Journal homepage: https://www.saspublishers.com

Anesthesiology

The Efficacy of Balanced Anesthesia Vs General Anesthesia for Upper Abdominal Surgery

Dr. M M Nasimuzzaman^{1*}, Dr. Md Aminur Rahman², Dr Jahid Hasan³, Md. Injamul Huq³, Dr. Sharmina Rahman Chowdhury³, Oasis Mohammod⁴

¹Assistant Professor, Department of Anesthesiology, BGC Trust Medical College, Chattogram, Bangladesh
 ²Jr Consultant (Anesthesiology), Upazila Health Complex, Khetlal, Joypurhat, Bangladesh
 ³MPH, Department of Public Health, North South University & Research Associate, Topbright Ltd. Dhaka, Bangladesh
 ⁴MSS, University of Chittagong, Department of Anthropology & Research Assistant, Topbright Ltd. Dhaka, Bangladesh

DOI: 10.36347/sasjs.2022.v08i10.005

| **Received:** 04.09.2022 | **Accepted:** 12.10.2022 | **Published:** 14.10.2022

*Corresponding author: Dr. M M Nasimuzzaman

Assistant Professor, Department of Anesthesiology, BGC Trust Medical College, Chattogram, Bangladesh

Abstract

Original Research Article

Background: Balance anesthesia as an alternative to general anesthesia because it is a less expensive, simpler procedure that is beneficial to our developing countries. **Objective:** To evaluate the efficacy of balanced anesthesia vs general anesthesia for upper abdominal surgery. **Method:** This comparative study was carried out at tertiary medical hospital from June 2021 to June 2022. Where After obtaining written informed consent, a total 200 patients of ASA grading I & II selected for abdominal surgery randomly. These patients are divided two groups either by balanced anesthesia, n=100 or by general anesthesia, n=100. The patients were visited on the day before surgery for pre anesthetic cheek up. **Results:** During the study, majority were belonging to 41-50 years age group, 65%. In balanced anesthesia, ASA grading I and II both case 50% were noted followed by total anesthesia duration was 50 minutes – 110Minutes, operation time was 40 minutes – 100 minutes, 6-10 days was hospital duration. Whereas in general anesthesia group, ASA grading I was 75% and 25% II were noted followed by total anesthesia duration for was 60 minutes – 130 Minutes, operation time was 50 minutes – 130 minutes, 8-12 days was hospital duration. In balanced anesthesia was less and delayed than general anesthesia. Respiratory pattern and consciousness not satisfactory 10% patient of general anesthesia. **Conclusion:** According to the findings of this study, patients' consciousness and pain management capacity are better in patients undergoing upper abdominal procedures under balanced anesthesia than in patients undergoing general anesthesia in the post-operative manner.

Keywords: Balanced anesthesia, general anesthesia, abdominal surgery.

Copyright © 2022 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

The notion of balanced anesthesia dates back to 1910, when George W. Crile presented his anociassociation hypothesis. Crile taught that mild general anesthesia might avoid mental impulses during procedures, whereas local analgesia/regional anesthesia may block painful stimuli (Spinal anaesthesia) [1-3]. Lundyin coined the phrase "balanced anesthesia," implying that a balance of agents and procedures (e.g., premedication, regional anesthesia, and general anesthesia using one or more intravenous anesthetic agents) be employed to achieve the various components of general anesthesia [4-6]. Previously, the sole anesthetic option for upper abdominal surgery was general anesthesia. We now use balance anesthesia as an alternative to general anesthesia because it is a less expensive, simpler procedure that is beneficial to our developing countries. It is also applicable in peripheral clinics where an anesthesia machine with gasses such as nitrous oxide, oxygen, and halothen is not available [7].

In this study our main goal is to evaluate the efficacy of balanced anesthesia vs general anesthesia for upper abdominal surgery.

OBJECTIVE

To evaluate the efficacy of balanced anesthesia vs general anesthesia for upper abdominal surgery.

METHOD

This comparative study was carried out at tertiary medical hospital from June 2021 to June 2022. After obtaining written informed consent, a total 200 patients of ASA grading I & II selected for abdominal surgery randomly. These patients are divided two

Citation: M M Nasimuzzaman, Md Aminur Rahman, Jahid Hasan, Md. Injamul Huq, Sharmina Rahman Chowdhury, Oasis Mohammod. The Efficacy of Balanced Anesthesia Vs General Anesthesia for Upper Abdominal Surgery. SAS J Surg, 2022 Oct 8(10): 631-634.

groups either by balanced anesthesia, n=100 or by general anesthesia, n=100. The patients were visited on the day before surgery for pre anesthetic cheek up.

RESULTS

In table-1 shows age distribution of the study group where majority were belonging to 41-50 years age group, 65%. Followed by 25% belong to 30-40 years group and 10% belong to >51 years age group. The following table is given below in detail:

Table-1: Age distribution of the patients

Age group	%
30-40 years	25%
41-50 years	65%
>51 years	10%

In figure-1 shows gender distribution where 60% were female and 40% were male. The following figure is given below in detail:

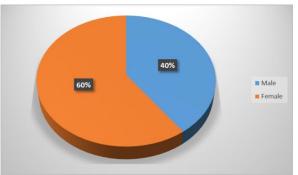


Figure-1: Gender Distribution of the study group

In table-3 shows operative status of the study group where in balanced anesthesia, ASA grading I and II both case 50% were noted followed by total anesthesia duration was 50 minutes - 110.

Minutes, operation time was 40 minutes - 100 minutes, 6-10 days was hospital duration. Whereas in

general anesthesia group, ASA grading I was 75% and 25% II were noted followed by total anesthesia duration was 60 minutes - 130 Minutes, operation time was 50 minutes - 130 minutes, 8-12 days was hospital duration. The following table is given below in detail:

Table-2: operating status			
Operating status	Balanced Anesthesia, %	General Anesthesia, %	
ASA grading			
I	50%	75%	
Π	50%	25%	
Total anesthesia duration	50 minutes – 110 minutes	60 minutes – 130 minutes	
Operation time	40 minutes – 100 minutes	50 minutes – 110 minutes	
Hospital stay	6-10 days	8-12 days	

In table-3 shows types of Operations performed of patientsundergoing Balanced Anesthesia and Generalanesthesia in upper abdominal surgery

where more or less all upperabdominal surgery can be done by balanced anesthesia as well as general anesthesia. The following table is given below in detail:

Table-3: Types of operation				
Types of operation	Balanced anesthesia, %	General anesthesia, %		
Cholecystectomy	20%	22%		
Cholidocholithotomy	14%	11%		
Nephrolithotomy	12%	13%		
Pyelolithotomy	8%	9%		
Gastrojejunestomy	5%	4%		
Partial gastrectomy	8%	9%		
APR / Anterior resection	7%	6%		
Appendisectomy	2%	1%		
Splenectomy	1%	1%		
Repair of perforation	1%	1%		
Abdominal Hysterectomy	2%	2%		
Oophorectomy	1%	2%		

• Multiple response was noted

In table-4 shows Intra operative adverse eventswhere in balanced anesthesia group, nausea seen 5% cases, followed by bradycardia seen 5%, hypotension seen 3%, muscle relaxation was adequate. Whereas in general anesthesia group, no one had nausea, 6% cases had sweating, 4% had tachycardia, 4% had hypertension, muscle relaxation was good. The following table is given below in detail:

Tuble-4. Intra operative auverse events				
Intra operative adverse events	Balanced anesthesia, %	General anesthesia, %		
Nausea/ vomiting	5%	0%		
Sweating/Tearing	0%	6%		
Tachycardia/Bradycardia	Bradycardia, 5%	Tachycardia, 4%		
Hypertension/Hypotension	Hypotension, 3%	Hypertension, 4%		
Muscle relaxation	Adequate	Good		
Pain sensation	Profound Analgesia	Analgesia adequate		

Table-4: Intra operative adverse events

In table-5 shows post-operative outcome where post-operative pain in balanced anesthesia was less and delayed than general anesthesia. Respiratory

pattern and consciousness not satisfactory 10% patient of general anesthesia. The following table is given below in detail:

Vas score	Balanced anesthesia	General anesthesia
At 2 hours:		
No pain	0	0
Mild pain	0	80%
Moderate pain	0	20%
Severe pain	0	
At 4 hours:		
No pain	0	0
Mild pain	0	50%
Moderate pain	0	30%
Severe pain	0	20%
At 6 hours:	0	00/
No pain	0 30%	0% 30%
Mild pain	30% 70%	50% 50%
Moderate pain	0	20%
Severe pain	0	2070
Hypertension	0%	3%
Urinary retention		
Present	2%	
Absent		4%
Respiratory pattern:		
Normal	100%	
Not satisfactory		10%
Consciousness/ Recovery:		
Well enough	100%	
Not well		9%

Table-5: Post-operative outcome

DISCUSSION

The Comparative analysis of our study not only confirmed the feasibility of safely performing upper abdominal surgery under balanced anesthesia as the sole anesthetic procedure but also showed the superiority of balanced anesthesia in post-operative pain control and good recovery compared with that of general anesthesia.

Furthermore supplementary opioids were administered in significantly fewer patients having

balanced anesthesia compared with those having general anesthesia. This difference could beat tributed to a combination of several factors, the avoidance of endotracheal intubation related discomfort, the presence of adequate levels of analgesia for the first few hours after the completion of the surgical procedure owing to the existing activity of the analgesia injected in the subarachnoid space and the potentially minimal stress response associated with a minimal invasive anesthetic procedure, such as balanced anesthesia [7-11]. Post-operative pain control is probably the main factor that characterizes smoothrecovery [12]. On the other hand post-operative pain in general anesthesia group of patient cause's tachycardia and hypertension. Also due to pain patient take sallow and insufficient respiration which may cause cyanosis in general anesthesia group of patient. On the other hand in balance anesthesia group of patient normal respiratory pattern persist [13, 14].

Moreover, it appears that balanced anesthesia is more effective than general anesthesia in postoperative pain control during the patients hospital stay. From these preliminary data, it appears that balanced anesthesia is a promising method of anesthesia for upper abdominal surgery and with proper refinements; it could potentially evolve as the new gold standard anesthetic approach for elective upper abdominal surgery in healthy patients [15].

CONCLUSION

According to the findings of this study, patients' consciousness and pain management capacity are better in patients undergoing upper abdominal procedures under balanced anesthesia than in patients undergoing general anesthesia in the post-operative manner.

REFERENCES

- 1. Lundy, J. S. (1926). Balanced anaesthesia. *Minn Med*, 9, 399.
- 2. Churchill, L. (2000). Balanced Anaesthesia. *Intravenous anaesthetics*, 504.
- 3. Steven, M. Y., Nicholas, P., & Hirsch. (2000). Gray-B, Balanced Anaesthesia, Anesthesia and intensive care A-Z. *2nd edition*, 56.
- 4. Balanced Anaesthesia Achieved by Combining Anaesthesia Agents by Tahoe Doc. on June 27, 2012.
- 5. Graham, S. (2014). Balanced Anaesthesia and Preemptive Analgesia, Textbook of Anaesthesia. 6^{th} edition, 553,560.

- 6. Balanced anaesthesia 2005: Avoiding the Transition from Acute and Chronic Pain downloaded from *Southern African Journal of Anaesthesia & Analgesia*, February 2005.
- 7. Lake, A. P., & Hugo, S. (2004). Barbiturate hyperalgesia revisited. *Regional Anesthesia and Pain Medicine*, 29(1), 70-71.
- Carr, D. B., & Cousins, M. J. (1998). Spinal route of analgesia:opioids and future options. In: Cousins, M. J., Bridenbaugh, P. O. (eds.). Neural blockade in clinicalanaesthesia and management of pain, *3rd edn. Philadelphia: Lippincott-Raven*, 915-983.
- Woolf, C. J., Bennett, G. J., Doherty, M., Dubner, R., Kidd, B., Koltzenburg, M., ... & Torebjork, E. (1998). Towards a mechanism-based classification of pain?. *Pain*, 77(3), 227-229.
- Dickenson, A. H. (1990). A cure for wind up: NMDA receptor antagonists as potential analgesics. *Trends in Pharmacological Sciences*, 11(8), 307-309.
- Wheeler-Aceto, H., Porreca, F., & Cowan, A. (1990). The rat paw formalin test: comparison of noxious agents. *Pain*, 40(2), 229-238.
- 12. Bovill, J. G., Sebel, P. S., & Stanley, T. H. (1984). Opioid analgesics in anesthesia: with special reference to their use in cardiovascular anesthesia. *Anesthesiology*, *61*(6), 731-755.
- 13. Rabiee, M., Alijanpour, E., Jabbari, A., Khirkhah, F., Mortazavi, Y., & Bijani, A. (2011). Comparison of sodium diclofenac, ketamine and propofol with fentanyl and midazolam in balanced anaesthesia. *Anesthesia, Essays and Researches*, 5(2), 176-181.
- 14. Jensen, P., Mikkelsen, T., & Kehlet, H. (2002). Postherniorrhaphy urinary retention—effect of local, regional, and general anesthesia: a review. *Regional anesthesia and pain medicine*, 27(6), 612-617.
- 15. Spinal vs General anesthesia for laparoscopiccholecystectomy downloaded fromwww.archsurg.com on march.2012 @ 2008American Medical Association.