Original Research Article

Correlation between β2- Microglobulin and MIA Syndrome in Chronic Hemodialysis Patients

N.Hamouche^{1*}, K.Ahtitich¹, S.Mazighi¹, L. El Omari², M.Chettati¹, B.Admou², W. Fadili¹, I.Laouad¹

¹Nephrology Department, Mohammed VI University center of Marrakesh, Cadi Ayyad University, Morocco

DOI: <u>10.36347/sasjm.2021.v07i06.001</u>

| **Received:** 03.04.2021 | **Accepted:** 11.05.2021 | **Published:** 01.06.2021

*Corresponding author: N. Hamouche

Abstract

Hemodialysis is a treatment that filters waste and water from the blood. Nonetheless this treatment has multiple side effects, such as producing Beta 2 micro globulin, inflammatory aftermath, in addition to changes to the lipid balance (hypertriglyceridemia+ reduction in cholesterol levels HDL) involved in the genesis of long term complications known as MIA syndrome (Malnutrition, Inflammation, Atherosclerosis). In this multicenteric cross-sectional study we gathered 135 patients (average age 52 years old, with average dialysis duration of 9 years and extremes from 1 to 21 years). The results of our study showed that the longer the hemodialysis treatment duration the higher the levels of Beta 2 micro globulin. After detailing the clinical and Para clinical results of the patients, 19% presented with malnutrition, 47% exhibited an inflammatory condition, and 51% were diagnosed with atherosclerotic damage). Our results as well indicate that a high serum level of this protein could have a role in the development of cardiovascular and atherosclerosis complications patients.

Keywords: β2- microglobulin, MIA syndrome, Chronic hemodialysis, Inflammation.

Copyright © 2021 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

Hemodialysis is the most common method of continuous renal replacement therapy. Nonetheless this technique has many side effects [1] relating to the chronic inflammatory condition caused by the the uremic state and the bio incompatibility of hemodialysis[2].

This chronic inflammatory state is visible through elevated levels of CRP, which is characterized by the release of pro inflammatory [3] cytokines that cause an increase in protein catabolism and inhibition of hepatic synthesis of the albumin, which will result in malnutrition [3].

In addition to that inflammation is a major contributor to atherosclerosis, which leads to a particular syndrome: MIA syndrome [4, 5].

Besides the secondary hyper parathyroidism, oxidative stress, high plasma levels of beta 2M in chronic patients constitute a major cardiovascular risk [6, 7]. The objective of this study is to detect the links between Beta 2- micro-globulin and malnutrition, inflammation and atherosclerosis in chronic patients.

MATERIALS AND METHODS

Multi enteric cross-sectional study, conducted in 2 hemodialysis centers in Marrakech.

Criteria of inclusion in this study are the following:

- HD period superior to 6 months.
- Age 18 years and above.
- Elevated Beta 2M levels.

We excluded patients with a recent dialysis treatment (less than 6 months) and infrequent HD individuals.

The statistical analysis of the data was done in excel using the correlation coefficient and SPSS using P value, a value inferior to 0.005 was considered significant.

RESULTS

We have included in this study 135 patients, average age 52 years old with extremes varying from 21 to 84 years old. We have noted a female predominance of a 0.96 ratio. Average dialysis duration was 9 years with extremes varying from 1 to 21 years, average hours of dialysis per week are 11h40min. The method used was conventional HD with low permeability

Citation: N.Hamouche *et al.* Correlation between β2- microglobulin and MIA Syndrome in Chronic Hemodialysis Patients. SAS J Med, 2021 Jun 7(6): 216-219. 216

membrane, a room for water treatment, equipped with a mono-osmosis unit in one of the two hemodialysis centers, and a bi-osmosis unit in the other.

Within our 135 patients, 93 benefited from 2 weekly sessions which is 68.88% of the patients included in the study, while 42 patients benefited form 3 weekly sessions.

Regarding the Clinical Data

Average arterial pressure was 123 mmhg systolic and 61 mmhg diastolic. Body mass index (BMI) using dry weight was 21.05. However 20% of patients had a BMI of 18.5 which corresponds with malnutrition.

Regarding the Biological Data

There was anemia trend in addition to hyper phosphoremia, hyper parathyroid and inflammation with high levels of reactive C protein (CRP) in the studied population.

The average levels of albumin were 41g/l with extremes varying between 29 and 56 g/l. However 8.5% of patients had an albuminemia < 35g/l which is linked to malnutrition according to the global health organization.

The serum levels of the CRP recommended for chronic hemodialysis patients has to be inferior to 8mg/l, a level superior to 8 was detected in 25 patients average level of micro globulin was 37,6+_3, 17mg/l.

During the period of the study all patients benefited from a cardiovascular exploration where 51% had anomalies such as artierial calcification, atheroma plates in the carotids, an intima media thickness superior to 1mm. Which is considered a criteria for atherosclerosis.

Recommend Levels of Beta 2 - micro globulin in predialysis in chronic patients have to be inferior to 27mg/l, beyond that those levels are correlated to excess mortality, so we have split our patients in 3 groups:

Group A: between 11 to 15 time the norm (27.5-37.5) this group represents almost 35.33% of the patients.

Group B: between 15 and 20 times the norm (37.6-50) this group represents 57.22 of the patients.

Group C: superior to 20 times the norm (superior to 50.1), this group represents 7.45% of the patients.

The longer and older the Hd is the higher the level of Beta 2- micro globulin. There was no correlation between the IMC and the serum levels of the Beta 2- micro globulin with a coefficient of correlation next to 0 (Table 1).

Variables		β2-Μ	
		R P	
Age	-0,08	0,57	
Dialysis duration	0,94	<0,001	
Arterial pressure systolic	0,094	0,41	
BMI	-0,05	0,22	

Table-1: Correlation between β2-microglobulin and the different clinical variables

Even though no correlation was detected between Beta 2M and inflammation, our results indicate that a high serum level of this protein is correlated with dyslipidemia levels. Therefore with being diagnosed with cardiovascular issues (atherosclerosis) (Table-2).

Table-2: Correlation between β2-M and the paraclinical parameters			
paraclinical parameters	β2-Μ		
	R	Р	
Albumin	0,042	<0,05	
CRP	0,08	<0,01	
HDL	-0,62	<0,005	
LDL	0,36	<0,001	
TG	0,93	<0,001	
Calcemia	0,11	<0,01	
Phosphoremia	0,53	<0,001	
PTH	0,68	<0,001	
cardiac evaluation: Atherosclerosis	0,84	<0,001	

In comparing the 3 groups previously stated, we notice that the higher the serum level of Beta 2M,

the greater the cardiovascular risk (Fig-1).

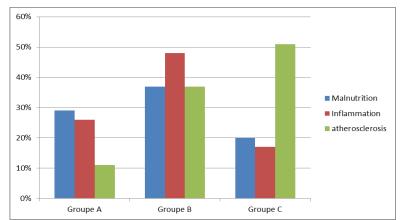


Fig-1: Comparison of the 3 groups A, B and C according to the clinico-paraclinical data

DISCUSSION

The accumulation of Beta 2 M in the extra cellular space is necessary criteria but not enough for the occurrence of inflammation or cardiovascular issues[8–10].

The positive correlation between the serum levels of Beta 2- micro globulin in pre dialysis with the age of dialysis (board 1) concur with what was previously reported in other studies[11, 12[which joins the hypothesis that the longer the period of dialysis is the more prevalent the amyloidosis and higher levels of Beta 2M[11–13].

A correlation between inflammation in hemodialysis and high serum levels of Beta 2M is detected[14,15]. However we found no correlation between Beta 2M and CRP (r=0.08, p<0.01) which matches the findings from other studies [16–18].

The triglycerides started to increase since the early stages of chronic renal failure, and kept increasing greatly in chronic hemodialysis [5]. Hypertriglyceridemia generated small athrogenic particles (dense LDL) [17–19].

Our results suggest that the plasma concentration of the Beta 2M is directly correlated to the triglycerides concentration. Causing a major risk of atherosclerosis in our patients (p<0.001). This agrees with previous findings from other studies such as Topçiu–Shufta V and al, Kim KM and al, and Kyriaki D and al [16,20,21].

Mineral and bone issues are associated with accelerated atherosclerosis[22,23], which is the mane cause in the mortality of chronic hemodialysis patients[24]. In our study the serum concentration of beta 2- micro globulin is positively correlated with phosphorus concentration and PTH.

In the kosovian study of prishtina published in 2013, showed in opposition to our results a negative correlation between Beta 2M and albuminemia with a significant P value [25].

CONCLUSION

Even though there was no correlation between Beta 2M and inflammation, our results indicate a high serum level of this protein which could have a major impact in the development of cardiovascular complications and atherosclerosis. A study with a larger number of patients is necessary.

Conflict of Interests

The authors declare that there is no conflict of interest.

BIBLIOGRAPHIE

- 1. Sameiro-Faria, M. D., Ribeiro, S., Costa, E., Mendonça, D., Teixeira, L., Rocha-Pereira, P., ... & Santos-Silva, A. (2013). Risk factors for mortality in hemodialysis patients: two-year follow-up study. Disease markers, 35.
- 2. Kazama, J. J., Maruyama, H., & Gejyo, F. (2001). Reduction of circulating β 2- microglobulin level for the treatment of dialysis- related amyloidosis. Nephrology Dialysis Transplantation, 16(suppl_4), 31-35.
- 3. Himmelfarb, J., Stenvinkel, P., Ikizler, T. A., & Hakim, R. M. (2002). The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney international, 62(5), 1524-1538.
- Stenvinkel, P., Heimbürger, O., Lindholm, B., Kaysen, G. A., & Bergström, J. (2000). Are there two types of malnutrition in chronic renal failure? Evidence for relationships between malnutrition, inflammation and atherosclerosis (MIA syndrome). Nephrology Dialysis Transplantation, 15(7), 953-960.
- 5. Kalantar-Zadeh, K., Kopple, J. D., Block, G., &

Humphreys, M. H. (2001). A malnutritioninflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. American journal of kidney diseases, 38(6), 1251-1263.

- Sarnak, M. J., & Levey, A. S. (2000). Cardiovascular disease and chronic renal disease: a new paradigm. American journal of kidney diseases, 35(4), S117-S131.
- Locatelli, F., Gauly, A., Czekalski, S., Hannedouche, T., Jacobson, S. H., Loureiro, A., ... & Wizemann, V. (2008). The MPO Study: just a European HEMO Study or something very different?. Blood purification, 26(1), 100-104.
- Okuno, S., Ishimura, E., Kohno, K., Fujino-Katoh, Y., Maeno, Y., Yamakawa, T., ... & Nishizawa, Y. (2009). Serum β2-microglobulin level is a significant predictor of mortality in maintenance haemodialysis patients. Nephrology Dialysis Transplantation, 24(2), 571-577.
- 9. Zumrutdal, A. (2015). Role of β 2-microglobulin in uremic patients may be greater than originally suspected. World journal of nephrology, 4(1), 98.
- Liabeuf, S., Lenglet, A., Desjardins, L., Neirynck, N., Glorieux, G., Lemke, H. D., ... & European Uremic Toxin Work Group (EUTox. (2012). Plasma beta-2 microglobulin is associated with cardiovascular disease in uremic patients. Kidney international, 82(12), 1297-1303.
- McCarthy, J. T., Williams, A. W., & Johnson, W. J. (1994). Serum beta 2-microglobulin concentration in dialysis patients: importance of intrinsic renal function. The Journal of laboratory and clinical medicine, 123(4), 495-505.
- Cheung, A. K., Rocco, M. V., Yan, G., Leypoldt, J. K., Levin, N. W., Greene, T., ... & Eknoyan, G. (2006). Serum β-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study. Journal of the American Society of Nephrology, 17(2), 546-555.
- Allawi, A. A. D. (2018). Malnutrition, inflamation and atherosclerosis (MIA syndrome) in patients with end stage renal disease on maintenance hemodialysis (a single centre experience). Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 12(2), 91-97.
- Schwedler, S., Schinzel, R., Vaith, P., & Wanner, C. (2001). Inflammation and advanced glycation end products in uremia: Simple coexistence, potentiation or causal relationship?. Kidney International, 59, S32-S36.
- 15. Vraetz, T., Ittel, T. H., van Mackelenbergh, M. G., Heinrich, P. C., Sieberth, H. G., & Graeve, L.

(1999). Regulation of β 2-microglobulin expression in different human cell lines by proinflammatory cytokines. Nephrology Dialysis Transplantation, 14(9), 2137-2143.

- Topçiu–Shufta, V., Miftari, R., Haxhibeqiri, V., & Haxhibeqiri, S. (2016). Association of beta-2 microglobulin with inflammation and dislipidemia in high-flux membrane hemodialysis patients. Medical Archives, 70(5), 348.
- Rahbar, M., Chitsazan, Z., Moslemi, B., & Ramim, T. (2015). Correlation between CRP and beta-2 microglobulin in chronic hemodialysis patients with high-flux membrane. Tehran University Medical Journal, 73(1).
- Rahbar, M., & Mehdipour-Aghabagher, B. (2012). Effect of inflammatory factors on β2-microglobulin in hemodialysis patients. Shiraz E Medical Journal, 13(2), 59-62.
- Jacobson, T. A. (2013, November). Lipoprotein (a), cardiovascular disease, and contemporary management. In Mayo Clinic Proceedings (Vol. 88, No. 11, pp. 1294-1311). Elsevier.
- Kyriaki, D., Kanellopoulos, P. N., & Raikou, V. D. (2014). High-density lipoproteins and inflammation in patients on renal replacement therapies. American Journal of Epidemiology and Infectious Disease, 2(1), 33-40.
- K Kim, K. M., Kim, S. S., Kim, H., Koo, T., Im, E. Y., & Kim, S. B. (2011). Higher serum beta2microglobulin levels are associated with better survival in chronic hemodialysis patients: a reverse epidemiology. Clinical nephrology, 75(5), 458-465.
- 22. Goodman, W. G., & Quarles, L. D. (2008). Development and progression of secondary hyperparathyroidism in chronic kidney disease: lessons from molecular genetics. Kidney international, 74(3), 276-288.
- 23. Raggi, P., Giachelli, C., & Bellasi, A. (2007). Interaction of vascular and bone disease in patients with normal renal function and patients undergoing dialysis. Nature Clinical Practice Cardiovascular Medicine, 4(1), 26-33.
- Shoji, T., Maekawa, K., Emoto, M., Okuno, S., Yamakawa, T., Ishimura, E., ... & Nishizawa, Y. (2010). Arterial stiffness predicts cardiovascular death independent of arterial thickness in a cohort of hemodialysis patients. Atherosclerosis, 210(1), 145-149.
- Topçiu–Shufta, V., Miftari, R., Haxhibeqiri, V., & Haxhibeqiri, S. (2016). Association of beta-2 microglobulin with inflammation and dislipidemia in high-flux membrane hemodialysis patients. Medical Archives, 70(5), 348.