3 OPEN ACCESS

Abbreviated Key Title: SAS J Med ISSN 2454-5112 Journal homepage: https://saspublishers.com

Anesthesiology

Postoperative Nausea and Vomiting Between Total Intravenous and Sevoflurane Anesthesia after Peroral Endoscopic Myotomy; A Randomized, Double-Blind

Jung-Won Kim M.D.¹, Tae Yeun Kim M.D.¹, Lime Kim M.D.¹, Yun-Sic Bang M.D., Ph.D.^{1*}

¹Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University School of Medicine

DOI: https://doi.org/10.36347/sasjm.2025.v11i11.007 | **Received:** 25.09.2025 | **Accepted:** 13.11.2025 | **Published:** 17.11.2025

Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University School of Medicine

Abstract Original Research Article

Peroral endoscopic myotomy (POEM) recently has been reported as minimally invasive therapy for esophageal achalasia requires general anesthesia. Postoperative nausea and vomiting (PONV) is one of the most common adverse events after general anesthesia. Although PONV is associated with adverse consequences undergoing POEM, little has been known about the incidence and risk factors. We evaluated the incidence of PONV undergoing POEM as well as the relationship between incidences and anesthetic agents. This prospective double-blind study comprised 60 patients with American Society of Anesthesiologist physical status I or II who were undergoing POEM with inhaled anesthesia or TIVA. Patients were interviewed by two experienced anesthesiologists about incidence of PONV in accordance with a categorical verbal rating scale (VAS) and PONV Intensity Scale. The primary outcome was the incidence of PONV undergoing POEM between the two groups. In addition, we observed postoperative outcomes including bleeding at surgical site, mucosal injury, and patients' satisfaction. The incidence of PONV after POEM within first 6 hours was significant lower in the TIVA group than in the sevoflurane group (46.4% vs 76.7%, p=0.025). Additionally, it was observed that number of patients who experienced postoperative complications, such as surgical site injury, mucosal injury, heart burn, pneumoperitoneum, and emphysema, was higher in TIVA group (44.4%) compared with in sevoflurane group (26.7%), but it was insignificant (p=0.130). These data suggest that TIVA could be considered as a good method to prevent PONV during early postoperative period (within 6 hours) after POEM.

Keywords: Peroral endoscopic myotomy (POEM), Postoperative nausea and vomiting (PONV), Total intravenous anesthesia (TIVA), Sevoflurane, Esophageal achalasia, General anesthesia.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Introduction

Esophageal achalasia is an esophageal motility disorder characterized by a failure of lower esophageal sphincter relaxation after swallowing and a lack of peristalsis of esophagus [1], which is accompanied by esophageal dilation and regurgitation [1]. Therefore, dysphagia, nausea and vomiting are main symtoms associated with slow gastric emptying in the absence of obstruction. Treatment options mechanical esophageal achalasia include pharmacological therapy, endoscopic pneumatic balloon dilation and surgical intervention such as laparoscopic Heller myotomy and peroral endoscopic myotomy (POEM). Recently, POEM has been established as the best treatment option for esophageal achalasia, as POEM is safer and less invasive than other surgery [1, 2]. It has been demonstrated that POEM under endotracheal general anesthesia compares

favorably to intravenous sedation [3, 4]. Despite impressive advances in the field of anesthesia, postoperative nausea and vomiting (PONV) is one of the most undesirable complications after general anesthesia. The incidence of PONV has been reported between 10% and 30%, but up to 80% in patient with risk factors for PONV [5]. Since Apfel et al., [5] has been developed a risk score for PONV, numerous studies have reported factors, including characteristics, anesthetic agent, surgical procedure, and postoperative care, are associated with an increased incidence of PONV [6-8]. Recently, it has been demonstrated that total intravenous anesthesia (TIVA) with propofol can reduce the incidence of PONV compared with sevoflurane anesthesia [6]. Recently, Wengritzky et al validated a PONV intensity scale (Appendix 1) [9], which can be used to identify clinically important PONV. While PONV immediately after

Citation: Jung-Won Kim, Tae Yeun Kim, Lime Kim, Yun-Sic Bang. Postoperative Nausea and Vomiting Between Total Intravenous and Sevoflurane Anesthesia After Peroral Endoscopic Myotomy; A Randomized, Double-Blind. SAS J Med, 2025 Nov 11(11): 1112-1117.

^{*}Corresponding author: Yun-Sic Bang M.D., Ph.D.

POEM can cause bleeding, damage to the surgical site and esophageal rupture [10, 11], little is known about the incidence of PONV, especially clinically important PONV and anesthetic risk factors such as using volatile anesthetics in POEM. Therefore, we evaluated the incidence of PONV as well as comparing with TIVA prior to inhaled anesthesia using sevoflurane, in patients undergoing POEM procedure.

MATERIALS AND METHODS

This prospective, randomized study was approved by the Institutional Review Board of our Medical Center in January 2019. The 60 patients who underwent POEM at CHA Bundang Medical Center (CHAMC 2018-12-051-003) between March 2019 and February 2020 were enrolled. All patients are aged 20-65 years with an American Society of Anesthesiologists physical status I or II and provided verbal and written informed consent before enrollment. The 3 patients were excluded because one patient was refused, aspiration was occurred prior to endotracheal intubation in one patient, and one patient had a hereditary angioedema. The patients were randomly assigned to two group using a computer-generated number table as follows (Fig 1); (1) volatile anesthesia using sevoflurane [Sevoflurane group]; (2) TIVA using propofol and remifentanil [TIVA group]. Experienced anesthesia nurses prepared the anesthetic agents before induction of anesthesia, according to direction in an envelope containing the allocation group. The premedication was not received and routine monitorings (electrocardiography, noninvasive blood pressure mearsurement, and pulse oxymetry) were applicated. In the sevoflurane group, anesthesia was induced with propofol 1.5-2 mg/kg intravenously and maintained with 1.5-2% sevoflurane in a mixture of 50% air and oxygen along with continuous remifentanil (0.1-0.15 µg/kg/min). In the TIVA group, anesthesia was induced and maintained with propofol (target effect-site concentration 2.5-3.5 µg/ml) and remifentanil (target effect-site concentration 2.5–3.5 ng/ml) using a target-controlled infusion device (Orchestra® Base Primea; Fresenius Kabi, France). For all patients, tracheal intubation was performed with Macintosh-type laryngoscope after neuromuscular blockage was achieved with intravenous rocuronium 0.6 mg/kg. After endotracheal intubation, mechanical ventilation was applied with a tidal volume of 6-8mL/kg ideal body weight, inspiratory-to-expiratory ratio 1:2, and respiratory rate adjusted to maintain end-tidal partial pressure of carbon dioxide at 30-40mmHg. For reducing complications associated with CO2 insufflation, low flow CO_2 (approximately 1 ± 0.3 L/min) was applied in our institution [3, 4]. At the end of surgery, ramosetron (Nasea® [HANAH PHARM, Korea, Republic of]), 5hydroxytryptamin type 3 (5-HT3) receptor antagonist, was intravenously administered for PONV prophylaxis. And neostigmine 0.04 mg/kg plus glycopyrrolate 0.008 mg/kg intravenously were given to all patients for the reversal of the neuromuscular blockade. In order to postoperative pain, intravenous patientcontrolled analgesia (PCA) devices, set to deliver a basal infusion of fentanyl at 20 µg/h with a 5µg bolus and a lock-out time of 15 min, were used during the 24-48 hours postoperative period. Patients were interviewed by two experienced anesthesiologists at 0-6 (early), 6-24 (intermediate) and 24-48 (late) hours postoperatively about incidence of PONV in accordance with a categorical verbal rating scale (VAS) and PONV Intensity Scale. A score was calculated for each patient and 5 score or more of the PONV Intensity Scale was validated as clinically significant PONV [9, 12]. The total dosage of bolus fentanyl and anti-emetic drugs, such as metoclopramide, were also checked up at the same time. The primary outcome of our study was the incidence of PONV especially clinically important PONV according to PONV Intensity Scale within the first 48 hours after anesthesia. Secondary outcomes included the incidence of postoperative adverse events (including bleeding at surgical site, mucosal injury, heart burn, pneumoperitoneum, and emphysema) and patient satisfaction. The sample size was calculated by power analysis while designing the study. By allowing an a error of 5% and a β error of 20%, a minimum of 28 patients would be needed in each group to show a 30% difference in the incidence of PONV [13]. Variables are presented as mean (± standard deviation), median (interquartile range), or frequency (percentage). Intergroup differences were evaluated using Student's ttest for continuous variables, and the chi-square or Fisher's exact test for categorical variables, as appropriate. *P values* < 0.05 were considered significant. All statistical analyses were performed with SPSS (version 26.0, Chicago, IL, USA).

RESULTS

In all, 60 patients with esophageal achalasia underwent POEM and of those 3 patients were excluded from the analysis. There were no significant differences between two groups with demographic data, Apfel score and operative data, as described in Table 1. The incidence of PONV after POEM within first 6 hours was significant lower in the TIVA group than in the sevoflurane group (46.4% vs 76.7%, p=0.025). In contrast, during intermediate and late postoperative period, no significant differences were founded (p=0.439and p=0.586, respectively) between the two groups (Table 2). Additionally, incidences of clinically important PONV according to PONV Intensity Scale were 21.1% (12/57) and 7% (4/57) within postoperative 6 and 24 hours, there were not significant differences among the two groups (p=0.546 and p=0.347, respectively). Secondary outcomes were summarized in Table 3. According to our result, the postoperative hospital stay are 7 days, there was no difference between two groups. It was observed that number of patients who experienced postoperative complications, such as surgical site injury, mucosal injury, heart burn, pneumoperitoneum, and emphysema, was higher in TIVA group (44.4%) compared with in sevoflurane group (26.7%), but it was insignificant (p=0.130). Furthermore, the number of patients who were satisfied with PONV after general anesthesia was superior in TIVA group, but with no significant difference between the two groups (p=0.656). Of the patients, 20 (35.1%) had complications before hospital discharge (Table 4). The patients who experienced postoperative

complications was significantly associated with higher PONV Intensity Scale within early postoperative period $(2.6 \pm 2.2 \text{ and } 1.2 \pm 2.0, p=0.025)$. Additionally, patients with complications had longer postoperative hospital stays $(8.2 \pm 3.2 \text{ vs } 6.9 \pm 1.2, p=0.035)$.

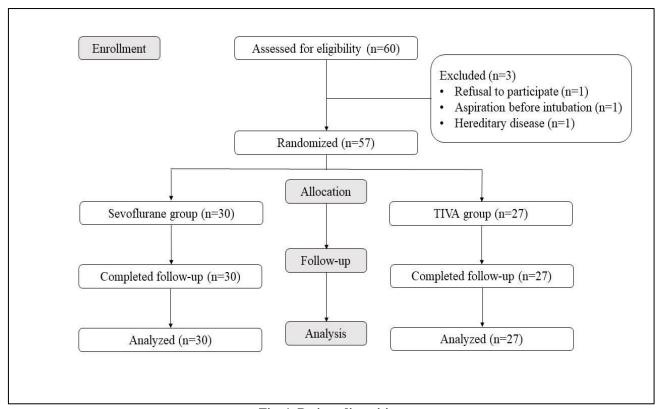


Fig. 1. Patient disposition

Table 1: Demographic characteristics of the two-study group

Characteristic	Sevoflurane group	TIVA group	p-value
	(n=30)	(n=27)	
Age, year	40.6 ± 12.8	43.4 ± 12.7	0.905
Male, n (%)	15 (50)	11 (40)	0.796
Height, cm	166.2 ± 8.4	164.0 ± 7.4	0.861
Weight, kg	62.8 ± 11.1	60.0 ± 11.3	0.682
BMI, kg/m ²	22.6 ± 2.8	22.3 ± 3.6	0.741
Apfel score			0.552
0	0 (0)	1 (3.7)	
1	5 (16.7)	6 (22.2)	
2	11 (36.7)	6 (22.2)	
3	8 (26.7)	10 (37.0)	
4	6 (20.0)	4 (14.8)	
No. of Risk factors	2 [2-3]	3 [2-3]	0.647
Duration of anesthesia, min	89.7 ± 24.7	98.8 ± 31.4	0.974
Duration of surgery, min	64.7 ± 22.8	73.3 ± 27.3	0.659
Duration of PACU, min	56.5 ± 11.8	58.7 ± 22.9	0.573

Data are presented as counts (percentages) or mean ± standard deviation or median [25th-75th percentiles] TIVA, total intravenous anesthesia; BMI, body mass index; PACU, Postanesthetic care unit.

Table 2: Incidence and severity of PONV accordance to VAS and PONV intensity scale, and need for rescue antiemetics after POEM

Time after operation (h)	Sevoflurane group	TIVA group	<i>p</i> -value
Time uncer operation (in)	(n=30)	(n=27)	P
0-6	(-2 0 0)	()	
VAS of Nausea, n (%)	3.8 ± 3.1	2.3 ± 3.1	0.778
Vomiting	4 (13.3)	5 (18.5)	0.430
PONV, n (%)	23 (76.7)	13 (46.4)	0.025*
PONV Intensity Scale	2.3 ± 2.2	1.6 ± 2.2	0.249
Clinically important PONV, n (%)	6 (20.0)	6 (21.4)	0.546
Rescue antiemetics, n (%)	29 (96.7)	24 (88.9)	0.267
6-24			
VAS of Nausea, n (%)	1.7 ± 2.4	1.5 ± 2.2	0.603
Vomiting	2 (6.7)	1 (3.7)	0.540
PONV, n (%)	15 (50.0)	12 (42.9)	0.439
PONV Intensity Scale	1.6 ± 1.8	0.9 ± 1.4	0.126
Clinically important PONV, n (%)	3 (10.0)	1 (3.5)	0.347
Rescue antiemetics, n (%)	9 (30.0)	3 (11.1)	0.076
24-48			
VAS of Nausea, n (%)	0.4 ± 0.8	0.4 ± 0.8	0.791
Vomiting	1 (3.3)	2 (7.4)	0.460
PONV, n (%)	7 (23.3)	6 (21.4)	0.586
PONV Intensity Scale	0.4 ± 0.9	0.2 ± 0.5	0.191
Clinically important PONV, n (%)	0 (0)	0 (0)	
Rescue antiemetics, n (%)	1 (3.3)	2 (7.4)	0.460

Data are presented as counts (percentages) or mean \pm standard deviation

VAS, verbal rating scale; PONV, postoperative nausea and vomiting; TIVA, total intravenous anesthesia.

Table 3: Postoperative outcomes between the two groups

	Sevoflurane group	TIVA group	<i>p</i> -value
	(n=30)	(n=27)	
Postoperative hospital stay, day	7 ± 2.7	7 ± 1.6	0.332
Postoperative complication, n (%)	8 (26.7)	12 (44.4)	0.130
Patient satisfaction, (%)			0.656
Satisfied	24 (80.0)	24 (88.9)	
Neutral	4 (13.3)	2 (7.4)	
Dissatisfied	2 (6.7)	1 (3.7)	

Data are presented as counts (percentages) or mean ± standard deviation PONV, postoperative nausea and vomiting; TIVA, total intravenous anesthesia.

Table 4: Postoperative PONV intensity Scale by three postoperative periods according to presence or absence of complication

complication					
	No Complication	Complication	<i>p</i> -value		
	(n=37)	(n=20)			
Postoperative PONV Intensity Scale					
0-6 hr	1.2 ± 2.0	2.6 ± 2.2	0.025^{*}		
6-24 hr	1.1 ± 1.5	1.7 ± 1.8	0.219		
24-48 hr	0.4 ± 0.7	0.3 ± 0.7	0.612		
Postoperative hospital stay, days	6.9 ± 1.2	8.2 ± 3.2	0.035^{*}		

Data are presented as mean ± standard deviation PONV, postoperative nausea and vomiting. TIVA, total intravenous anesthesia

DISCUSSION

In this present study, we founded that TIVA could reduce the incidence of PONV compared with sevoflurane anesthesia within first 6 hours after POEM. POEM has been known as an effective and safe treatment

for esophageal achalasia and is recommended under general anesthesia rather than sedation [3, 4]. Because PONV is the most unpleasant side effect of general anesthesia, prevention of PONV remains a challenge for anesthesiologists. Patient characteristics, anesthetic methods, surgical procedure, and PCA were known risk factors for PONV [8]. It has been demonstrated that the Apfel's score, including female gender, prior history of PONV, nonsmoking, and the use of postoperative opioids, was independent risk factor for PONV undergoing inhalational anesthesia [5]. According to Apfel's score, the risk factors affecting PONV were well balanced except anesthetic methods. Since then, many studies show that TIVA with propofol is associated with a lower incidence of PONV compared with volatile agents [14-17]. Although the triggering mechanism of PONV remains unclear, Apfel et al., [18] reported that the pro-emetogenic effect of volatile anesthetics could be strong risk factor of PONV in the postoperative period as well as anti-emetic property of propofol could be associated with low incidence of PONV. Similarly, our study showed that the incidence of PONV seems to be significantly lower in TIVA group undergoing POEM compared with sevoflurane group especially within postoperative 6 hours (Table 2). Although PONV intensity scales were low in TIVA group during postoperative 48 hours, but there were not significantly differences between two groups. Also, to our surprise, there was no statistically significant interaction of postoperative antiemetics with anesthetic agents. Of esophageal rupture, heart note, pneumoperitoneum, and emphysema have been associated with PONV [19, 20]. These adverse effects of PONV immediately after POEM could cause bleeding at surgical site, mucosal injury and damage to the surgical site. Therefore, prevention of PONV is one of the most important considerations for patients undergoing POEM. According to our result, TIVA with propofol seems to be safer and more favorable anesthetic technique than volatile anesthetics, such as sevoflurane. Our results suggest the volatile anesthetics would be considered as one of the causes of PONV especially, in the early postoperative period (within 6 hours) undergoing POEM. However, inhaled anesthetics had no influence to delayed PONV (6-24 and 24-48 hours) after POEM. Although 35.1% patients had experienced complications in the hospital stay after POEM, there was no significantly difference between two groups. However, patients with postoperative complications showed significantly higher PONV Intensity Scale within early postoperative period than those without complications (Table 4). Additionally, development of complications was associated with prolonged postoperative hospital stays. To our knowledge, if high PONV Intensity Scale was observed within 6 hours after POEM, incidence of complications could be increased and postoperative hospital stays could be prolonged.

There were several limitations to this study, First, because data were collected from a single center, intraoperative and postoperative routine management may have influenced the PONV. Therefore, further large-scale, multicenter studies are necessary to confirm the difference in the incidence of PONV undergoing POEM between TIVA and volatile anesthesia.

Additionally, all of the patients were received opioid-based intravenous PCA for postoperative pain control, which was known an independent risk factor of PONV. Although PCA may have had an influence on PONV, but since PCA was applied to all of the patients therefore there was no difference between two groups. Therefore, further studies will be needed to take these limitations into consideration.

In conclusion, our study suggests that TIVA could be considered as a good method to prevent PONV during early postoperative period (within 6 hours) after POEM. In addition, patients with high PONV Intensive Scale within 6 hours after POEM seemed to develop complications, therefore it is necessary to observe carefully during early postoperative period undergoing POEM.

Funding: This research was funded by HANAH PHARM[®], grant number 2018-12-051

REFERENCES

- Awaiz A, Yunus RM, Khan S, Memon B, Memon MA. Systematic Review and Meta-Analysis of Peri operative Outcomes of Peroral Endoscopic Myotom y (POEM) and Laparoscopic Heller Myotomy (LH M) for Achalasia. Surg Laparosc Endosc Percutan Tech 2017;27:123-131
- 2. Khashab MA, Ngamruengphong S, Carr-Locke D, Bapaye A, Benias PC, Serouya S, et al. Gastric peroral endoscopic myotomy for refractory gastropares is: results from the first multicenter study on endosc opic pyloromyotomy (with video). *Gastrointest End osc* 2017;85:123-128
- Bang YS, Park C. Anesthetic Consideration for Per oral Endoscopic Myotomy. Clin Endosc 2019;52:54 9-555
- Wang J, Tan N, Xiao Y, Chen J, Chen B, Ma Z, et a l. Safety and efficacy of the modified peroral endos copic myotomy with shorter myotomy for achalasia patients: a prospective study. *Dis Esophagus* 2015;2 8:720-727
- Apfel CC, Laara E, Koivuranta M, Greim CA, Roe wer N. A simplified risk score for predicting postop erative nausea and vomiting: conclusions from cros s-validations between two centers. *Anesthesiology* 1 999;91:693-700
- Matsuura H, Inoue S, Kawaguchi M. The risk of po stoperative nausea and vomiting between surgical p atients received propofol and sevoflurane anesthesia : A matched study. *Acta Anaesthesiol Taiwan* 2016; 54:114-120
- 7. Dalila V, Pereira H, Moreno C, Martinho C, Santos C, Abelha FJ. Postoperative nausea and vomiting: V alidation of the Portuguese version of the Postopera tive Nausea and Vomiting Intensity Score. *Braz J A nesthesiol* 2013;63:340-346
- 8. Golembiewski J, Chernin E, Chopra T. Prevention a nd treatment of postoperative nausea and vomiting. *Am J Health Syst Pharm* 2005;62:1247-1260; quiz 1

- 261-1242
- 9. Wengritzky R, Mettho T, Myles PS, Burke J, Kakos A. Development and validation of a postoperative n ausea and vomiting intensity scale. *Br J Anaesth* 20 10;104:158-166
- Gan TJ. Risk factors for postoperative nausea and v omiting. Anesth Analg 2006;102:1884-1898
- McGrath B, Chung F. Postoperative recovery and d ischarge. *Anesthesiol Clin North Am* 2003;21:367-3 86
- 12. Myles PS, Wengritzky R. Simplified postoperative nausea and vomiting impact scale for audit and post -discharge review. *Br J Anaesth* 2012;108:423-429
- 13. Bang YS, Kim YU, Oh D, Shin EY, Park SK. A ran domized, double-blind trial evaluating the efficacy o f palonosetron with total intravenous anesthesia usi ng propofol and remifentanil for the prevention of p ostoperative nausea and vomiting after gynecologic surgery. J Anesth 2016;30:935-940
- 14. Lebenbom-Mansour MH, Pandit SK, Kothary SP, R andel GI, Levy L. Desflurane versus propofol anest hesia: a comparative analysis in outpatients. *Anesth Analg* 1993;76:936-941
- 15. Doze VA, Shafer A, White PF. Propofol-nitrous oxi

- de versus thiopental-isoflurane-nitrous oxide for ge neral anesthesia. *Anesthesiology* 1988;69:63-71
- Sneyd JR, Carr A, Byrom WD, Bilski AJ. A meta-a nalysis of nausea and vomiting following maintena nce of anaesthesia with propofol or inhalational age nts. Eur J Anaesthesiol 1998;15:433-445
- 17. Gecaj-Gashi A, Hashimi M, Sada F, Baftiu N, Salih u S, Terziqi H, et al. Propofol vs isoflurane anesthes ia-incidence of PONV in patients at maxillofacial s urgery. *Adv Med Sci* 2010;55:308-312
- 18. Apfel CC, Kranke P, Katz MH, Goepfert C, Papenf uss T, Rauch S, et al. Volatile anaesthetics may be t he main cause of early but not delayed postoperativ e vomiting: a randomized controlled trial of factoria 1 design. *Br J Anaesth* 2002;88:659-668
- 19. Bremner WG, Kumar CM. Delayed surgical emphy sema, pneumomediastinum and bilateral pneumotho races after postoperative vomiting. *Br J Anaesth* 19 93;71:296-297
- Schumann R, Polaner DM. Massive subcutaneous e mphysema and sudden airway compromise after po stoperative vomiting. *Anesth Analg* 1999;89:796-79