n < 0.89 to non-Fickian transport, n = 0.89 to 

Case II (relaxational) transport, and n > 0.89 to super 

case II transport[39-40]. To find out the exponent of ‘n’ 

the portion of the release curve, where Mt/ M∞ < 0.6 

should only be used. To study the release kinetics, data 
obtained from in vitro drug release studies were plotted 

as log cumulative percentage drug release versus log 

time. 

 

Applications: 

This equation has been used to the 

linearization of release data from several formulations 

of microcapsules or microspheres. 

 

HY Karasulu, G Ertana, T Kose  were studied 

theophylline release from different geometrical erodible 

tablets. They follow the Korsemeyer- peppas model for 
the study and found the good results as given in table 6. 

They were also studied change in geometry of tablets 

by calculating ‘n’ values for each tablet, and are found 

to be 4, 2 and 1 for the triangular, cylindrical and half-

spherical tablets respectively [41]. 

 

Hopfenberg model: 
Hopfenberg developed a mathematical model 

to correlate the drug release from surface eroding 

polymers so long as the surface area remains constant 
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during the degradation process. He was analyzed 

release of drugs from surface-eroding devices with 

several geometries and developed a general 

mathematical equation describing drug release from 

slabs, spheres and infinite cylinders displaying 

heterogeneous erosion [42-43]. The drug release was 

expressed by equation: 

 
Mt

M∞
= 1 −   1 −

k0 t

C0 a0
 

n

 -------------------------------(27) 

 

where Mt is the amount of drug dissolved in 

time t, M∞ is the total amount of drug dissolved when 

the pharmaceutical dosage form is exhausted, Mt /M∞ is 

the fraction of drug dissolved, k0 is the erosion rate 

constant, C is the initial concentration of drug in the 

matrix and a0 is the initial radius for a sphere or 

cylinder or the half-thickness for a slab. The value of n 
is 1, 2 and 3 for a slab, cylinder and sphere, 

respectively. A modified form of this model was 

developed to accommodate the lag time (l) in the 

beginning of the drug release from the pharmaceutical 

dosage form: 

 
Mt

M∞
= 1 −   1 − k1t (t − l) n -----------------------(28) 

 

Where k1 is equal to k0 /C0 a0. This model 

assumes that the rate-limiting step of drug release is the 

erosion of the matrix itself and that time dependent 

diffusional resistances internal or external to the 
eroding matrix do not influence it. 

 

Applications: 

This model is useful for identification of the 

mechanism of release from the optimized oily- spheres 

using data derived from the composite profile, which 

displayed site-specific biphasic release kinetics [44]. 

 

Baker-Lonsdale model: 
This model was developed by Baker and 

Lonsdale (1974) from the Higuchi model and described 

the drug release from spherical matrices by using the 
equation: 

 f1 =
3

2
 1 −  1 −

Mt

M∞
 

2

3
 

 −  
Mt

M∞
=  

3Dm Cms

r0 
2 C0

− t ----(29) 

 

Where Mt is the drug released amount at time t 

and M∞ is the amount of drug released at an infinite 

time, Dm is the diffusion coefficient, Cms is the drug 

solubility in the matrix, r0 is the radius of the spherical 

matrix and C0 is the initial concentration of drug in the 

matrix [45]. 

 

If the matrix is not homogeneous and presents 
fractures or capillaries that may contribute to the drug 

release, the following equation is used: 

 f1 =
3

2
 1 −  1 −

Mt

M∞
 

2

3
 

 −
Mt

M∞
=  

3D𝑓C𝑓𝑠  𝜀

r0 
2 C0𝜏

− t----(30) 

 

Where Df is the diffusion coefficient, Cfs is the 

drug solubility in the liquid surrounding the matrix, τ is 

the tortuosity factor of the capillary system and ε is the 

porosity of the matrix. The matrix porosity can be 

described by: 

ε = ε0 + KC0 -----------------------------------(31) 

 

Where ε0 is the initial porosity and K is the 

drug specific volume. If ε0 is small, Eq. (30) can be 

rearranged as:  

 f1 =
3

2
 1 −  1 −

Mt

M∞
 

2

3
 

 −  
Mt

M∞
=  

3D𝑓KC𝑓𝑠  

r0 
2 𝜏

− t-----(32) 

 

Hence, the Baker-Lonsdale model could be 

given by equation: 

 f1 =
3

2
 1 −  1 −

Mt

M∞
 

2

3
 

 −  
Mt

M∞
= kt -------------(33) 

Where, k is release constant and is corresponds 

to slope. 

 

To study the release kinetics, data obtained 

from in vitro drug release studies were plotted as [d (Mt 

/ M∞)] / dt with respect to the root of time inverse[45-

49].  
 

Applications: 

This equation has been used to the 

linearization of release data from several formulations 

of microcapsules or microspheres [50-51]. 

 

S. K. Singh, J. Dodge, M. J. Durrani were 

studied the release of drug from controlled release 

pellets coated with an experimental latex. They were 

study the kinetics of release by applying different 

models (Higuchi, First order, Hixon- crowell, Baker - 
Lonsdale), but they were found that Baker- Lonsdale 

model provide a best correlation from the results, given 

in table 7[52]. 

 

Gompertz model: 

Dissolution profile of pharmaceutical dosage 

form can also been described by Gompertz model, 

expressed by equation: 

 X t =  Xmax exp[−α eβ log t]------------------------(34) 
 

Where X(t) = percent dissolved at time t 

divided by 100; Xmax = maximum dissolution; α 

determines the undissolved proportion at time t = 1 and 

described as location or scale parameter; β = dissolution 

rate per unit of time described as shape parameter. This 

model has a steep increase in the beginning and 

converges slowly to the asymptotic maximal dissolution 
[53-56]. 

 

Applications: 

The Gompertz model is more useful for 

comparing the release profiles of drugs having good 

solubility and intermediate release rate [56]. 

 

Jiaxi Li, Ji-Dong Gu, Li Pan was studied 

transformation of dimethyl phthalate, dimethyl 
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isophthalate and dimethyl terephthalate by 

Rhodococcus rubber Sa and they studied dissolution 

profile of process by using modified Gompertz model, 

they found good results as shown in table 8[57]. 

 

 

Table 1: Statistical parameters of various formulations obtained after fitting the drug release data  

to various release kinetic models; shows first order model is best fitted [16]. 

 

Sr. 

No. 
Formulation 

Mathematical models for drug release kinetics 

Hixson-Crowell Zero-order First-order 

Slope r
2 

Slope r
2 

Slope r
2 

1 

2 

3 
4 

5 

6 

7 

8 

9 

10 

Pure RFX 

RCA50% 

RCA25% 
RCA10% 

RNA50% 

RNA25% 

RNA10% 

RU50% 

RU25% 

RU10% 

0.0275 

0.0697 

0.1597 
0.3297 

0.0346 

0.0493 

0.1262 

0.0524 

0.0934 

0.1888 

0.5522 

0.6257 

0.8956 
0.8258 

0.5403 

0.6404 

0.8380 

0.6632 

0.8680 

0.8343 

-1.07 

-2.75 

-7.01 
-8.45 

-1.40 

-1.99 

-5.16 

-2.05 

-3.78 

-7.19 

-0.1086 

0.1907 

0.7502 
0.5127 

-0.1031 

0.1360 

0.7710 

0.1610 

0.5653 

0.7615 

-0.0105 

-0.0264 

-0.0651 

-0.2171 

-0.0115 

-0.0152 

-0.0448 

-0.0200 

-0.0349 

-0.0659 

0.7795 

0.8017 

0.9751 

0.9948 

0.8067 

0.8988 

0.9823 

0.8417 

0.9604 

0.9877 

r2, correlation coefficient 

 

Table 2: Dissolution rate constant by using Hixson-Crowell model obtained 

under all test conditions [19] 

 

Sr. No. Name 

Hixson-Crowell  rate  constant  (K) 

pH 1.0 pH 7.5 

Basket Paddle Basket Paddle 

1 

 

 

2 

 

 

3 

 

 

4 

Broncho- 

Retard  500 

 

Broncho- 

Retard  200 

 

Theodur  300 

 

 

Lasma  300 

0.006 
r = 0.981 

n=12 

0.003 

r  =  0.998 

n =12 

0.001 

r  =  0.984 

n  =11 

0.003 

r = 0.998 

n  =12 

0.007 
r =  0.999 

n=12 

0.005 

r =  0.999 

n =12 

0.002 

r =  0.991 

n=12 

0.003 

r = 0.998 

n =12 

0.005 
r =  0.998 

n  =  27 

0.003 

r =  0.999 

n =  28 

0.001 

r =  0.991 

n =  28 

0.002 

r =  0.999 

n =  29 

0.006 
r =  0.996 

n =  24 

0.005 

r =  0.997 

n =  28 

0.003 

r =  0.995 

n =  26 

0.003 

r =  0.996 

n =  25 

n,  Number  of  data  points;  r,  correlation  coefficient. 
 

 

Table 3: Kinetic parameters of the release curve showing best fit with higher correlation  

with the Higuchi's equation for almost all the formulations [26]. 

 

Sr. no. Formulation r
2
 (Zero order) r

2
 (First order) r

2
(Higuchi) 

1 

2 

3 

4 

5 

6 

7 

8 

F1 

F2 

F3 

F4 

F5 

F6 

F7 

F8 

0.94 

0.93 

0.95 

0.97 

0.93 

0.95 

0.93 

0.92 

0.93 

0.96 

0.92 

0.93 

0.88 

0.81 

0.87 

0.82 

0.98 

0.98 

0.99 

0.99 

0.95 

0.92 

0.96 

0.95 

r2, correlation coefficient 
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Table 4: Simulated Weibull data [33]. 

 

n
a Weibull analysis 

HR 5
th 

and 95
th

 percentiles SE (log HR) 

250 

 

100 

 

50 

0.802 

0.800 

0.804 

0.801 

0.782 

0.800 

0.681, 0.935 

0.686, 0.935 

0.624, 1.023 

0.620, 1.024 

0.460, 1.334 

0.494, 1.347 

0.0983 

0.0955 

0.1516 

0.1493 

0.3209 

0.3079 

a, number per group; HR, Hazard ratio; SE, Standard error. 

 

 

Table 5: Interpretation of diffusional release mechanisms from polymeric films [40] 

 

Release exponent (n) Drug transport mechanism Rate as a function of time 

0.45 ≤ n 

0.45 < n < 0.89 

0.89 

n >  0.89 

Fickian diffusion 

Non-Fickian transport 

Case II transport 

Super case II transport 

t - 0.5 

t n - 1 

Zero order release 

t n – 1 

 

Table 6: Kinetic parameters obtained by using Korsemeyer-Peppas model [41] 

 

Sr. No. Tablet shape r
2 

N 

1 

2 

3 

Triangle (half of side length) 

Cylinder (radius) 

Half-sphere (radius) 

0.993 

0.924 

0.981 

4 

2 

1 

r2, correlation coefficient 

 

Table 7: Release kinetic parameters showing best fit with higher correlation with the Baker-Lonsdale equation 

[52]. 

 

Sr. No. Dissolution model Dissolution rate constant r
2
 

1 

2 

3 

4 

Higuchi 

First order 

Hixson-Crowell cube root law 

Baker – Lonsdale 

25.179 

0.1180 

0.2276 

0.0186 

0.9819 

0.8403 

0.7175 

0.9984 

 

Table 8: Comparison of calculated parameters and their R
2
 using the modified Gompertz model on a mixture of 

three isomers and the single substrata [57] 

 

Initial concentration (mg l
-1

) Chemicals R
2 

27 

 

 

40 

 
 

80 

DMI 

DMT 

DMP 

DMI 

DMT 

DMP 
DMI 

DMT 

DMP 

0.9999 

0.9998 

0.9995 

0.9999 

0.9997 

0.9929 
0.9998 

0.9944 

0.9931 

 

 

 

CONCLUSION: 
The review represents the mathematical 

models for the study of dissolution. From this study it is 

found that these dissolution mathematical models are 

necessary to study the release mechanism of drug from 

the dosage form, as it describes the pattern of release of 

drug mathematically. The present models can also 

easily be extended to study the effect of relative rate of 

dissolution vs. diffusion, drug loading, size and 

distribution of particles of drug.  
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