Scholars Journal of Applied Medical Sciences (SJAMS)

Sch. J. App. Med. Sci., 2015; 3(4C):1804-1809 ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublishers.com

Research Article

ISSN 2320-6691 (Online) ISSN 2347-954X (Print)

Uric Acid Level as a Risk Marker for Chronic Kidney Disease: Data Analysis of Health Examinations

Ya-Wen Chen¹, Sheng-Yuan Huang¹, Szu-Mei Hsiao², Chao-Hsien Lee³, Chia-Hsin Lai⁴, Tsan Yang^{3*} ¹Community Health Dept, Gangshan Hospital run by Show-Chwan Memorial Hospital, Kaohsiung city, Taiwan. ²Department of Nursing, Meiho University, Pingtung County, Taiwan. ³Department of Health Business Administration, Meiho University, Pingtung County, Taiwan.

⁴Department of Physical Therapy, Tzu Hui Institute of Technology, Taiwan.

*Corresponding author

Tsan Yang, Email: <u>x00002115@meiho.edu.tw</u>

Abstract: This study investigated uric acid levels as a risk marker for chronic kidney disease (CKD). This cross-sectional study focused on the 9,450 persons who attended the free health check at a hospital in Kaohsiung, Taiwan between July 2005 and July 2011. CKD was divided into non-CKD, CKD stages 1-2, and CKD stages 3-5. The 2002 National Kidney Foundation kidney disease outcomes quality initiative (K/DOQI) was used as the standard for diagnosis. Multiple logistic regression analysis was used to examine the influence of uric acid levels on CKD. The ratio of advanced stage diagnoses increased as uric acid levels increased; the results for CKD stages 3-5 were more significant. Multiple logistic regression analysis indicated that in models 1, 2, and 3, as uric acid levels increased, the risk for CKD stages 1-2 and stages 3-5 increased. This increased risk was more significant for CKD stages 3-5. The amount of kidney damage caused by CKD increases as uric acid levels increase. While controlling all other risk factors, uric acid can be used as an independent predictor for CKD.

Keywords: Chronic kidney disease, uric acid, glomerular filtration rate, health examination

INTRODUCTION

Past epidemiological studies and trials have indicated that serum uric acid is correlated with obesity, diabetes, hypertension, cardiovascular disease, and chronic kidney disease (CKD) [1-5], and increases the risk for metabolic syndrome [6-8]. In many countries, diabetic kidney disease (DKD) is a major cause of endstage renal disease (ESRD) and is considered a worldwide burden. Uric acid (UA) has been found to be linked to DKD incidence and progression [9,10]. One study in a Chinese Population concluded that hyperuricaemia is a risk factor for DKD [11].

The key to preventing CKD is early detection and early treatment. If kidney disease is left unchecked, it can lead to declining kidney function and the inability to continue a healthy life [12]. Patients with more severe kidney disease require dialysis or transplants which are hazards to health in and of themselves. However, the development of CKD can be slowed or even prevented through conventional testing and treatments. This can also reduce the risk of comorbidities and cardiovascular disease and improve survival rate and quality of life [13]. A recent improvement in the detection of early stage CKD is the use of estimated Glomerular Filtration Rate (eGFR) rather than serum creatinine during diagnosis. The new kidney disease outcomes quality initiative (K/DOQI) guideline also uses eGFR in its definition and staging of CKD to help epidemiological screening and clinical treatment. This novel concept is already universally used within the field of nephrology [14].

The aging population and increased incidences of obesity, diabetes, hypertension, and other chronic diseases have contributed to the increase in kidney disease. As some medications are nephrotoxic, inappropriate medication use in Taiwan also directly damages kidney function. In addition, patients with chronic diseases may take drugs, herbs, or other supplements that are advertized to cure their disease that actually exacerbate their condition and hasten the development of kidney disease caused by hypertension or diabetes. CKD also leads to an increased risk of mortality, cardiovascular disease, and progression to renal failure [15-18]. While the high incidence and prevelance of ESRD in Taiwan is a pressing issue, the prevelance of CKD, a precursor to ESRD, is much higher.

This study investigated UA levels as a risk marker for CKD to serve as a reference for the treatment of CKD.

METHODS

This cross-sectional study focused on the 9,450 adults aged 40 years and older who attended the free health check at a hospital in Kaohsiung, Taiwan between July 1, 2005 and July 31, 2011. A total of 12,583 people received health checks; the effective sample was 9,450 after removing those who received multiple health checks and those with incomplete physiology, blood chemistry evaluations.

The physical examination included the following: blood pressure and anthropometric measurements. including height, weight, and body mass index (BMI). Height was measured to the nearest 0.1 cm, without shoes, using a stadiometer. Weight was measured in light clothing, without shoes, using a beam balance scale, and was recorded to the nearest 0.1kg. BMI was calculated as weight (kg) divided by height² (m²). Welltrained nurses measured the systolic blood pressure (SBP) and diastolic blood pressure (DBP) two times in the left arm of seated participants according to a standardized protocol. A third BP measurement was made if the first two BP readings differed by more than 10 mm Hg. The average of the two closest readings was calculated to determine the reported BP for each participant.

Definition of terms: (1) Definition of CKD: In the present study, the GFR was estimated using the Modification of Diet in Renal Disease (MDRD), and CKD was grouped into 5 stages based on the categorization of CKD by the National Kidney Foundation, Inc.: a patient whose eGFR \geq 90 ml/min/1.73m² with proteinuria was in stage 1; those

with eGFR $\geq 60-89$ ml/min/1.73m² with proteinuria in stage 2; those with eGFR \geq 30-59 were ml/min/1.73m² were in stage 3; those with eGFR ≧15-29ml/min/1.73m² were in stage 4; those with eGFR <15ml/min/1.73m² were in stage 5. (2) In order to understood the current international classification of UA as a criterion of elevated UA, the present study classified the serum UA level into (A) UA >7.0mg/dL for males and UA ≥ 6.0 mg/dL for females [19,20]; (B) 3 subgroups in light of the concentration of UA: (a) UA <7mg/dL, (b) $7mg/dL \leq UA < 9mg/dL$, (c) UA ≥9mg/dL [21]. (C) 4 subgroups among males: (a) UA <5mg/dL, (b) 5mg/dL \leq UA <6mg/dL, (c) 6 mg/dL \leq UA <7mg/dL, and (d) UA \geq 7mg/dL. In females: (a) UA ≤ 4 mg/dL, (b) 4mg/dL $\leq UA \leq 5$ mg/dL, (c) 5mg/dL \leq UA < 6mg/dL, and (d) UA \geq 6mg/dL [22].

The Meiho University Institutional Review Board approved this study prior to data collection. SPSS for Windows release 17.0 was used for data analysis; significance levels were set at α = .05. Chi-square tests and multiple logistic regression analysis were used to examine the correlations between UA and CKD stages.

RESULTS

The results of the demographics, lifestyles, and CKD staging (non-CKD, stages 1-2, and stages 3-5) analysis indicated that males, aged 65 and above, without the habits of a daily consumption of vegetables and fruits have an increasing prevalence of CKD. Those who exercise and smoke have a higher prevalence of CKD (Table 1).

Variable	non CKD(n=6757)		stage1-2(n=1104)		stage3-5(n=1589)		P value
variable	Number	Number Percentage		Number Percentage			
Gender							<.001
Male	2838	68.2	539	12.9	786	18.9	
Female	3919	74.1	565	10.7	803	15.2	
Age							<.001
40-64 Years	4772	82.7	616	10.7	382	6.6	
Above 65	1985	53.9	488	18.3	1207	32.8	
Daily Vegetable and Fruit ^a							.025
Yes	4548	72.4	717	11.4	1018	16.2	
No	2209	69.8	387	12.2	571	18.0	
Exercise ^b							<.001
No	4677	72.5	754	11.7	1019	15.8	
3-5 times a week	2080	69.3	350	11.7	570	19.0	
Smoking ^c							<.001
No	5808	71.2	923	11.3	1423	17.5	
Yes	949	73.2	181	14.0	166	12.8	

 Table-1: Analysis of demographics, lifestyles, and CKD (n=9450)

^a Daily vegetable and fruit intake: 3 kinds of vegetables, 2 kinds of fruit.

^b Exercise: More than 30 minutes each time.

^c Smoking: Currently smoking.

Table 2 indicates that while total cholesterol was not significant, all other metabolic syndrome and its components abnormalities prevalence increased along with more advanced stages of CKD (p<0.001). Table 3 compares UA levels and CKD staging; the results showed that regardless of whether UA was divided into two, three, or four subgroups, an increasing trend could be seen in CKD as UA levels increased; particularly significant differences were found for CKD stages 3-5 (p<0.001). After adjusted for age, gender, exercise habits, smoking habits, daily fruit and vegetable intake, and metabolic syndrome, multiple logistic regression analysis results indicated that UA subgroups in models 1, 2, and 3 saw increased risk for CKD stages 1-2 and stages 3-5 with increases in UA levels; this increase was more significant for CKD stages 3-5 (Table 4).

Table-2: Analysis of physiology, blood chemistry, and CKD (n=9450)

Variable	non CKD(n=6757) Number Percentage		stage1-2(n=1104) Number Percentage		stage3- (n=1589) Number Percentage		P value
BMI							<.001
18.5≦ BMI <26.9 Kg/m ²	5322	73.0	785	10.8	1182	16.2	
BMI≧27kg/m ²	1435	66.4	319	14.8	407	18.8	
Blood Pressure Elevation ^d							<.001
Normal	2693	82.5	219	6.7	354	10.8	
Abnormal (≧130/85mmHg)	4064	65.7	885	14.3	1235	20.0	
Cholesterol							.151
Normal	3613	71.1	580	11.4	888	17.5	
Abnormal (≧200mg/dL)	3144	72.0	524	12.0	701	16.0	
Triglyceride							<.001
Normal	5049	73.7	735	10.7	1065	15.5	
Abnormal (≧150mg/dL)	1708	65.7	369	14.2	524	20.1	
Blood Sugar Elevation ^e							<.001
Normal	3354	77.8	399	9.3	557	12.9	
Abnormal (≧100mg/dL)	3403	66.2	705	13.7	1032	20.1	
Metabolic Syndrome							<.001
No (Less than <3 items of abnormality)	4340	75.5	558	9.7	854	14.8	
Yes (More than ≥ 3 items of abnormality)	2417	65.4	546	14.8	735	19.9	

^e Blood sugar elevation ≥ 100 mg/dl or currently taking oral hypoglycemic agent.

Table-3: Analysis the difference of uric acid level and CKD (n=9450) CKD

Variable	non CKD	stage1-2(n=1104)		stage3-5(n=1589)		D 1	
	Number	Percentage	Number	Percentage	Number	Percentage	P value
High UA							<.001
Normal	5089	79.4	732	11.4	588	9.2	
Abnormal (Male >7, Female >6mg/dL)	1668	54.9	372	12.2	1001	32.9	
Subgroup of UA ^f							<.001
tertile 1	5510	77.8	832	11.8	738	10.4	
tertile 2	1099	57.5	227	11.9	584	30.6	
tertile 3	148	32.2	45	9.8	267	58.0	
Subgroup of UA ^g							<.001
quartile 1	1036	83.7	131	10.6	71	5.7	
quartile 2	1908	81.5	262	11.2	172	7.3	
quartile 3	1976	76.7	301	11.7	300	11.6	
quartile 4	1837	55.8	410	12.5	1046	31.8	

^f Subgroups of UA: tertile1: UA <7mg/dL; tertile2: 7mg/dL \leq UA ≤9 mg/ dL; tertile3: UA ≥9 mg/dL.

^g Subgroups of UA:

quartile1: Male UA <5mg/dL, Female UA <4mg/dL;

quartile2: Male 5mg/dL≦UA <6mg/dL, Female 4mg/dL≦UA <5mg/dL;

quartile3: Male 6 mg/dL \leq UA <7mg/dL,Female 5mg/dL \leq UA <6mg/dL; quartile4: Male UA \geq 7mg/dL, Female UA \geq 6mg/dL.

Table-4: M	ultiple logistic regression ana	lysis of th	e association	between u	iric acid and j	predicted the risk	for CKD

Item	CKD stage 1-2	CKD stage 3-5
	OR (95% CI)	OR (95% CI)
Model 1		
UA	1.38(1.20-1.59)	5.17(4.55-5.87)
Model 2		
tertile 2 ^a	1.18(1.00-1.40)	4.30(3.72-4.98)
tertile 3 ^a	1.67(1.18-2.36)	15.13(11.81-19.37)
Model 3		
quartile 2 ^b	1.11(0.86-1.39)	1.41(1.05-1.90)
quartile 3 ^b	1.19(0.95-1.48)	2.29(1.81-3.16)
quartile 4 ^b	1.58(1.27-1.96)	8.87(6.81-11.56)

Note 1: Depended variables included non CKD, CKD stages 1-2, and CKD stages 3-5; using the non CKD group as the reference group.

Note 2: The multiple logistic regression models included the following variables: age, gender, uric acid, exercise habits, smoking habits, daily fruit and vegetable intake, and metabolic syndrome.

^aUric acid subgroups: tertile1:UA < 7mg/dL; tertile 2:7mg/dL≦UA < 9mg/ dL; tertile 3:UA≧9mg/dL.

^bUric acid subgroups:

quartile 1: male UA < 5mg/dL · female UA < 4mg/dL.

quartile 2:male $5mg/dL \leq UA < 6mg/dL$, female $4mg/dL \leq UA < 5mg/dL$.

quartile3:male 6 mg/dL \leq UA < 7mg/dL \cdot female 5mg/dL \leq UA < 6mg/dL.

quartile 4:male UA \geq 7mg/dL \cdot female UA \geq 6mg/dL.

DISCUSSION

Age is a factor contributing to the development of CKD; the incidence of CKD increases as age increases. In this study, 32.8% of the participants aged over 65 had CKD stages 3-5, markedly higher than the 6.6% of participants aged 40-64. This is consistent with the results of Hemmelgarn, who noted that within a sample of 10,184 participants, kidney function decreased as age increased [23]. The results indicated that CKD stages 1-2 was more prevalent in smokers than non-smokers, yet CKD stages 3-5 were more prevalent in non-smokers than in those who smoked one pack of cigarettes per day (p < 0.001). The causal relationship between CKD, smoking habits, and quitting smoking after diagnosis may be difficult to ascertain using a cross-sectional questionnaire. However, many studies have shown that nicotine damages endothelial cells and produces hydroxyl radicals, further deteriorating kidney function. Nicotine accumulates more in CKD patients than in healthy individuals, which further accelerates kidney damage. In a study including 2,310 participants aged 40 years and older, Zhang (2007) found that the kidney function in smokers was 1.56 times worse than that in healthy individuals [24]. Another study on diabetes patients concluded that smoking affects the glomerular structure and function and worsens this condition [25].

A prior study has shown that obesity causes a high glomerular filtration rate, adipose cells produce molecules that induce inflammation, and morbid obesity also increases renal blood flow, leading to kidney damage [26]. This study found that participants with a body mass index (BMI) ≥ 27 Kg/m² had significantly higher prevalences of CKD stages 1-2 and stages 3-5. This is consistent with previous studies that concluded a higher BMI increased the risks for CKD and ESRD [27, 28].

In this study, 33.8% of CKD patients had abnormal blood sugar levels; among which, a higher percentage of these patients were in stages 3-5 than stages 1-2 (20.1% vs. 12.9%). Nephropathy caused by diabetes is a leading cause of end stage renal failure. Studies focusing on diabetic CKD stage 5 patient information concluded that diabetics began dialysis treatments earlier than non-diabetics [9, 10] and that glycated hemoglobin should be kept under 7% in order to prevent blood sugar from further damaging kidney function.

This study also found that hypertension was associated with a higher risk of CKD (p<0.001). A higher percentage of hypertension was noted in CKD stages 3-5 than in CKD stages 1-2 (20.0% vs.14.3%); these percentages were both higher than the percentages for patients with normal blood pressure. Hypertension is the most prevalent comorbidity in individuals with CKD [29]. Past studies have indicated that increases in systolic pressure and diastolic pressure are strongly related to ESRD [30, 31]. Another study indicated a strong correlation between higher pulse pressure and cardiovascular disease and a correlation between higher systolic and diastolic pressures and long-term dialysis [32]. Yet another study had similar findings, concluding that systolic pressure was a better predictor for kidney disease than diastolic pressure in individuals with type 2 diabetic nephropathy [33]. This study indicated that CKD stages 1-2 and stages 3-5 were significantly more prevalent in individuals with metabolic syndrome than those without; this finding was consistent with previous studies [34].

The majority of current studies focuses on UA levels as a risk factor for CKD and concludes that UA levels are correlated to CKD [21, 35]. Few studies divide UA levels into subgroups to investigate the influence on CKD stages. This study examined the relationship between UA levels and non-CKD, CKD stages 1-2, and CKD stages 3-5 groups. After adjusted for age, gender, exercise habits, smoking habits, daily fruit and vegetable intake, and metabolic syndrome, the results indicated that UA subgroups in models 1, 2, and 3 saw increased risks for CKD stages 1-2 and CKD stages 3-5 as UA levels increased; the increased risk for CKD stages 3-5 was particularly significant. This study was limited by the fact that the participants all came from the same region and all patient information was obtained from health checks provided by a single regional hospital; thus, the results may not be pertinent for all similar populations. In addition, some possible factors affecting CKD could not be collected. As this was a cross-sectional study, the causal relationships that may be inferred from the results are also limited. In conclusion, the prevalences of CKD stages 1-2 and CKD stages 3-5 in this study were 11.7% and 16.8%, respectively. A higher percentage of abnormal UA levels can be seen in patients with CKD stages 3-5. After controlling for other potential influencing factors of CKD, UA was still an independent predictor for CKD and as UA levels increased, the risk for CKD increased.

REFERENCES

- 1. Sheikhbahaei S, Fotouhi A, Hafezi-Nejad N, Nakhjavani M, Esteghamati A; Serum uric acid, the metabolic syndrome, and the risk of chronic kidney disease in patients with type 2 diabetes. Metab Syndr Relat Disord, 2014; 12(2): 102–109.
- Wang T, Bi Y, Xu M, Huang Y, Xu Y, Li X, Ning G; Serum uric acid associates with the incidence of type 2 diabetes in a prospective cohort of middleaged and elderly Chinese. Endocrine, 2011; 40(1): 109–116.
- 3. Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, Mazzali M; Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension, 2003; 41(6):1183–90.
- Hsu CY, Iribarren C, McCulloch CE, Darbinian J, Go AS; Risk factors for end-stage renal disease: 25-year follow-up. Arch Intern Med, 2009; 169(4):

342-350.

- Filiopoulos V, Hadjiyannakos D, Vlassopoulos D; New insights into uric acid effects on the progression and prognosis of chronic kidney disease. Ren Fail, 2012; 34(4): 510-520.
- Feig DI, Kang DH, Johnson RJ; Uric acid and cardiovascular risk. N Engl J Med, 2008; 359(17): 1811–1821.
- Sui X, Church TS, Meriwether RA, Lobelo F, Blair SN; Uric acid and the development of metabolic syndrome in women and men. Metabolism, 2008; 57(6): 845–852.
- Liu PW, Chang TY, Chen JD; Serum uric acid and metabolic syndrome in Taiwanese adults. Metabolism, 2010; 59(6): 802–807.
- Lim A; Diabetic nephropathy—complications and treatment. Int J Nephrol Renovasc Dis, 2014; 7: 361–381.
- Altemtam N, Russell J, El Nahas M; A study of the natural history of diabetic kidney disease (DKD). Nephrol Dial Transplant, 2012; 27(5): 1847–1854.
- Yan D, Tu YF, Jiang F, Wang J, Zhang R, Sun X, Wang SY, Bao YQ, Hu C, Jia WP; Uric Acid Is Independently Associated with Diabetic Kidney Disease: A Cross-Sectional Study in a Chinese Population. PLoS ONE, 2015; 10(6): 129797.
- 12. Clase CM, Smyth A; Chronic kidney disease. BMJ Clin Evid, 2015.
- 13. Levey AS, Coresh J; Chronic kidney disease. Lancet, 2012; 379(9811): 165-180.
- 14. Wu MJ, Shu KH, Liu PH, Chiang PH, Cheng CH, Chen CH, Chuang YW; High risk of renal failure in stage 3B chronic kidney disease is underrecognized in standard medical screening. Journal of the Chinese Medical Association, 2010; 73(10): 515-522.
- 15. Matsushita K, Van Der Velde M, Astor BC, Woodward M, Levey AS, De Jong PE, Gansevoort RT; Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet, 2010; 375(9731): 2073–2081.
- 16. van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey A, Manley T; Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative metaanalysis of high-risk population cohorts. Kidney Int, 2011; 79(1): 1341–1352.
- 17. Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, Manley T; Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and highrisk population cohorts. Kidney Int, 2011; 80(1): 93–104.
- Astor BC, Matsushita K, Gansevoort RT, van der Velde M, Woodward M, Levey AS, Auguste P; Lower estimated glomerular filtration rate and

higher albuminuria are associated with mortality and end-stage renal disease. A collaborative metaanalysis of kidney disease population cohorts. Kidney Int, 2011; 79(12): 1331–1340.

- Lin CS, Hung YJ, Chen GY, Tzeng TF, Lee DY, Chen CY, Huang WP, Huang CH; A multicenter study of the association of serum uric acid, serum creatinine, and diuretic use in hypertensive patients. International Journal of Cardiology, 2010; 148(3): 325-330.
- 20. Liu WC, Hung CC, Chang JM, Hwang SJ, Chen HC; Uric Acid and Renal Disease. J Intern Med Taiwan. 2010; 21: 197-203.
- Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R; Elevated uric acid increases the risk for kidney disease. Journal of the American Society of Nephrology, 2008; 19(12): 2407-2413.
- 22. Chang HY, Tung CW, Lee PH, Lei CC, Hsu YC, Chang HH, Yang HF, Lu LC, Jong MC, Chen CY; Hyperuricemia as an independent risk factor of chronic kidney disease in middle-aged and elderly population, The American journal of the medical sciences, 2010; 339(6): 509-515.
- 23. Hemmelgarn BR, Zhang J, Manns BJ, Tonelli M, Larsen E, Ghali WA, Culleton BF; Progression of kidney dysfunction in the community-dwelling elderly. Kidney international, 2006; 69(12): 2155-2161.
- 24. Zhang L, Zuo L, Xu G, Wang F, Wang M, Wang S, Wang H; Community-based screening for chronic kidney disease among populations older than 40 years in Beijing. Nephrology Dialysis Transplantation, 2007; 22(4): 1093-1099.
- 25. Cooper RG; Effect of tobacco smoking on renal function. Indian J Med Res, 2006; 124(3): 261-268.
- Taal M, Brenner B; Predicting initiation and progression of chronic kidney disease: developing renal risk scores. Kidney Int, 2006; 70(10): 1694-1705.
- 27. Shankar A, Leng C, Chia KS, Koh D, Tai ES, Saw SM, Wong TY; Association between body mass index and chronic kidney disease in men and women: population-based study of Malay adults in Singapore. Nephrol Dial Transplant, 2008; 23(6): 1910-1918.
- 28. Bash LD, Astor BC, Coresh J; Risk of incident

ESRD: a comprehensive look at cardiovascular risk factors and 17 years of follow-up in the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis, 2010; 55(1): 31-41.

- 29. Mahmoodi BK, Matsushita K, Woodward M, Blankestijn PJ, Cirillo M, Ohkubo T, Rossing P, Sarnak MJ, Stengel B, Yamagishi K, Yamashita K, Zhang L, Coresh J, de Jong PE, Astor BC; Chronic Kidney Disease Prognosis Consortium Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet, 2012; 380(9854): 1649-1661.
- Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, Shulman NB, Stamler J; Blood pressure and end-stage renal disease in men. N Engl J Med, 1996; 334(1): 13-8.
- 31. Haroun MK, Jaar BG, Hoffman SC, Comstock GW, Klag MJ, Coresh J; Risk Factors for Chronic Kidney Disease: A Prospective Study of 23,534 Men and Women in Washington County, Maryland. J Am Soc Nephrol, 2003; 14(11): 2934– 2941.
- 32. Palit S, Chonchol M, Cheung AK, Kaufman J, Smits G, Kendrick J; Association of BP with Death, Cardiovascular Events, and Progression to Chronic Dialysis in Patients with Advanced Kidney Disease. Clin J Am Soc Nephrol, 2015; 10(6): 934-940.
- 33. Bakris GL, Weir MR, Shanifar S, Zhang Z, Douglas J, van Dijk DJ, Brenner BM; RENAAL Study Group. Effects of blood pressure level on progression of diabetic nephropathy: results from the RENAAL study. Arch Intern Med, 2003; 163(13): 1555-1565.
- 34. Yu JKL, Chia PF, Neoh CA, Liao YK, Chao CC, Lai CH, Lee CS, Yang T; Evaluating the Effects of the Components of Metabolic Syndrome on Chronic Kidney Disease: Data Analysis of Adult Physical Examinations. Austin J Public Health Epidemiol, 2014; 1(2): 5.
- 35. Wu HW, See LC, Chang RE, Chen WJ, Yang MC; Factors associated with chronic kidney disease: analysis of outreach community adult health examination data.Taiwan J Public Health, 2009; 28(5): 374-384.