# **Scholars Journal of Applied Medical Sciences**

Abbreviated Key Title: Sch J App Med Sci ISSN 2347-954X (Print) | ISSN 2320-6691 (Online) Journal homepage: <u>https://saspublishers.com</u> **OPEN ACCESS** 

Medicine

# The Antimicrobial Resistance of Staphylococcus Haemolyticus Isolated from Patients in Taif, Saudi Arabia

Khalid Atiah Alharthi (M.Sc)<sup>1\*</sup>, Anas S Dablool<sup>2</sup>, Mohammad M Sarhan<sup>3</sup>, Abdulmoghni Eidah<sup>4</sup>, Fayez Saeed Bahwerth<sup>5</sup>, Saad Alghamdi<sup>6</sup>

<sup>1</sup>Umm Al-Qura University Makkah, KSA

<sup>2</sup>Public health Department, Faculty of health Sciences, Umm Al-Qura University, Makkah, Saudi Arabia

<sup>3</sup>Microbiology Unit, laboratory and Blood Bank Department, King Abdul Aziz Specialist Hospital, Taif, Saudi Arabia

<sup>4</sup>Ayed Althobaiti Regional lab in Taif Saudia Arabia

<sup>5</sup>Ministry of Health Saudia Arabia

<sup>6</sup>Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences. Umm Al-Qura University, Makkah, Saudi Arabia

**DOI:** <u>10.36347/sjams.2023.v11i11.004</u>

| **Received:** 28.09.2023 | **Accepted:** 02.11.2023 | **Published:** 07.11.2023

\*Corresponding author: Khalid Atiah Alharthi (M.Sc) Umm Al-Qura University Makkah, KSA

#### Abstract

**Original Research Article** 

**Background:** The spread of antibiotic-resistance genes in ecosystems has led to the emergence of antibiotic- resistant bacteria, leading to various antibiotic-resistant diseases worldwide. **Materials and methods:** This study aimed to characterize mute-drug resistant Staphylococci isolates from urine and wounds. We obtained 400 bacterial isolates that were tested for their pathogenicity through cultivation on blood agar, Vitek instrument was used for characterization of different antibiotic sensitivity, while PCR was used to detect the resistance gene. Excel and SPSS were used to analyze the data. All samples were obtained after institutional ethics review and participant's-consents **Result:** Of 400 160=40% females, 60%=240 were males) isolates were carried out from. Out of 400 twenty-one were beta-hemolysis almost of them were described as extensive Multi-drug resistant isolates were 4(21) as they resist 10 antibiotics, 1(21) resist nine antibiotics, 7(21) resist eight antibiotics, 3(21) against seven, 2(21) six antibiotics, 2(21) resist five antibiotics, 1(21) resist four antibiotic and 1(21) resist two antibiotics. These twenty-one were positive in mecA gene amplification through PCR technique but negative for the Vancomycin resistance gene. **Conclusion:** There are high mecA genes among clinical isolates in our study further studies with a high sample size Staphylococcus haemolyticous is recommended.

Keywords: Staphylococcus haemolyticus, mecA gene, Vanc gene, MDR gram-positive.

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

# **INTRODUCTION**

The clinical importance of coagulase-negative staphylococci is getting attention in the last few years (Hitzenbichler et al., 2017) (Szemraj et al., 2023) Coagulase-negative bacteria rarely cause urinary tract infections in children (Megged, 2022). Bailey. R found six episodes of coagulase negative during 21 months in clinics with 16.7% of all urinary tract infections (Bailey, 1973). Ahmed et.al found that the prevalence of coagulase-negative methicillin resistance in diabetic foot burns, and the abscess was 11.5, 10.3, and 15.6 respectively (Ahmed et al., 2021). Almjid et.al., (2020) assessed the incidence, types, risk factors, discovered organisms, and outcomes of surgical wound infections (SWIs) following heart surgery and demonstrated that Staphylococcus aureus, which is methicillin-susceptible, was isolated most of the time (45%), followed by Klebsiella and Pseudomonas species. CoNS is

considered a skin contaminant in most clinical microbiology laboratories (Hagler & Dobkin, 1990)(Kline & Lewis, 2016). A Tanzanian study demonstrated that coagulase-negative staphylococci are the second causative agent of gram-positive that cause community types of urinary tract infections (Silago *et al.*, 2022). Here we isolated the CONS in urine and wound samples with VITEK and subsequent tests of resistance strains with a polymerase chain reaction.

# **MATERIALS AND METHODS**

#### Study Setting and Ethical Approval

A cross-sectional study was done in Taif city during 2021, the study was approved with ethical approval committee at UM-Alqura university faculty of applied health sciences, with written informed consent from all patients.

**Citation:** Khalid Atiah Alharthi, Anas S Dablool, Mohammad M Sarhan, Abdulmoghni Eidah, Fayez Saeed Bahwerth, Saad Alghamdi. The Antimicrobial Resistance of Staphylococcus Haemolyticus Isolated from Patients in Taif, Saudi Arabia. Sch J App Med Sci, 2023 Nov 11(11): 1881-1885.

#### Samples Collection

Samples were collected from patients infected with urinary tract and from wound sites in different body parts. All samples were collected at King Abdulaziz Specialist Hospital in Taif City, Saudi Arabia. Transfer of samples was done immediately in sterilized containers and saved at 4<sup>o</sup>C for microbial investigations.

#### **Bacterial Isolations**

The bacteria were isolated in different media as follows, nutrient agar was used as primary media for all isolates, and mannitol salt agar medium for staphylococcus species. All medium was incubated at 37 <sup>o</sup>C for consecutive three days. The isolation and microbial sensitivity were carried out with the VITEK2 system. We applied seventeen antibiotics for beta haemolytic staphylococcus which include (linezolid, teicoplanin, vancomycin, tetracycline, Fosfomycin, fusidic acid, mupirocin, rifamycin, trimethoprim/ sulfamethoxazole, cefoxitin screen, oxacillin, levofloxacin, moxifloxacin, inducible clindamycin resistance, erythromycin, and clindamycin).

#### **DNA Extraction**

DNA (genomic) was extracted with alkaline methods (Khedr *et al.*, 2017). Briefly, 1.5 ml from the culture was taken and centrifuged immediately at 8000 speeds for one minute, the bacterial pellet was stored, then 250  $\mu$ l of solution A was carefully added and well-mixed, then 250  $\mu$ l from solution B was added and well-mixed, in addition, 250  $\mu$ l of solution C was added with well-mixed as above steps, furthermore, centrifugation of overall mixer was done for all components at 13000 for five minutes. In the last step, the upper layer was removed and DNA was extracted as a pellet, 25  $\mu$ l of each sample was added to a 5  $\mu$ l loading buffer in an Eppendorf tube.

# Polymerase Chain Reaction PCR for Meca and Vanc Gene

The polymerase chain reaction was done with gene primers for mecA 5two a) AAAATCGTGGTAAAGGTTGGC-3 and b) 5 AGTTCTGCAGTACCGGATTTGC-3. The PCR steps were done with denaturation at 94°C for five minutes, an annealing stage at 52°C for one minute, extension step at 72°C for three minutes. The final step of the extension was 15 minutes. The product was run in 1% agarose gel at 112 voltages and then finally the gel was stained with ethidium bromide for 30 minutes and showed with UV light. The Vanc gene was done with the same steps the difference was primers with the following sequence a) 5-ATGAATAGAATAAAAGTTGCAATAC-3b) 5-CCCCTTTAACGCTAATAATACGAT-3 the denaturation was done for three minutes, extension at  $70.1^{\circ}$ C.

### **RESULTS**

Of 400 160=40% females, 60%=240were males) isolates were carried out from. Out of 400 twentyone were beta- hemolysis almost of them were described as extensive Multi-drug resistant isolates were 4(21) as they resist 10 antibiotics, 1(21) resist nine antibiotics, 7(21) resist eight antibiotics, 3(21) against seven, 2(21)six antibiotics, 2(21) resist five antibiotics, 1(21) resist four antibiotic and 1(21) resist two antibiotics. These twenty-one were positive in mecA gene amplification through PCR technique but negative for the Vancomycin resistance gene. These twenty-one were positive in mecA gene amplification through PCR technique but negative for the Vancomycin resistance gene. The most effective against tested twenty-one isolates one was Nitrofurantoin, which eliminates all tested isolates, followed by five antibiotics Linezolid, Teicoplanin, Vancomycin, Fosfomycin, and Cefoxitin screen which eliminates all isolates except one only, then Mupirocin that eliminate all isolates except two isolates only were resistant against it. Fusidic Acid was effective against all isolates except three isolates, Clindamycin and Rifamycin eliminated all except six isolates, and Moxifloxacin was effective against all 7 isolates. Trimethoprim/Sulfamethoxazole was effective against twelve isolates out of test 21, then Erythromycin, Tetracycline, and Levofloxacin with bactericidal activity against seven isolates, Clindamycin was bactericidal against two only (figure2). All twenty-one isolates were positive for the MecA gene with partial amplification reaching 533bps as visualized on agarose gel electrophoresis (Figure 3). None of the twenty-one isolates has a Vancomycin-resistant gene as their PCR was negative without product. Agarose gel electrophoresis was carried out against the DNA ladder and showed negative amplicons as shown in Figure (4).

Khalid Atiah Alharthi et al; Sch J App Med Sci, Nov, 2023; 11(11): 1881-1885



Fig 1: Socio-demographic characteristics and sample types in the study



Fig 2: Results of applied 17 antibiotics against twenty-one bacterial isolates.



Figure 3: mecA gene amplification through PCR reaction with 533bps using specific forward and Reward primers.



Figure 4: Vanc gene amplification through PCR reaction using specific forward and Reward primers.

## **DISCUSSION**

In our current study of the prevalence of UTI in Saudi patients due to bacterial infections, almost our findings came parallel to previous reports of (Flores-Mireles et al., 2015) who confirmed the incorporation of the groups of pathogens including gram-positive and gram-negative bacteria as bacterial isolates in urinary tract infection in both males and females. Among our isolates, twenty-one were gram-positive, blood hemolytic isolates while others were gram- negative, which agreed with (Mohammed et al., 2016)(Guermazi-Toumi et al., 2018)(Salim, F. A; Murad, S. K; Elbareg, 2017)(Mostafa, M. M, Albakosh, A. M; Alrtail, A; Rzeg, M. M and Aboukay, 2016) Those who reported that the gram- negative bacteria were the most isolated bacteria from UTI. In our study, the mecA genes responsible for methicillin resistance were detected in Staphylococcus sp. using PCR, which was confirmed by another study in Saudi Arabia (Anwar et al., 2020). Who investigated 46 samples for methicillin resistance staphylococcus aureus (MRSA) detection and predicted that 45.8% were MRSA. Our finding detected high resistance among clinical isolates of S.haemolyticus. Our isolates of the mecA gene were susceptible to vancomycin this is consistence with previous research demonstrating that all mecA resistance strains are susceptible to vancomvcin(Bathavatchalam et al., 2021). In conclusion, there are high mecA genes among clinical isolates in our study further studies with a high sample size of S.haemolyticous is recommended.

**FUNDING:** This work did not get full or partial funds from governmental or private companies.

**DATA SOURCE:** Available upon request from corresponding authors

#### **COMPETING INTEREST:** Not discloses

#### AUTHORS PARTICIPATIONS

K. A, A.dablool contributed to conceptualization, and analysis, M.sahran K.A (performed DNA extraction and DNA amplification). Abdulmoghni E.A, Saad. A, Fayez. B (data curation, data collection data analysis) and all authors contributed to manuscript and final draft writing.

#### **R**EFERANCES

- Ahmed, E. F., Gad, G. F., Soliman, W. E., El-Asady, R. S., Hasaneen, A. M., & Abdelwahab, S. F. (2021). Prevalence of methicillin-resistant coagulase-negative staphylococci among Egyptian patients after surgical interventions. *Tropical Doctor*, 51(1), 40-44. https://doi.org/10.1177/0049475520962740.
- Anwar, K., Hussein, D., & Salih, J. (2020). Antimicrobial susceptibility testing and phenotypic detection of MRSA isolated from diabetic foot infection. *International Journal of General Medicine*, 1349-1357. https://doi.org/10.2147/IJGM.S278574.
- Bailey, R. R. (1973). Significance of coagulasenegative Staphylococcus in urine. *Journal of Infectious Diseases*, 127(2), 179-182. https://doi.org/10.1093/infdis/127.2.179.
- Bathavatchalam, Y. D., Solaimalai, D., Amladi, A., Dwarakanathan, H. T., Anandan, S., & Veeraraghavan, B. (2021). Vancomycin heteroresistance in Staphylococcus haemolyticus: elusive phenotype. *Future Science OA*, 7(7), FSO710. https://doi.org/10.2144/fsoa-2020-0179.
- Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. *Nature reviews microbiology*, *13*(5), 269-284. https://doi.org/10.1038/NRMICRO3432.
- Guermazi-Toumi, S., Boujlel, S., Assoudi, M., Issaoui, R., Tlili, S., & Hlaiem, M. E. (2018). Susceptibility profiles of bacteria causing urinary

© 2023 Scholars Journal of Applied Medical Sciences | Published by SAS Publishers, India

tract infections in Southern Tunisia. *Journal of global antimicrobial resistance*, *12*, 48-52. https://doi.org/10.1016/j.jgar.2017.09.004.

- Hagler, S., & Dobkin, D. (1990). Urinary tract infection in the male caused by Staphylococcus epidermidis associated with diverticulum of the bladder. *Clinical pediatrics*, *29*(9), 527-528. https://doi.org/10.1177/000992289002900909.
- Hitzenbichler, F., Simon, M., Salzberger, B., & Hanses, F. (2017). Clinical significance of coagulase-negative staphylococci other than S. epidermidis blood stream isolates at a tertiary care hospital. *Infection*, 45, 179-186. https://doi.org/10.1007/s15010-016-0945-4.
- Kline, K. A., & Lewis, A. L. (2016). Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. *Microbiology Spectrum*, 4(2). https://doi.org/10.1128/microbiolspec.uti-0012-2012.
- Megged, O. (2022). Coagulase-negative Staphylococci: a rare cause of urinary tract infections in children with consequences on clinical practice. *European Journal of Pediatrics*, *181*(3). https://doi.org/10.1007/s00431-021-04308-4.
- Mohammed, M. A., Alnour, T. M., Shakurfo, O. M., & Aburass, M. M. (2016). Prevalence and antimicrobial resistance pattern of bacterial strains

- isolated from patients with urinary tract infection in Messalata Central Hospital, Libya. *Asian Pacific journal of tropical medicine*, 9(8), 771-776. https://doi.org/10.1016/j.apjtm.2016.06.011.
- Mostafa, M. M., Albakosh, A. M., Alrtail, A., Rzeg, M. M., & Aboukay, A. M. (2016). Etiology of uropathogenic bacteria in patients with urinary tract infection in Zliten, Libya. *J Human Applied Sci*, 29, 16–32.
- Salim, F. A., Murad, S. K., Elbareg, A. M. (2017). Isolation of bacterial pathogens causing urinary tract infections and their antimicrobial susceptibility pattern among patients at Misurata Teaching Hospital, Libya. *Microbiol. Infect Dis*, 1(2), 1–5.
- Silago, V., Moremi, N., Mtebe, M., Komba, E., Masoud, S., Mgaya, F. X., ... & Matee, M. I. (2022). Multidrug-resistant uropathogens causing community acquired urinary tract infections among patients attending health facilities in Mwanza and Dar es Salaam, Tanzania. *Antibiotics*, *11*(12), 1718. https://doi.org/10.3390/antibiotics11121718.
- Szemraj, M., Lisiecki, P., Glajzner, P., & Szewczyk, E. M. (2023). Vancomycin heteroresistance among methicillin-resistant clinical isolates S. haemolyticus, S. hominis, S. simulans, and S. warneri. *Brazilian Journal of Microbiology*, 54(1), 159-167. https://doi.org/10.1007/s42770-022-00870-7.