Clinical and Prognostic Aspects of Obstetric Acute Renal Failure in the Nephrology and Hemodialysis Department of the Point G Teaching Hospital in Mali

Fofana Aboubacar Sidiki1,2, Yattara Hamadoun1, Sy Seydou1, Samaké Magara1, Coulibaly Moctar3, Coulibaly Sah dît Baba1, Diallo Djénéba1, Sima Mamadou1, Sidibé Modj1, Kodio Atabieme1, Touré Alkaya1, Coulibaly Nouhoum1, Tangara Moustapha1, Fongoro Saharé3

1Department of Nephrology and Hemodiagnosis at the Point G teaching hospital in Mali
2Department of Medicine and Medical Specialties, Regional Hospital, Kayes/Mali
3Nephrology Unit of the Mali GAVARDO Hospital in Bamako, Mali

Abstract

Introduction: Acute kidney injury (AKI) remains a serious and frequent complication in developing countries. Objective: To evaluate the clinical and evolutionary profile of patients hospitalized for acute obstetric renal failure in the nephrology department of the Point G teaching hospital in Mali. Patients and methods: This was a prospective and descriptive study from June 1, 2015 to June 1, 2019. Results: The prevalence of obstetrical AKI in the nephrology department of the Point G teaching hospital was 2.08%. The majority of AKI occurred postpartum 61 cases versus 2 cases during pregnancy after the 20th week of amenorrhea. The mean age of the patients was 27.31 ± 5.49 years. Blood pressure was normal in 30.2% of participants. According to the WHO classification of hypertensive patients, hypertension grade 2 was found in 36.5% of cases followed by grade 3 and 1 (17.5% and 15.9%). The average blood pressure was 150.39 / 98.68 mmHg. The haemogram objectified severe anaemia in thirty-five patients. The causes of AKI were severe preeclampsia (55.5%), postpartum hemorrhage (36.5%), post-clandestine abortion sepsis (3.2%), severe Palsmodium falciparum malaria (1.6%), severe superimposed preeclampsia (1.6%) and hemolytic uremic syndrome (1.6%). Forty-six patients were dialysed, i.e. 73%. During their follow-up, total recovery of renal function was observed in 67.9% (31 cases) versus 1 case of partial recovery, 4 patients progressed to end-stage chronic renal failure, 7 cases of death were observed and 3 cases of discontinuation of follow-up. Among the non-dialysis patients, recovery of ad-integrate renal function was observed in 16 patients and 1 case of death. Maternal and perinatal mortality was 12.69% and 41.2% of cases. Conclusion: Obstetric AKI remains common in Africa. Screening for renal impairment during pregnancy should be routine. We insist on primary prevention of obstetrical complications, decentralization of dialysis centers, close collaboration between nephrologist and obstetrician in order to significantly reduce this non-negligible morbi-mortality.

Keywords: Acute renal failure, obstetrical, prognostic, Mali.

In recent decades, gestational AKF has been most common in the setting of preeclampsia or severe eclampsia, and postpartum AKF is mainly the result of massive bleeding and bleeding disorders [3]. Other non-specific kidney diseases (systemic diseases, pyelonephritis gravidarum) coincide with pregnancy and may complicate or be complicated by pregnancy [4].

In developed countries the incidence of obstetric AKI has been declining in recent decades. In France, its incidence fell from 1 per 3000 pregnancies...
before the 1970s to 1 per 20,000 pregnancies in 2001, i.e. about 2-3% of acute renal failure compared with 20-40% in the 1950s to 1960s [5]. On the other hand, in developing countries it is still a significant cause of maternal mortality. In Mauritania, the prevalence of post-partum ARI in the national hospital of Nouakchott is 4.61% with a mortality rate of 13.23% [6].

In Mali a retrospective study carried out in the Nephrology Department of the Point G University Hospital over a period from 1 January 2010 to 31 December 2012 revealed 28 cases of obstetric ARI with total recovery of renal function in 39% of cases and a mortality rate of 21.42% [7].

The aim of this work was to evaluate the prevalence, clinical and evolutionary profile of patients hospitalized for acute obstetric renal failure in the nephrology department of the University Teaching Hospital of Point G.

PATIENTS AND METHODS

1. Setting and location of the study: The Point G teaching hospital in Mali is a level 3 reference centre which houses the only nephrology and haemodialysis service. This service receives patients with kidney diseases from all regions of Mali, the district of Bamako and some neighboring countries including Guinea Conakry and Ivory Coast.

2. Type and period of study: This was a prospective and descriptive study with a duration of 4 years from 1 June 2015 to 31 June 2019.

Criteria for Inclusion

- Patients hospitalized for acute obstetrical renal failure beyond the 20th week of amenorrhea or within the first three months postpartum with a complete record (clinical examination results, additional examinations, reports of interventions and treatment protocols implemented).
- Absence of other non-obstetrical situations that may cause or promote ARF, namely the use of nephrotoxic drugs (aminoglycosides) or injection of iodinated contrast media.

Non-inclusion Criteria: Not included in this study

- Patients with ARF before the 20th week of amenorrhea
- Patients hospitalized for chronic kidney disease decompensated by pregnancy
- Non-consenting patient

Definition Criteria Used

- Definition of AKI (Table 1).

Table 1: KDIGO (Kidney Disease Improving Global Outcome 2012) universal definition of acute renal failure [8]

<table>
<thead>
<tr>
<th>Stage AKI</th>
<th>Creatinine*</th>
<th>Diuresis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Increase > 26 μmol/L (3 mg/L) in 48 hours or > 50 % in 7 days</td>
<td>< 0.5 ml/kg/h for 6-12 hrs</td>
</tr>
<tr>
<td>2</td>
<td>Creatinine x 2</td>
<td>< 0.5 ml/kg/h ≥ 12 hrs</td>
</tr>
<tr>
<td>3</td>
<td>Creatinine x 3 Or creatinine > 354 μmol/L (40 mg/L) in the absence of prior value or need for dialysis</td>
<td>< 0.3 ml/kg/h ≥ 24 hours or anuria ≥ 12 h</td>
</tr>
</tbody>
</table>

* We used the creatinine criterion this study

- Oliguria is defined as diuresis less than 500 ml/24H, anuria as diuresis less than 100 ml/24H and polyuria as diuresis greater than 2ml/Kg/H.
- Pregnant hypertension (PH) is defined as a PAS ≥140mmHg and/or PAD≥90mmHg occurring after the 20th week of amenorrhea and disappearing before the 6th week postpartum.
- Preeclampsia is defined as a combination of GHAT and proteinuria greater than 300mg/24H.
- Severe preeclampsia is defined as preeclampsia associated with at least one of the following signs:
 - Severe high blood pressure (SBP≥160mmHg and/or DBP≥110mmHg).
 - Renal impairment (oliguria <500ml/24H, or creatinine > 135 μmol/l or proteinuria > 5g/l).
 - Acute pulmonary edema (APE) or persistent epigastric bar pain or HELLP syndrome.
- Neurological disorders (phosphene, headache, polycinetic osteotendinous reflexes) or eclampsia.
- Retroplacental hematoma (RPH) or fetal impact (growth retardation).
- The diagnosis of HELLP syndrome was defined by hepatic cytolysis (ASAT> 72 IU/l) and thrombocytopenia (< 100,000/mm3).
- Eclampsia is a tonic-clonic convulsive seizure occurring in a hypertensive context of pregnancy.

Parameters Studied

Each patient in the series was given an individual survey form (after obtaining the consent of the patient or trusted person) which allowed us to collect the following data:

- Socio-demographic parameters namely: age, profession, socio-economic level (group I= senior state and/or private sector executives and import-export traders, group II= state
agents and/or private sector employees and average traders, group III= workers, peasants, retail traders, and casual workers in towns, provinces).

- Gynaecological-obstetrical history: prenatal consultations, abortions, term of pregnancy (between 37-41 weeks), context of delivery, gestational age, parity.
- The clinical data sought are the medical history with types of hypertension, diabetes and oedema of the lower limbs. Symptoms studied were epigastric bar, thoracic and/or pelvic pain, headache, dizziness, tinnitus, phosphene, asthenia, nausea and vomiting.
- The general examination looked for hypertension, jaundice, edematous syndrome. The gynecological examination was done to report bleeding and/or pathological leukorrhea.
- Urinary strips were performed on the urine of each participant in the series.
- The standards used for the biological examinations were those of the various biological laboratories in Bamako.
- Kidney ultrasound was performed to measure the size of the kidneys and to look for dilatation of the pyelocalicial cavities.
- The emergency indications for haemodialysis retained in this study were hyperkalaemia (6.5 <K+ ≤ 7.5 mmol/l), severe metabolic acidosis (< 12 mmol/l) without corrective margin by bicarbonate infusion, acute pulmonary edema, uremic syndrome (encephalopathy, pericardial rubbing) and anuria in the absence of obstruction.
- If haemodialysis was indicated, the central catheter was inserted via the femoral route by the doctors on the ward. The haemodialysis sessions were close together (once a day) in the severe and anuric forms, but spaced every two to three days when the patient was stable without further visceral involvement and with a preserved diuresis. The dialysis catheter was removed once diuresis was resumed and creatinine levels were declining.
- Patients were followed as outpatients after their nephrological inpatient stay. The rhythm of follow-up was a weekly visit with monitoring of renal function.
- Data entry was done on EPI-DATA 3.1 software.
- The data were analysed on SPSS 21.0 French version, R 3.6.1 and Excel 2016. The writing was done on Word 2016.

The statistical comparison test was Pearson chi-square with Yates correction. A P value less than or equal to 0.05 was considered statistically significant.

Ethics Considerations
Free and informed consent was obtained from each participant or her support person with strict adherence to the anonymity of the survey form.

RESULTS
From June 2015 to June 2019, the prevalence of obstetric ARI in the nephrology department Point G teaching hospital was 2.08%, i.e. 63 cases out of 3019 hospitalisations. ARI occurred mainly in postpartum (61 cases) and more rarely during pregnancy (2 cases) after the 20th week of amenorrhea.

The mean age of our patients was 27.31 ± 5.49 years, with extremes of 16 and 40 years. Patients aged between 26 and 30 years were the most numerous, i.e. 46% of cases (Table-2). The majority of patients were housewives (87.3%) with a low socioeconomic level (90.5%).

The reasons for hospitalization were renal failure in 54% of cases and renal failure associated with anuria in 46% of patients (Table-3).

The mean serum creatinine value at admission was 1025 µmol/l with extremes of 273 and 2065 µmol/l. According to the KDIGO (Kidney Disease Improving Global Outcome 2012) classification, the AKI was stage 2 and 3 in 7.9% and 92.1%, respectively.

Out of 63 patients, 45 (71%) came from the gynaecology and resuscitation departments of Point G University Hospital. The others were referred by the gynecology departments of Gabriel Touré UHC (11.1%), Kati UHC (4.8%), the reference health centers (level 2) of Bamako (6.3%) and regional hospitals (6.3%).

Prenatal consultations were not made in 28.6% of cases (18 patients). Multiparous women were numerous 71.4% versus 28.6% of primiparous women (Table-4). The history of gestational hypertension and chronic hypertension was noted in 57.1 and 6.3% of cases. Caesarean section was performed in 60.3% of patients.

Clinically, vomiting, physical asthenia, and vertigo dominated the symptomatology of our patients in 88.9%, 79.4%, and 60.3% of cases, respectively. This clinical symptomatology is mostly related to acute uremia, severe anemia and enion surges. On clinical examination, conjunctival pallor and jaundice were found in 95.6% and 19% of patients respectively.

Anuria, oliguria and retained diuresis were found in 49.2%, 36.5% and 14.3% of cases respectively.
Blood pressure was normal in 30.1% of the cases compared to 69.8% with hypertension. WHO grade 2 hypertension was found in 36.5% of hypertensive patients followed by WHO grade 3 hypertension (17.5%) and grade 1 hypertension (15.9%). The mean blood pressure was 150.39/98.68 mmHg.

Severe anemia (hemoglobin level between 3 and 7 g/dl) was found in 35 patients (55.6%), regenerative in 46.0% of cases. Hyperleukocytosis (predominantly polymorphonuclear neutrophilic) and thrombocytopenia were found in 77.8% and 38.1% of cases respectively.

Concerning the haemolysis balance sheet, the search for schizocyte was positive in 42.9% of patients, collapsed plasma haptoglobin in 34.9%, total bilirubin and LDH elevation in 47.6% and 58.7% of cases. One out of two patients had evidence of hepatic cytolysis (Table-5).

Thirty-one patients had a urinary tract infection (UTI) board. The germs found in the uroculture were in order of frequency Escherichia coli (19), Klebsiella pneumoniae (9), Acinetobacter baumannii (1), Enterobacter sp (1).

Among non-anuric women (n=49), the search for proteinuria was minimal in 57.1% of patients, moderate and massive in 15.9% and 4.8% of cases. On ultrasound, kidney size was normal in 76.2% of patients.

The causes of AKI were severe preeclampsia (55.5%), postpartum hemorrhage (36.5%), postabortion sepsis (3.2%), severe Plasmodium falciparum malaria (1.6%), severe preeclampsia added (1.6%), and hemolytic uremic syndrome (1.6%) (Table-6).

The main visceral complications associated with Severe Preeclampsia were HELLP syndrome (33.3%), PRH (30.1%), and acute pulmonary edema (12.7%) (Figure-1).

According to Sher's classification, RPH was grade II, IIIa, and IIIb in 10.5%, 26.3%, and 63.2%, respectively. There were no cases of acute fatty liver disease in pregnancy.

In terms of evolution 46 patients (73%) were dialysed on the following criteria: anuria (58.6%), hyperkalemia (28.3%), acute pulmonary edema (10.9%), and severe metabolic acidosis with hydrosodic retention (2.2%).

Among dialysis patients, 31 patients normalized their renal function (67.9%) versus 1 case of partial recovery (CKD stage 2), 4 patients progressed to end-stage renal disease, 7 cases of death were observed, and 3 cases of discontinuation of follow-up against medical advice.

For patients not on dialysis, recovery of ad-integrum renal function (mean serum creatinine 84.50±12.59 µmol/L) was observed in 16 patients and 1 case of death due to septic shock with multiviscular failure.

The causes of maternal deaths in dialysis patients were hyperkalemia (4 cases), acute pulmonary edema with respiratory distress (2 cases) and severe metabolic acidosis (1 case).

Perinatal mortality (stillbirths and deaths of newborns less than 1 week old) was 41.2%.
Table-2: Age distribution of 63 women

<table>
<thead>
<tr>
<th>Age in year</th>
<th>Effective</th>
<th>Proportion in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 – 20</td>
<td>10</td>
<td>15,9</td>
</tr>
<tr>
<td>21 – 25</td>
<td>10</td>
<td>15,9</td>
</tr>
<tr>
<td>26 – 30</td>
<td>29</td>
<td>46,0</td>
</tr>
<tr>
<td>31 - 35</td>
<td>10</td>
<td>15,9</td>
</tr>
<tr>
<td>36 – 40</td>
<td>4</td>
<td>6,3</td>
</tr>
<tr>
<td>Total</td>
<td>63</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Table-3: Distribution of 63 patients according to reasons for hospitalization

<table>
<thead>
<tr>
<th>Reasons for hospitalization</th>
<th>Effective</th>
<th>Proportion in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal failure</td>
<td>34</td>
<td>54,0</td>
</tr>
<tr>
<td>Renal failure + anuria</td>
<td>29</td>
<td>46,0</td>
</tr>
<tr>
<td>Total</td>
<td>63</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Table-4: Gynaecological-Obstetrical History

<table>
<thead>
<tr>
<th>Gyneco-obstetric history</th>
<th>Effective</th>
<th>Proportion in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consultation prénatale</td>
<td>Oui</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Non</td>
<td>18</td>
</tr>
<tr>
<td>Parity</td>
<td>Multiparity</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Primiparity</td>
<td>18</td>
</tr>
</tbody>
</table>
Table-5: Distribution of the 63 patients according to haemolysis and transaminase levels

<table>
<thead>
<tr>
<th>Test</th>
<th>Effective (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for schizocyte</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>27(42,9)</td>
</tr>
<tr>
<td>Negative</td>
<td>36(57,1)</td>
</tr>
<tr>
<td>Total bilirubin in mg/dl</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>30(47,6)</td>
</tr>
<tr>
<td>Decrease</td>
<td>33(52,4)</td>
</tr>
<tr>
<td>LDH in IU/l</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>37(58,7)</td>
</tr>
<tr>
<td>Normal</td>
<td>26(41,3)</td>
</tr>
<tr>
<td>Haptoglobin in g/l</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>3(4,8)</td>
</tr>
<tr>
<td>Normal</td>
<td>38(60,3)</td>
</tr>
<tr>
<td>Decrease</td>
<td>22(34,9)</td>
</tr>
<tr>
<td>ASAT in IU/l</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>34(54,0)</td>
</tr>
<tr>
<td>Normal</td>
<td>29(46)</td>
</tr>
<tr>
<td>ALAT in IU/l</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>30(47,6)</td>
</tr>
<tr>
<td>Normal</td>
<td>33(54,2)</td>
</tr>
</tbody>
</table>

Table-6: Etiology of Obstetrical AKI

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Severe preeclampsia</th>
<th>Haemorrhage</th>
<th>Sepsis</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hachim Maroc [13]</td>
<td>74,5%</td>
<td>7,2%</td>
<td>11%</td>
<td>7,1</td>
</tr>
<tr>
<td>Rizwan Pakistan [14]</td>
<td>17,14%</td>
<td>57,13%</td>
<td>11,42%</td>
<td>14,31%</td>
</tr>
<tr>
<td>Tounkara Mali [7]</td>
<td>28,57%</td>
<td>35,7%</td>
<td>17,85%</td>
<td>17,85%</td>
</tr>
<tr>
<td>Our Study n=63</td>
<td>55,5%</td>
<td>36,5%</td>
<td>3,2%</td>
<td>*4,8%</td>
</tr>
</tbody>
</table>

*Others: severe *Plasmodium falciparum* malaria (1.6%), severe preeclampsia added (1.6%), and hemolytic uremic syndrome (1.6%)

Table-7: Progression of Obstetric ARI in Patients

<table>
<thead>
<tr>
<th></th>
<th>Total recovery</th>
<th>Partial recovery</th>
<th>end-stage renal disease</th>
<th>Death</th>
<th>Abandonment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our study</td>
<td>74,63%</td>
<td>1,60%</td>
<td>6,34%</td>
<td>12,70%</td>
<td>4,73%</td>
</tr>
<tr>
<td>Tounkara AA [7]</td>
<td>39,28%</td>
<td>3,57%</td>
<td>17,85%</td>
<td>21,42%</td>
<td>17,85%</td>
</tr>
<tr>
<td>Rizwan N [19]</td>
<td>53%</td>
<td>7,02%</td>
<td>14,27%</td>
<td>25,7%</td>
<td>0</td>
</tr>
</tbody>
</table>

DISCUSSION

The hospital prevalence of obstetric AKI during the study period in the nephrology department of Point G teaching hospital was 2.08%. A study conducted in Mauritania over a period of 3 years reported a hospital prevalence of 4.61% [6]. Our low prevalence could be explained by the lower access of women to nephrology, especially those not residing in the district of Bamako. This is a hospital prevalence that could not be extrapolated to the general population.

Obstetrical renal failure is declining sharply in countries where abortion is legalized and prenatal consultations are mandatory [5].

The mean age of our patients was 27.31 ± 5.49 years, with extremes of 16 and 40 years. In 2012, Tounkara in the same department had found a mean age of 25.9 years and extremes of 17 and 42 years [7]. On the other hand, Lemrabott in Mauritania and Mahfoudh in Tunisia had respectively found an average age of 32 and 37.8 years [6, 9].

In sub-Saharan Africa in general, and in Mali in particular, women are married at a younger age. According to the Demographic and Health Survey in 2018 in Mali, by the age of 25 almost all women had already contracted a first union (90%) [10].

Concerning the gynaecological-obstetrical history; the prenatal consultation was carried out by the patients in 71.4% of cases against 21.4% in the Tounkara study [7]. There were 18 primiparous women (28.6%) with a mean parity of 3.91 and extremes of 1 and 11 parities. Gestational hypertension was observed in 38.1% of cases and chronic hypertension in 6.3% of cases.

ARF was gestational in only 2 patients and was diagnosed postpartum in all others. The 1st case of gestational AKI at 31 weeks amenorrhea was secondary to severe malaria with *Plasmodium falciparum* with a positive thick drop at 1100 trophozoites/field in a context of infectious syndrome in the absence of
tension, bleeding and other factors that could explain the occurrence of AKI. The patient was 22 years old, residing in a village in the Ségou region (3rd region of Mali, a malaria endemic zone), and had not had antenatal consultations. The second case occurred at 24 weeks of amenorrhea in a 36-year-old patient in a context of severe pre-eclampsia.

The other causes were dominated by severe preeclampsia (55.5%), postpartum hemorrhage (36.5%), post clandestine abortion sepsis (3.2%) and hemolytic uremic syndrome (1.6%).

In the various published series, hemorrhage is often the main cause of organic ARI [11, 12]. Tounkara found haemorrhage and severe preeclampsia in 35.7% and 28.57% of cases [7].

The high frequency of severe preeclampsia in this study could be explained by the increase in the incidence of hypertension in the general population in sub-Saharan Africa in recent decades [13].

Hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP) are rare; they can occur during pregnancy or in the immediate postpartum period. They are mimics of preeclampsia. An important distinction must be made with the frequent obstetric complications. The severity of renal manifestations and the absence of hepatic cytolysis may be more important in making the diagnosis [14].

We found 21 cases of HELLP syndrome versus 155 cases in a cohort by Adnani et al., [15]. The Hemolysis Elevated Liver enzyme, Low Platelets (HELLP) syndrome is a frequent complication of severe preeclampsia and is responsible for severe maternal and fetal morbidity and mortality [15]. In our series the other complications were RPH (30.1%), acute pulmonary edema (12.7%) and HUS (1.6%).

HELLP syndrome, hemorrhage, bleeding disorders, hemolysis, and RPH are the other visceral complications observed during severe preeclampsia that are prognostic and risk factors for the development of ARF [11].

PRH and HELLP syndrome are common complications during preeclampsia. In a cohort of 155 cases of complicated preeclampsia with HELLP syndrome in the obstetric intensive care unit of the Casablanca University Hospital, Adnani et al., found 51 cases of ARF. She was accompanied by RPH in 35 parturients [15].

In this study, no cases of acute fatty liver steatosis in pregnancy were noted. This is a very rare event, manifested by profuse vomiting (due to a disorder of long-chain fatty acid metabolism), frank cholestatic jaundice, extensive hepatic cytolysis, and a bright liver appearance on ultrasound [16].

Haemodialysis was practised in 73% compared to 53.6% in the Tounkara study [7]. Nowadays, in our context, hemodialysis treatment is increasingly rapid in the case of ARF in view of emergency indications. The haemodialysis session lasted on average 2 hours 15 minutes, and was shorter for patients who were unstable or had visceral damage.

Among the hemodialysis patients, 31 of the patients progressively normalized their renal function (67.9%) versus 1 case of partial recovery (stage 2 CKD).

Four patients progressed to end-stage chronic renal failure in whom renal biopsy could not be performed due to the lack of a technical platform and the low socio-economic level of the patients. These were obviously young primiparous patients with severe preeclampsia.

According to the results of the Kattah et al., study, preeclampsia during the first pregnancy is indeed associated with an increased risk of chronic renal failure (relative risk=4); this risk is even greater (relative risk=10) in the event of recurrence of preeclampsia [17]. Seven cases of death have been reported. 3 patients dropped out of follow-up against medical advice.

For patients not on dialysis, recovery of ad-integrum renal function was observed in 16 patients and 1 case of death due to septic shock with multivisceral failure.

Generally speaking in terms of patient evolution (dialysis and non-dialysis patients included) this study shows a recovery rate of renal function of 74.63% and 6.34% of CKD cases, compared to 39.28% and 17.85% in the Tounkara study. This difference could be explained by a decrease in the frequency of abandonment of medical follow-up (Table VII).

Maternal mortality was 12.69%. Tounkara had recovered 21.42%. According to data from the literature the maternal mortality from obstetric ARI in developing countries often reaches 15% [5, 18]. Perinatal mortality (stillbirths and deaths of newborns less than one week old) was 41.2%. The high frequency of HRP grade III could explain this rate. The mean time to normalization of renal function in general was 4 ± 2 weeks with extremes of 2 and 11 weeks. Dialysis patients recovered 21.42%. According to data from the literature this study shows a recovery rate of renal function of 74.63% and 6.34% of CKD cases, compared to 39.28% and 17.85% in the Tounkara study. This difference could be explained by a decrease in the frequency of abandonment of medical follow-up (Figure VII).
The limitations of this study were the lack of a technical platform, i.e. the non-performance of kidney biopsy in the said structure and its high cost in private institutions. The search for immunological diseases was not systematized. The discharge of patients from hospital against medical advice and the abandonment of medical follow-up contributed to the reduction in size of this study, but also the absence of medical follow-up by some patients living in rural areas and the difficulties of access to specialized services. In order to remedy this, it is important to actively involve the general practitioners of level 1 health centres (community health centres) in the diagnosis and short-, medium- and long-term follow-up of cases of acute renal failure.

CONCLUSION

Obstetric ARF remains common in Africa. PE-E is a common etiology. Screening for renal impairment during pregnancy should be routine. We insist on primary prevention of obstetrical complications, decentralization of dialysis centers, and close collaboration between nephrologist, obstetrician and resuscitation anesthesiologist in order to significantly reduce this significant morbi-mortality.

Conflict of interest: None

REFERENCES

© 2020 SAS Journal of Medicine | Published by SAS Publishers, India