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Abstract  Review Article 
 

The physicochemical characteristics of graphene-based nanometrics are ideal for a variety of electronic, 

telecommunication, energy, and healthcare applications. Human and environmental exposure to graphenic 

nanomaterials increases due to the synthesis, characterization and mass processing of graphene as well as the growth 

of biomedical and consumer products based on graphene. Throughout this paper, we analyze the various available 

synthetic methods of graphic nanomaterials and discuss in-vitro and in-vivo mammalian cell-associated biological 

structure and toxicity of these nanomaterials. Different synthesis strategies were developed to generate the chemical 

and physical properties of graphene nanometries. As such their relationships with cells and organs also change. 

Literature published bio-structure and cytotoxicity results from graphene nanomaterials. In particular, graphene 

nanomaterials in in-vitro cell cultivation and animal models may contain toxic chemical residues, interfere with 

graphene cell interactions and complicate interpretation of the experimental results. Synthesis methods including 

exfoliation of the liquid phase and wet chemical oxidation require harmful organic solvents, surfactants, strong acids 

and oxidants to dissolve graphite flakes. Such biological and inorganic molecules, which interfere with living cells and 

tissues, activate toxins or eventually cause necrobiosis, can be deposited with the final graphene products. Residual 

chemicals in living cells pose a high risk of toxicity from graphene. This study summarizes the synthesis of 

nanomaterials, cytotoxicity, bioavailability, and various applications. 
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INTRODUCTION 
The carbon allotrops are graphite, diamond, 

carbon nanotube (CNT) and complementary. The most 

common allotropic graphite is madeup of hexagonally 

packed sp2 hybridized carbon sheets, stacked at a 

distance of 0.34 nm from the weak forces of Vander 

Waals. A graphene is the single graphite layer packed in 

a wave-filled crystal grid with one atomic-scale 

thickness. Boehm, Setton, and Stumpp coined the word 

graphene in 1994 [1]. 

 

In 2004, the University of Manchester research 

group Novoselov and Geim successfully exfoliated a 

single graphite layer using simple scotch tape methods. 

This single-level graph shows excellent intrinsic 

properties which led to the “Nobel Prize” for Physics in 

2010 for Novoselov and Geim. Graphene is also a 

versatile building block for other carbohydrating 

structures, such as 0D compleerene, 1D carbon 

nanotube and 3D graphite, respectively. The two-

dimensional graph has special physicochemical features 

[2-6]: 

 

Graphene has become a multi-functional 

material for a broad variety of applications including 

sensors, solar cells, fuel panels, photocatalytics, 

supercapacitors, and batteries [7-11]. 

 

Nanotechnology is a multidisciplinary field of 

study covering a range of fields including biology, 

chemistry, electronics, materials, physics and medical 

sciences. Nanotechnology involves the design and 

production of new materials and devices by 

manipulating nanometer-scale material properties and 

functions. The biological, mechanical, physical and 

chemical behavior of these materials varies significantly 

from their bulk counterparts. Nanotechnology is very 

exciting to create and synthesize nanomaterials with 

different biological, physical, chemical and mechanical 

properties. Through the application of nanotechnology 

in the medical sector, scientists can create effective new 
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materials and technologies for the exposure and 

obstacle of malignant diseases, advanced implants and 

highly bio-compatible artificial protheses. Carbon 

materials, such as carbon nanotubes and maps, have an 

outstanding module and mechanical efficiency, a high 

light transmission and excellent electrical conductivity 

[12]. This was supported by the use of this material for 

electrical apparatus, construction products, medical 

supplies, medical implants, etc. [13, 14]. For example, 

because of their hollow structure one dimensional (1D) 

carbon nanotubes (CNTs) promise drugs in biological 

cells. CNTs with needlelike features can penetrate 

easily into the plasma membrane and thus bear 

therapeutic molecules effectively. Cells penetrating 

nanotubes can, however, also damage organic cells 

because they cause significant toxicity and apoptosis 

[15]. Electron microscopic studies have revealed that 

nanotubes exist in cytoplasms, resulting in oxidative 

stress, reduced metabolic activity and subsequent cell 

death [17]. In this respect, the bio-distribution, the size, 

and shape of carbon nanotubes impede the application 

in the clinical area. This consists of simple building 

blocks, including GQD and 0d bucky ball, 3D graphite, 

and 1D carbon nanotube for all other dimensional 

carbohydrates [18]. 

 

Graphene was first isolated by “Geim and 

Novoselov” through mechanical cleavage using a 

scotch tape to fix the flakes of graphite layers. 

Mechanically exfoliated, defect-free and pure graph 

surface, but very low in size. This application is limited 

mainly to work on the mechanical and optical properties 

of pure graphene. Researchers therefore performed 

several studies to synthesize graphic oxide (GO), 

reduced graphic oxide (RGO), and heat-reduced graphic 

oxide (TRG) to a wide degree. In the 

telecommunications, telecommunications and 

aeronautical industries, the outstanding electrical, 

mechanical and optical characteristics of the graphema 

sheets and of GQDs make this attractive [19-21]. 

 

Graphene, their derivative, and GQDs have 

provided promising materials for biomedical use such 

as tissue engineering, biosensors, bioimagery, 

pharmaceuticals, and photothermal therapy. GQDs are 

typically photoluminescent due to a quantum containing 

effect. The presence of GQDs (< 2 mg/mL)
 
that leads to 

the healthy development of zebras. When using 

graphene-based materials for biomedical applications, 

biocompatibility is a significant concern. Graphene and 

its derivatives are frequently inconsistent in their 

biocompatibility with literary works [22]. 

 

Chang et al., find that A549 (human basal 

epithelial basal cells) is not GO's and has no apparent 

cytotoxicity. However, GO appears to cause oxidative 

stress depending on the dose in cells, which decreases 

the cell viability to a high standard. Dose and size are 

related to these effects. Wang et al. GO also show dose-

dependent toxicity to human fibroblast cells and mice. 

Tests showed that GOs of less than 20 g/mL have no 

toxicity to human fibroblast cells. Natural cytotoxicity 

is observed at doses higher than 50g / mL, including 

reduced cell adhesive and cell apoptosis. Small dose 

(0.1 mg) and intermediate dose (0.25 mg) GO in vivo 

mice experiments do not indicate any acute toxicity, but 

chronic toxicity is caused by a high-dose (0.4 mg). 

Yang et al., researched in-vivo polyethylene glycol 

(PEG)-functional graphene biodistribution in mice. We 

have shown that PEGylated graphene is not 

significantly toxic in doses of 20 mg/kg for three 

months [23-28]. 

 

THE STRUCTURE OF GRAPHENE 
Basics Structure 

Carbon is the sixth element in the Periodic 

Table with an electronic configuration of 1s22s22x22Py 

12Py 12Pz0. 2pz electron-free energy is kept for ease, 

even though it is equal to 2px and 2py. Six electrons, 

four of which are electrons of interest, surround the 

nuclear carbon nucleus. These electrons are capable of 

forming three forms of carbon-valence hybridization: 

sp, sp2, and sp3. Since carbon atoms share S2 electrons 

with their three carbon atoms, they form a planar wave 

structure, also called monolayer lines. During the 

typical sp2 hybridisation, the μ off-flane bond consists 

of 2pz orbital layers perpendicular to the planar 

structure of two adjacent carbon atoms. In contrast, the 

in-plane μ bond consists of the hybridized sp2 orbitals 

(2s,2px,2py). The resulting covalent, interatomically 

short bond, about 1.42Å, which makes the bond even 

more potent than the hybridized carbon sp3 – carbon 

bonds in diamonds with an extensive mechanic function 

of monolayers, including a Young's 1 TPa module and a 

130.5 GPa tensile strength. With a semi filled α-band, 

the steering band and valence band with a zero-band 

distance allow free moving electrons to be produced in 

the monolayer graph. In the μ-bonds, the interaction 

between adjacent two-layer graphs and multi-layer 

graphs is also mild. 

 

Synthesis of Graphene-Based Nanomaterials 

Graphene can typically be synthesized up and 

down from both directions. The top-down route 

includes liquid exfoliation, micromechanical graphite 

cuttings, and the exfoliation of metallic graphite, 

accompanied by chemical or thermal RGO or TRG 

processes. The processing path from the bottom up 

involves the deposition of chemical vapor and SiC 

substratum epitaxial growth [29]. 

 

Epitaxial Graphene on SiC Wafers 

Graphene films on SiC wafers can form at 

temperatures (usually more than 1000 C) by 

sublimating Si atoms from high vacuum wafers (UHV). 

As a result, graphene is left to the surface of the wafer. 

Nevertheless, small size SiC wafers, the high cost, and 

the need for UHV high-temperature equipment preclude 

this method from being used in commercial large-scale 

graphic production [30, 31]. 
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Chemical Vapor Deposited Graphene Films 

A chemical vapor-deposit is usually used to 

produce great monocle graph films on transition metals 

(Fe, Ni, Co, Pt, Ru) by allowing a high-temperature 

film reaction chamber such as methane, ethane, or 

propane to be hydrated. Cu or Ni substrates are 

common because of their low cost for the 

decomposition of hydrocarbon gasses. Then the thin 

films are transferred to different substrates like SiO2/Si, 

glass, or flexible polymer (PET). The graphics are 

processed in two steps and extended. The first step is 

the first carbon pyrolysis precursor. The development of 

dissociated carbon atoms follows the graphical structure 

creation. CVD graphene growth is typically achieved by 

a surface adsorption cycle in a Cu substratum with a 

low carbon solubility. The precursor of carbon breaks 

down and only adsorbs the metal surface, followed by 

migration and growth. Graphene on Ni is made from 

carbon segregation and precipitation, on the other hand. 

Carbon species are broken down and distributed over a 

high carbon metal surface at high temperatures to create 

a robust solution. The cooling increases carbon 

solubility and allows carbon atoms to move from the 

metal and graph on the Ni surface. Graphene foil 

growth and consistency can be affected by various 

factors, including material types and CVD parameters 

such as gas content of the precursor, concentration, flow 

rate, and temperature are measured. The graphene films 

of random graphene islands are high grain density 

polycrystalline. Such grain limits significantly degrade 

the electrical characteristics of graphic films as they 

serve as the electron dispersion core and reduce the 

mobility anticipated. Graphic films with small grains or 

even single crystal graphic films with lower grain 

borders must be created in this regard. In the past, Xu et 

al., developed single-crystal graphene (5, 50 cm
2
), on 

the copper surface of the graphene islands, in a single 

meter Cu (111) foil and epitaxially. The as-synthesized 

graphemetric film had up to 23,000 cm
2
 V

-1
 s

-1
 mobility 

at 4 K. For the development of bendable screens, 

displays and optoelectronic products, high graphic 

CVD-grown films are utilized [32-36]. 

 

Liquid Phase Exfoliation 

Its low cost and simplicity make it a scalable 

route for mass graphene production. Graphite is 

dispersed between graph interlayers in a solvent in the 

absence or presence of surfactants. Ultrasound or 

shaving can promote graphite exfoliation in graph 

sheets. A purification step is taken to generate single, 

multi-faceted graph sheets. This technique allows 

exfoliated graph sheets to synthesize solvent 

suspension. Since graphene flakes' exfoliation and 

stability in the specific medium is dependent on organic 

solvents, surfactants, and strong acids, they can cause 

environmental pollution problems. Graphene sheets also 

have difficulty removing residual surfactants. Many 

organic solvents (e.g., N-methyl 2-pyrrolidone (NMP); 

N, N-dimethyl-formamide (DMF); dichlorobenzene 

(DCB) are highly toxic; cell toxicity induction may be 

possible, and cell manipulation should be avoided. 

 

Chemical and Thermal Reduction of GO’ 

Graphene oxide is a derivative of graphene 

which is formed by the chemical oxidation of solid 

oxidants by graphite flocks. Using sulphuric acid, 

sodium nitrate, and potassium permanganate mixtures 

in a strong stirring or sounding cycle, Modified 

Hummers is used to produce GO. Suspension is 

saturated with water, and then added hydrogen peroxide 

to increase oxidation, followed by water rinse. The 

disadvantages are extended processing times and toxic 

gas output (NO2 and N2O4). Tour and colleagues 

adapted this method to address these problems by 

replacing sodium nitrate with phosphoric acid in mixed 

H2SO4 / H3PO4 ratio (9:1). This method's advantage is 

reducing toxic gas formation. The drawbacks include 

substantial KMnO4, boring sampling, filtration, 

centrifugation, and washing. Thus, several techniques 

were introduced to further alter the Hummers process, 

such as using K2FeO4 as a effective oxidizing agent 

instead of KMnO4 and eliminating NaNO3 in GO 

preparation. 

 

Nanocomposites Graphene-Polymer 

Pure graphene has an exceptionally high 

elastic module of about 1 TPa and a resistance of 130 

GPa, excellent optical clearance of 97.7% and a good 

electric conductivity and mobility of 2,105 cm
2
 V

-1
 s

-1
. 

Graphene is an appealing filler material for 

nanocomposites 40 polymers. Through adding micro- 

or nanoscales fillers, the output of high-flexibility 

polymers can be optimized for various applications. 

Polymer composites inherit beneficial properties of 

their components and, in addition, polymers guard 

against mechanical damage to embedded fillers [37-41]. 

Because of their light weight, ease of manufacture and 

low costs, the conventional polymer composites are 

widely used in the biomedical and industrial sectors as 

structural components. Nonetheless, the desired 

biological, mechanical and physical behavior includes 

high-volume filler material (30%). The properties of the 

polymer microcomposites are affected by large volume 

filler material. Graphene-based nanomaterials can be 

used at low loading loads to fill and reinforce polymers 

[42-47]. 

 

The GO element is still substantially higher 

than biopolymers, including polylactic acid (PLA) of 

about 2.7–3 GPa and 0.4 GPa (PCL). GO can be used to 

increase the mechanical performance, thermal stability, 

and biocompatibility of nanocomposites of GO / PLA 

and GO / PCL. The biocomposite polymer can be made 

in different ways, including mixing, melting, and 

electrospinning of solutions [48-50]. 
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CONCLUSION  
This study summarizes the synthesis, 

cytotoxicity, bioavailability and specific applications of 

nanomaterials. Graphene toxicity has been shown to 

rely on scale, shape, cleanness, post-processing stages, 

oxidation state, dispersion, functional groups, route and 

dose, and exposure time methods. Both studies raise the 

understanding of synthesis, cytotoxicity, biological 

health services adaptability and increased risks to 

human health. This approach opens new possibilities for 

biomedical applications in orthopedics for the 

development of advanced bone stabilizers, fabrics and 

implants. More safety should be tested and examined 

before clinical use to make sure that these polymer 

nanocomposites are biocompatible with human tissue. 
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