Scholars Journal of Applied Medical Sciences

Abbreviated Key Title: Sch J App Med Sci ISSN 2347-954X (Print) | ISSN 2320-6691 (Online) Journal homepage: <u>https://saspublishers.com</u>

Histopathology and Cytology

Original Research Article

Immunohistochemical Expression of Cath-D as Prognostic Biological Marker and its Correlation with Clinical and Histopathological Parameters in Human Breast Cancer

Dr. Sabah Ali Mugahed Al-Qadasi^{1*}, Mona Abd Alhamed Yahia², Saeed Mahmoud Saeed Mohamed³, Roa Mohmed Mahmoud Sultan⁴

¹Assistant Professor of Histology, Anatomy and Histology Department, Faculty of medicine and Health sciences, Sana'a University, Sana'a, Yemen

²Professor of Histochemistry and cell Biology Department, Medical Research Institute, University of Alexandria, Egypt

³Assistant Professor of Histopathology and Cytology Department, Faculty of Medical Laboratory Sciences, West Kurdofan University, Sudan

⁴Lecturer of Histopathology and Cytology Department, Faculty of Medical Laboratory Sciences, Sudan International University, Khartoum- Sudan

DOI: 10.36347/sjams.2023.v11i01.012

| Received: 30.11.2022 | Accepted: 03.01.2023 | Published: 13.01.2023

*Corresponding author: Dr. Sabah Ali Mugahed Al-Qadasi

Assistant Professor of Histology, Anatomy and Histology Department, Faculty of medicine and Health sciences, Sana'a University, Sana'a, Yemen

Abstract

Cathepsin D (Cath-D) is a soluble lysosomal aspartyl glycoprotease that can degrade the protein components of the matrix and free growth factors therein embedded, thus favoring tumor growth, invasion and angiogenesis. The aim of the present work was to investigate the expression of Cathepsin D as novel prognostic biomarker in human invasive ductal carcinoma (IDC) versus benign tumors and normal breast tissues as well as their correlation with different pathological and histological parameters. Immunohistochemical technique was used to examine the expression of Cath-D in normal, benign as well as in IDC. Present results showed higher expression of Cath-D in IDC comparing to normal and benign breast tissues.

Keywords: Cath-D prognostic marker.

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

Breast cancer is the most frequently diagnosed cancer and a second leading cause of cancer death in women worldwide [1]. Breast cancer represents a major scientific, clinical and societal problem. It is the most common malignancy and the second leading cause of cancer death in females following lung cancer [2] with more than 1,000,000 new cases and 370,000 deaths yearly worldwide [3]. In many developing countries, the incidence of breast cancer is now rising sharply due to changes in reproductive factors, lifestyle, and increased life expectancy [4].

Cathepsin D (Cath-D) is a soluble lysosomal aspartyl glycoprotease [5] that can degrade the protein components of the matrix and free growth factors therein embedded, thus favoring tumor growth, invasion and angiogenesis [6]. Three molecular forms of the proteolytic enzyme are found in the cell: the precursor (pro-Cath-D), the intermediate single-chain and the mature double-chain. Pro-Cath-D, which is found in the Golgi complex, is enzymatically inactive, while the intermediate and mature forms, which are found in endosomes and lysosomes, are enzymatically active [7, 8].

MATERIAL AND METHODS

Tissue samples were obtained from patients diagnosed with breast tumors in the Department of Pathology, Medical Research Institute, Alexandria University, Egypt. Formalin-fixed and paraffin embedded tissue specimens from 60 patients diagnosed with IDC, 30 patients diagnosed with benign breast tumor and 10 were taken from normal breast tissue adjacent to the tumors were included. All the cases were asked to freely volunteer to the study and informed written consents were gathered prior to their inclusion in the study. Hematoxlin and eosin (H&E) stained slides for each patient were reviewed by two pathologists. Diagnosis of the specimens was made according to the WHO classification of the Tumors.

∂ OPEN ACCESS

Clinical parameters included patients' age, tumor size, lymph node metastasis (LNM).

Immunohistochemical Investigation of Cath-D

Immunohistochemical method was utilized to study the expression Cath-D in 60 paraffin-embedded breast tissues. In brief, paraffin-embedded specimens were cut into 5µm thick sections. The sections were deparaffinized using 2 changes of xylen and rehydrated. The sections were submerged in an antigen retrieval (citrate buffer saline pH 6) in an oven at 95°C for 20 minutes and then left at room temperature for 20 minutes to cool. The sections were treated with 3% H₂O₂ in PBS to quench the endogenous peroxidase activity, and then incubated with serum blocking reagent for 30 minutes to block nonspecific binding. The sections were incubated with primary antibody for Cath-D (Biorbyt Company, London, UK) at 4°C overnight. Sections were treated with conjugated 2nd antibody (ABC-HRP reagent) for 30 minutes, stained with diaminobenzedine (DAB) and counter stained with hematoxylin. For negative controls, antibody was

replaced with PBS. Each step was followed by PBS washing. Evaluation of Cath-D immunohistochemical results was arbitrarily graded as negative (0), weak (+1), moderate (+2) and strong (+3).

Statistical Analysis

Data were normally distributed according to the Kolmogorov-Smirnov (K-S) normality test, and then analyzed using statistical software package SPSS 20. P values ≤ 0.05 were considered statistically significant.

RESULTS

1-Hormonal Status of the Studied Cancer Cases A. Estrogen Receptor (ER) Status

According to the immunostaining results illustrated in table (1) and figure (1), 40% (18/45) of IDC grade II cases were ER moderate positive (2+), while 46% (6/13) of grade III were ER weak positive (1+).

(Inden Receptor (ER) distribution among breast canc							
Estrogen Receptor (ER)	Gra	de II	Grade III				
	No	%	No	%			
Negative (-ve)	5	11	3	23			
Weak positive (1+)	10	22	6	46			
Moderate positive (2+)	18	40	3	23			
Strong positive (3+)	12	27	1	8			
Total	45	100	13	100			
$X^2 = 5.6$, p = 0.14 (statistically not significant)							

Table 1: Estrogen	Recentor (EF	R) distribution	among breast	cancer grades
Table I. Louigen	MUCCPIOI (LA	() uisti ibution	among bicase	cancer grades

X²: Chi square test

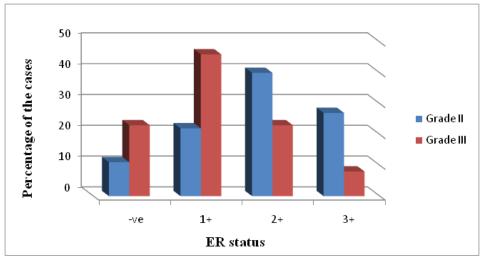


Figure 1: Distribution of estrogen receptor (ER) among breast cancer cases

B. Progesterone Receptor (PR) Status

Immunostaining results of PR showed that 46% (21/45) of IDC grade II were PR moderate positive

(2+), while 54% (7/13) of grade III were weak positive (1+) (table 2 and figure 2).

Progesterone Receptor (PR)	Grade II		Grade III		
	No	%	No	%	
Negateve (-ve)	7	16	3	23	
Weak positive (1+)	8	18	7	54	
Moderate positive (2+)	21	46	2	15	
Strong positive (3+)	9	20	1	8	
Total	45	100	13	100	
$X^2 = 5.04 \text{ p} = 0.2$ (statistically not significant)					

Table 2: Progesterone Receptor (PR) distribution among breast cancer cases

X²: Chi square test

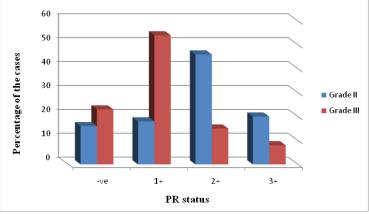
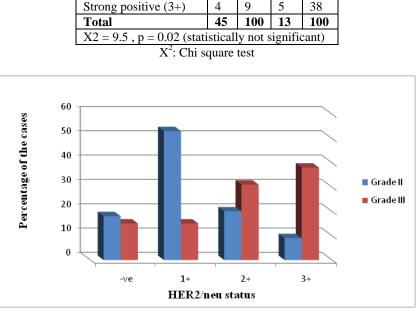



Figure 2: Progesterone receptor (ER) distribution among malignant group cases

C. Epidermal Growth Factor **Receptor-2** (HER2\neu) Status

According to the results of HER2\neu expression, 53% (24/45) of IDC grade II were weak positive (-ve), while 38% (5/13) of IDC grade III were strong positive (3+), as shown in table (3) and figure (3).

Table 3: HER2\neu distribution among breast cancer cases HER2/neu status Grade III

Grade II

18

53

20

No %

8

24

9

No

2

2

4

%

15

15

31

Figure 3: HER2\neu distribution among breast cancer cases

Negateve (-ve)

Weak positive (1+)

Moderate positive (2+)

2. Histopathological Results

a. Haematoxylin and Eosin (H&E) Staining

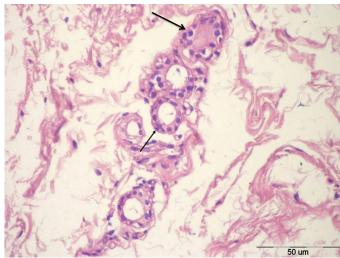


Figure 4: A view of the acini present in a normal lobule. The acini are lined by cuboidal epithelium (thick arrow) with underlying myoepithelial cells having clear cytoplasm (thin arrow) (H & E. Bar =50 µm)

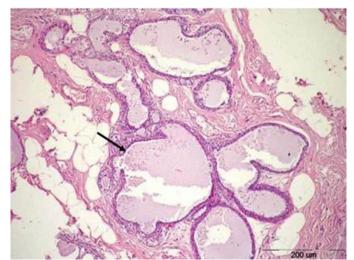


Figure 5: A section of fibrocystic disease with cyst formation (H & E. Bar = 200µm)

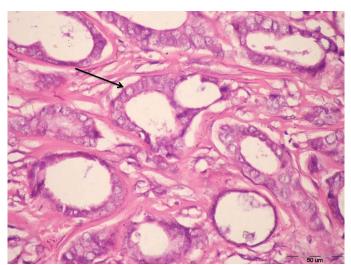


Figure 6: A section of IDC grade I showing well-defined ducts lined by cuboidal epithelial cells with vesicular nuclei (H&E. Bar =50 μ m)

© 2023 Scholars Journal of Applied Medical Sciences | Published by SAS Publishers, India

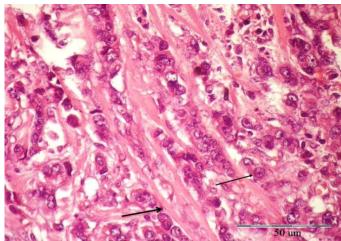


Figure 7: A section of IDC grade II showing tumor cells with abundant eosinophlic cytoplasm and pleomorphic round to ovoid vesicular nuclei (thin arraow). The cells which are arranged in cords infiltrate the desmoplastic stroma (thick arrow) (H&E. Bar =50 µm)

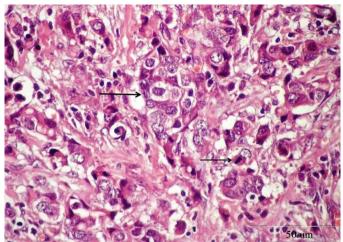


Figure 8: A section of IDC grade III showing solid nests (thick arrow) of tumor cells with large pleomorphic nuclei and some prominent nucleoli. There are numerous mitotic figures (thin arrow) (H&E. Bar=50 µm)

B. Periodic Acid-Schiff (PAS) Staining for Basement Membrane

In the present study, the results of PAS staining showed a well-defined and continuous

basement membrane (BM) surrounding the breast ducts and lobules of the control and benign tumors (fibroadenoma and fibrocystic disease), while malignant tumors exhibited fragmented or completely absent BM.

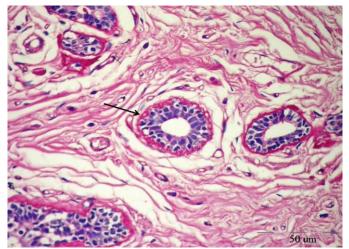


Figure 9: A PAS stained control breast tissue showing intact BMs around the acini (arrow) (Bar=200 µm)

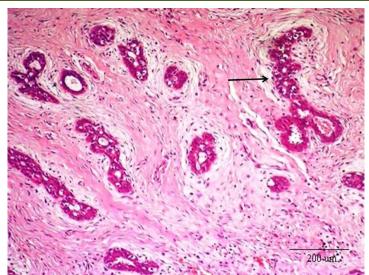


Figure 10: A PAS stained fibroadenoma section showing a continuous and well-defined BM (Bar=200 µm)

Figure 11: A PAS stained fibrocystic disease section showing a continuous and well-defined BM (Bar=200 µm)

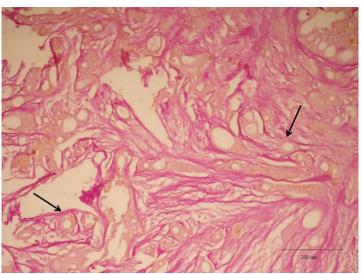


Figure 12: A PAS stained grade I IDC tissue showing partially detached BM (arrow) (Bar=200 µm)

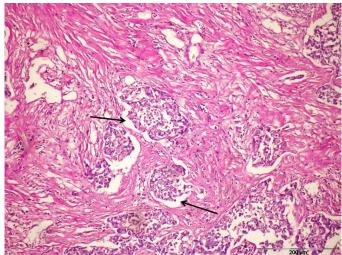


Figure 13: A PAS stained grade II IDC tissue showing degraded BM (arrow) (Bar=200 µm)

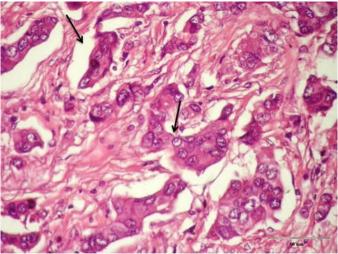


Figure 14: A PAS stained grade III IDC tissue showing completely degraded BM and malignant cells invading the surrounding microenvironment (arrow) (Bar=200 µm)

3. Immunohistochemical Results

I- Cath-D

a. Immunohistochemical Reactivity of Cath-D

- Immunoreactivity of Cath-D was detected as brown course, or tiny granules detected in the cytoplasm of the ductal epithelial cells of the studied groups.
- Cath-D immunostaining reactivity was weak +ve (1+) in 70% (7/10) of control group, moderate +ve (2+) in 83% (25/30) and 53% (24/45) of benign and grade II IDC groups respectively, while it was strong +ve (3+) in 36% (16/45) and 92% (12/13) of grade II and grade III IDC respectively as illustrated in table (4) and figures (15).

Cath-D	Control group		Benig	n group	Malignant gro		t grou	р	Total	
		0			Grade II		Grade III			
	No	%	No	%	No	%	No	%	No	%
Negateve (-ve)	0	0	1	3	2	4	0	0	3	3
Weak +ve (1+)	7	70	2	7	3	7	0	0	7	7
Moderate +ve (2+)	1	10	25	83	24	53	1	8	57	58
Strong +ve (3+)	2	20	2	7	16	36	12	92	31	32
Total	10	100	30	100	45	100	13	100	98	100
$X^2 = 66.7$, $p = 0.000$ (statistically significant)										

Table 4: Cath-	D immunostainin	g reactivity in	the different studied gr	oups

X²: chi-square

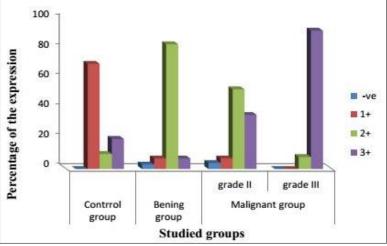


Figure 15: Cath-D immunostaining reactivity in the different studied groups

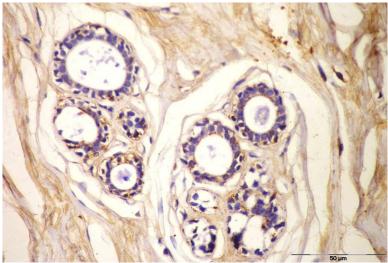


Figure 16: Immunohistochemical staining of a control breast tissue showing weak (1+) expression of Cath-D (Bar=50 µm)

Figure 17: A benign breast tissue showing moderate (2+) expression of Cath-D enzyme in the cytoplasm of the ductal epithelial cells and surrounding extracellular matrix (Bar=50 µm)

Sabah Ali Mugahed Al-Qadasi et al; Sch J App Med Sci, Jan, 2023; 11(1): 60-73

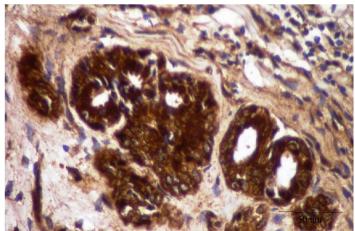


Figure 18: IDC grade I showing a strong positive expression (3+) of Cath-D in the ductal epithelial cells (Bar=50 µm)

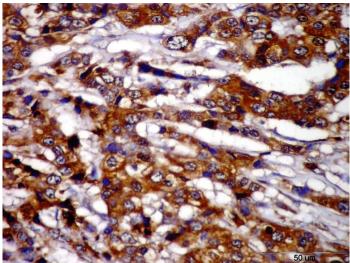


Figure 19: An IDC grade II breast tissue showing moderate (2+) expression of Cath-D in the cytoplasm of the ductal epithelial cells (Bar=50 µm)

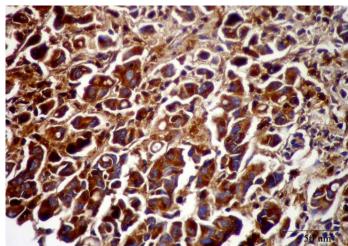


Figure 20: An IDC grade III breast tissue showing strong (3+) expression of Cath-D in the cytoplasm of the ductal epithelial cells (Bar=50 µm)

b. Integrated Optical Density (IOD) of Cath-D in the Different Studied Groups

The mean values of Cath-D IOD for control, benign and IDC grade II and III were 30 ± 3 , 124 ± 3 ,

 159 ± 9 and 168 ± 3 respectively. A statistical significant difference (p < 0.00) was noticed between the studied groups as shown in table (5) and figure (21).

© 2023 Scholars Journal of Applied Medical Sciences | Published by SAS Publishers, India

Table 5: Comparison between the studied groups according to Cath-D IOD									
Cath-D	Control $(n = 7)$	Benign $(n = 25)$	Grade II (n = 40)	Grade III (n = 13)	F	Р			
Min. – Max.	26 - 33	120 - 130	150 - 173	162 - 171	88	< 0.001*			
Mean ± SD.	30 ± 3	124 ± 3	159 ± 9	168 ± 3	2				
p ₁		< 0.001*	< 0.001*	< 0.001*					
p ₂			< 0.001*	< 0.001*					
P ₃			0.03*						

.. . **.**... _ ---

F: F test (ANOVA)

p1: p value for Post Hoc test (Scheffe) for comparing between control and each other group p₂: p value for Post Hoc test (Scheffe) comparing between benign and each other group p₃: p value for Post Hoc test (Scheffe) for comparing between grade II with grade III *: Statistically significant at $p \le 0.05$

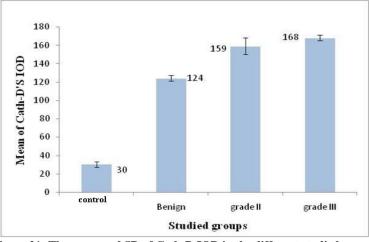


Figure 21: The mean and SD of Cath-D IOD in the different studied groups

Correlation between Cath-D IOD C. and Histopathological Parameters in the Breast Cancer Cases

There was no statistical significant correlation between Cath-D IOD and patients' age (r = 0.05, P= 0.68), tumor size (r = 0.04, P = 0.77), ER (r= -0.12, P =0.35) and PR (r= -0.17, P = .20) status of the studied

cancer cases, while a highly statistical significant correlation was recorded between Cath-D IOD and LNM (r= $.351^{**}$, P = .006) and a statistical significant correlation was noticed between Cath-D IOD and tumor grade (r= .257*, P = .05), and HER2/neu status (r= $.301^*$, P = .02), as shown in table table (6).

	Table 6:	Correlation	between Ca	ath-D IOD	and histor	oathological	parameters in t	he breast cancer cases
--	----------	-------------	------------	-----------	------------	--------------	-----------------	------------------------

Pathological parameters	Ca	th-D IOD				
Age	r	0.05				
	р	0.68				
Tumor size	rs	0.04				
	р	0.77				
Grades	rs	.257*				
	р	0.05				
LNM	rs	0.351**				
	р	0.006				
ER status	rs	-0.12				
	р	0.35				
PR status	rs	-0.17				
	р	0.2				
Her2/status	rs	0.301*				
	р	0.02				
r: Pearson coefficient						
r _s : Spearman coefficient						
*. Correlation is significa	nt at	the 0.05				
**. Correlation is significant	at th	e 0.01 level				

© 2023 Scholars Journal of Applied Medical Sciences | Published by SAS Publishers, India

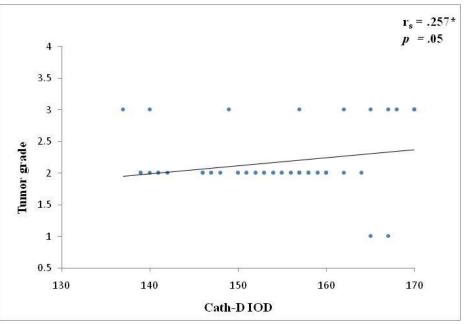


Figure 22: Correlation between Cath-D IOD and tumor grade of the breast cancer cases

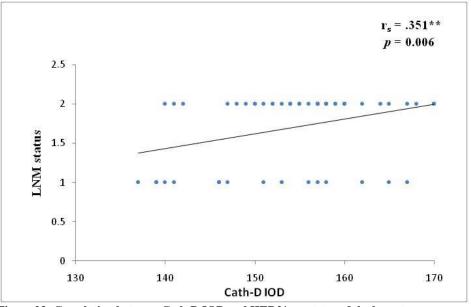


Figure 23: Correlation between Cath-D IOD and HER2/neu status of the breast cancer cases

DISCUSSION

The results of the present study showed that 98% of the breast cancer cases were invasive ductal carcinoma (IDC), most of which were allocated to the age range of (>35-55) years. This results is consistent with several previous studies reported that IDC is the most common histological type of invasive breast cancer, and in the developing world it characterized by an early peak age of onset [9].

In the current study, the majority (75%) of the studied cases was grade II, followed by grade III (22%). This result is supported by previous studies claimed that most of the breast cancer cases undergoing surgical resection are at grade II and III [10].

Concerning tumor size, most of the studied breast cancer cases in the present work were allocated to the tumor size T2 (>2-5) cm and lymph node involvement was present in 73% of the studied cases. These results were in accordance with Sofi, *et al.*, (2012) [11].

The current results showed that most of the studied malignant cases were ER and PR positive (59%, 57%), while 38% were HER2/neu positive. These results are in agreement with several studies [12].

In the present study the results of the periodic acid-Schiff (PAS) stain showed degradation of myoepithelial cell layer with the underlying basement

 © 2023 Scholars Journal of Applied Medical Sciences Published by SAS Publishers, India	70
 S 2025 Scholars Fournar of Applied Medical Sciences I doubled by Stills I doubleds, india	

membrane and invasion of the malignant cells to the surrounding microenvironment in IDC group, while in normal breast tissues as well as in all benign tumors a continuous BM was found around the ducts and tubules.

During malignant transformation normal tissue architecture is disrupted by factors produced and secreted either by cancer cells or other cells associated with the tumor microenvironment [13]. When the breast tissue undergoes focal disruption of the myoepithelial cell layer and degradation of the underlying basement membrane, tumor cells invade surrounding tissues and migrate to distant organs, eventually leading to metastasis [14].

Immunohistochemical technique is an effective method for clinical determination of antibody proteins expression owing to specific targeting of tumor cells, nowadays; it is used in the investigation of a broad range of disease processes with applications in diagnosis, prognostication and therapeutic decisions [15].

The present study was undertaken to assess the immunohistochemical expression of Cath-D in human breast invasive carcinoma versus normal control and benign breast tumors, as well as to investigate the correlation of their immunohistochemical expression with clinicopathological parameters.

A statistical significant correlation was noticed in the present study between Fn14's immunohistochemical expression and LNM ($r = 0.28^*$, P = 0.03). This is in agreement with previous studies showed that expression of Fn14 and its ligand TWEAK were both associated with metastasis and with four or more positive lymph nodes [21].

The results of the current study showed that Cath-D expression was increased in breast cancer cases than in normal and benign cases. Previous study reported that normal lobular or ductal epithelia both from non-tumoral and tumoral lesions showed no Cath-D specific Staining [25].

Interestingly, the present results showed a statistical significant difference between expression of Cath-D in normal and benign cases. This finding is agreed with Brujan, *et al.*, (2009) [26], who noticed that expression of Cath-D in benign breast tumors was higher than normal breast tissues, but still lesser than malignant breast tumors.

The current results showed no statistical significant correlation between the immunohistochemical expression of Cath-D and patients' age (r = .22, P = .09). This lack of correlation between expression of Cath-D and patients' age was also reported by several previous studies [27].

The results of the current study showed no statistical significant correlation between the immunohistochemical expression of Cath-D and tumor size (r = .04, P = .77). This result is consistent with Gion, *et al.*, (1995) [28], but contrasted with Ruibal, *et al.*, (2012) [29] who found that cytosolic concentration of Cath-D was associated with large tumors.

The represented data showed a statistical significant correlation between the immunohistochemical expression of Cath-D and tumor histological grade ($r = 0.3^*$, P = 0.05). This result is going in accordance with Paksoy, *et al.*, (2011) [30], but contrasted with Carrascosa Lloret, *et al.*, (2002) [31].

In the present study there was a highly statistical significant correlation between the immunohistochemical expression of Cath-D and LNM ($r = .35^{**}$, P = .006) of the studied breast cancer cases. This result is consistent with other studies stated that concentrations of Cath-D were associated with axillary lymph node involvement, but contrasted with others found no statistical significant relationship between Cathepsin's D level and lymph node metastasis [32].

Cath-D is involved in the pathogenesis of neurodegenerative, skin, cardiovascular and tumoral diseases [33]. In these pathologies, Cath-D is aberrantly produced and processed in malignancy and oversecreted to the cell microenvironment where it acts as tumor and stromal cells mitogen, also its hyper secretion leads to excessive degradation of the extracellular matrix, which contribute to tumor progression and metastases [34].

COMPETING INTERESTS:

Authors declare that they have no competing interests; financials or others.

REFERENCES

- Khan, H. M. R., Saxena, A., Vera, V., Abdool-Ghany, F., Gabbidon, K., Perea, N. P., ... & Ramamoorthy, V. R. (2013). Black hispanic and black nonhispanic breast cancer survival data analysis with half-normal model application. *Asian Pac J Cancer Prev.*, 15, 9453-8.
- Dorling, L., Carvalho, S., Allen, J., Gonzalez-Neira, A., Luccarini, C., Wahlström, C., ... & Rookus, M. A. (2021). Breast Cancer Risk Genes-Association Analysis in More than 113,000 Women. *The New England journal of medicine*, 384(5), 428-439.
- Lehner, J., Stoetzer, O. J., Fersching, D., Nagel, D., & Holdenrieder, S. (2013). Circulating plasma DNA and DNA integrity in breast cancer patients undergoing neoadjuvant chemotherapy. *Clinica chimica acta*, 425, 206-211.

© 2023 Scholars Journal of Applied Medical Sciences | Published by SAS Publishers, India

- Shulman, L. N., Willett, W., Sievers, A., & Knaul, F. M. (2010). Breast cancer in developing countries: opportunities for improved survival. *Journal of oncology*, 2010.
- Wiley, S. R., Cassiano, L., Lofton, T., Davis-Smith, T., Winkles, J. A., Lindner, V., ... & Fanslow, W. C. (2001). A novel TNF receptor family member binds TWEAK and is implicated in angiogenesis. *Immunity*, 15(5), 837-846.
- 6. Winkles, J. A. (2008). The TWEAK–Fn14 cytokine–receptor axis: discovery, biology and therapeutic targeting. *Nature reviews Drug discovery*, 7(5), 411-425.
- Cullen, V., Lindfors, M., Ng, J., Paetau, A., Swinton, E., Kolodziej, P., ... & Tyynelä, J. (2009). Cathepsin D expression level affects alphasynuclein processing, aggregation, and toxicity in vivo. *Molecular brain*, 2(1), 1-17. doi:10.1186/1756-6606-2-5.
- Laurent-Matha, V., Huesgen, P., Masson, O., Derocq, D., Prébois, C., Gary-Bobo, M., ... & Liaudet-Coopman, E. (2012). Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. *FASEB Journal*, 26(12), 5172-81.
- Bhikoo, R., Srinivasa, S., Yu, T. C., Moss, D., & Hill, A. G. (2011). Systematic review of breast cancer biology in developing countries (part 1): Africa, the Middle East, Eastern Europe, Mexico, the Caribbean and South America. *Cancers* (*Basel*), 3, 2358-81.
- Hüsemann, Y., Geigl, J. B., Schubert, F., Musiani, P., Meyer, M., Burghart, E., ... & Klein, C. A. (2008). Systemic spread is an early step in breast cancer. *Cancer cell*, *13*(1), 58-68.
- 11. Sofi, G. N., Sofi, J. N., Nadeem, R., Shiekh, R. Y., Khan, F. A., Sofi, A. A., ... & Bhat, R. A. (2012). Estrogen receptor and progesterone receptor status in breast cancer in relation to age, histological grade, size of lesion and lymph node involvement. Asian pacific journal of cancer prevention, 13(10), 5047-5052.
- 12. Mujtaba, S., Haroon, S., Faridi, N., & Lodhi, F. R. (2013). Correlation of human epidermal growth factor receptor 2 (HER2/neo) receptor status with hormone receptor Estrogen Receptor, Progesterone Receptor status and other prognostic markers in breast cancer: and experience at tertiary care hospital in Karachi. J Pak Med Assoc., 63, 854-8.
- 13. Tanjore, H., & Kalluri, R. (2006). The role of type IV collagen and basement membranes in cancer progression and metastasis. *The American journal of pathology*, *168*(3), 715-717.
- Man, Y. G. (2007). Focal degeneration of aged or injured myoepithelial cells and the resultant autoimmunoreactions are trigger factors for breast tumor invasion. *Medical hypotheses*, 69(6), 1340-1357.

- 15. Ramos-Vara, J. A., & Miller, M. A. (2014). When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry— the red, brown, and blue technique. *Veterinary pathology*, *51*(1), 42-87.
- Chao, D. T., Su, M., Tanlimco, S., Sho, M., Choi, D., Fox, M., ... & Culp, P. A. (2013). Expression of TweakR in breast cancer and preclinical activity of enavatuzumab, a humanized anti-TweakR mAb. *Journal of cancer research and clinical oncology*, 139(2), 315-325.
- Michaelson, J. S., Amatucci, A., Kelly, R., Su, L., Garber, E., Day, E. S., ... & Joseph, I. B. (2011, July). Development of an Fn14 agonistic antibody as an anti-tumor agent. In *MAbs* (Vol. 3, No. 4, pp. 362-375). Taylor & Francis.
- Culp, P. A., Choi, D., Zhang, Y., Yin, J., Seto, P., Ybarra, S. E., ... & Dubridge, R. (2010). Antibodies to TWEAK Receptor Inhibit Human Tumor Growth through Dual MechanismsAntitumor Activity of TweakR Antibodies. *Clinical Cancer Research*, 16(2), 497-508.
- Zhou, H., Ekmekcioglu, S., Marks, J. W., Mohamedali, K. A., Asrani, K., Phillips, K. K., ... & Rosenblum, M. G. (2013). The TWEAK receptor Fn14 is a therapeutic target in melanoma: immunotoxins targeting Fn14 receptor for malignant melanoma treatment. *Journal of Investigative Dermatology*, 133(4), 1052-1062.
- Wang, J., Liu, Y., Wei, X. Y., & Wang, E. H. (2013). Clinical correlations and prognostic relevance of Fn14 expression in breast carcinoma. *Histol Histopathol*, 28, 859-64.
- Willis, A. L., Tran, N. L., Chatigny, J. M., Charlton, N., Vu, H., Brown, S. A., ... & Cunliffe, H. E. (2008). The fibroblast growth factor– inducible 14 receptor is highly expressed in HER2positive breast tumors and regulates breast cancer cell invasive capacity. *Molecular Cancer Research*, 6(5), 725-734.
- Wang, J., Liu, Y., Wei, X. Y., & Wang, E. H. (2013). Clinical correlations and prognostic relevance of Fn14 expression in breast carcinoma. *Histol Histopathol*, 28, 859-64.
- Whitsett, T. G., Mathews, I. T., Cardone, M. H., Lena, R. J., Pierceall, W. E., Bittner, M., ... & Tran, N. L. (2014). Mcl-1 Mediates TWEAK/Fn14-Induced Non–Small Cell Lung Cancer Survival and Therapeutic ResponseMcl-1 and TWEAK in NSCLC survival. *Molecular Cancer Research*, 12(4), 550-559.
- 24. Li, N., Hu, W. J., Shi, J., Xue, J., Guo, W. X., Zhang, Y., ... & Cheng, S. Q. (2013). Roles of fibroblast growth factor-inducible 14 in hepatocellular carcinoma. *Asian Pacific Journal of Cancer Prevention*, 14(6), 3509-3514.
- Liaudet-Coopman, E., Beaujouin, M., Derocq, D., Garcia, M., Glondu-Lassis, M., Laurent-Matha, V., ... & Vignon, F. (2006). Cathepsin D: newly discovered functions of a long-standing aspartic

72

© 2023 Scholars Journal of Applied Medical Sciences | Published by SAS Publishers, India

protease in cancer and apoptosis. *Cancer letters*, 237(2), 167-179.

- Brujan, I., Mărgăritescu, C., Simionescu, C., Pirici, D., Fronie, A., Foarfă, C. A. M. E. L. I. A., ... & Vrabete, M. (2009). Cathepsin-D expression in breast lesion: an immunohistochemical study. Romanian Journal of Morphology and Embryology= Revue Roumaine de Morphologie et Embryologie, 50(1), 31-39.
- 27. Gion, M., Mione, R., Dittadi, R., Romanelli, M., Pappagallo, L., Capitanio, G., ... & Dante, S. (1995). Relationship between cathepsin D and other pathological and biological parameters in 1752 patients with primary breast cancer. *European Journal of Cancer*, 31(5), 671-677.
- Hu, L., Roth, J. M., Brooks, P., Luty, J., & Karpatkin, S. (2008). Thrombin up-regulates cathepsin D which enhances angiogenesis, growth, and metastasis. *Cancer research*, 68(12), 4666-4673.
- Ruibal, A., Herranz, M., & Arias, J. I. (2012). Clinical and biological significance of cathepsin D levels in breast cancer cytosol in women over 70 years. *Biomarkers in Cancer*, 4, BIC-S9096.
- 30. Paksoy, M., Hardal, U., & Caglar, C. (2011). Expression of cathepsin D and E-cadherin in

primary laryngeal cancers correlation with neck lymph node involvement. *Journal of cancer research and clinical oncology*, *137*(9), 1371-1377.

- Guanter, R., Armada JR, B., & Sanjuán de Laorden, C. (2002). Study of cathepsin D levels in invasive bladder cancer and its stroma. Correlation with tumor stage, cytological grade, lymph node metastasis and survival. Actas Urologicas Espanolas, 26(5), 335-338.
- 32. Aziz, S., Pervez, S., Khan, S., Kayani, N., & Rahbar, M. (2001). Immunhistochemical cathesin-D expression in breast cancer: correlation with established pathological parameters and survival. *Pathol Res Pract*, 197, 551-7.
- Benes, P., Vetvicka, V., & Fusek, M. (2008). Cathepsin D—many functions of one aspartic protease. *Critical reviews in* oncology/hematology, 68(1), 12-28.
- Abbott, D. E., Margaryan, N. V., Jeruss, J., Khan, S., Kaklamani, V., Winchester, D. J., ... & Hendrix, M. J. (2010). Reevaluating cathepsin D as a biomarker for breast cancer: serum activity levels versus histopathology. *Cancer biology & therapy*, 9(1), 23-30.