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Abstract: Diabetic retinopathy is one of the reasons for severe loss of visual acuity in diabetic patients. Exposure to 

hyperglycemic environment is the root cause, which activates or increases the rate of several biochemical pathways such 

as, polyol pathway, PKC pathway and formation of advanced glycation end products in the tissues leading to hypoxia, 

followed by tissue damage. Oxygen deprivation stimulates the retina to release growth factors causing growth of 

undesirable blood vessels in the retina, which is the central cause for retinopathy. Laser and anti-VEGF therapies are 

being used worldwide as a mode of treatment. But newer approaches to an effective treatment with less side effects is 

always a matter of concern. So several therapeutic agents to block the basic biochemical pathways of pathogenesis are 

designed and under research. This review focuses on the basic biochemical pathways for the pathogenesis of retinopathy 

and the drugs designed to block those pathways for the treatment of diabetic retinopathy. 

Keywords: Diabetic Retinopathy, Treatment, polyol pathway, Advanced glycation end products, PKC pathway, 

Leukostasis. 

 

INTRODUCTION 

Diabetic retinopathy (DR) is considered to be 

the most serious complication and one of the major 

causes of blindness in diabetic patients. It is a vascular 

disorder affecting the microvasculature of the retina. 

Usually, retinopathy was not found to be clinically 

significant during early years of diagnosis of diabetes. It 

has been found that 25-50% of the type1 diabetic 

population showed some degree of retinopathy within 

10 to 15 years and 75% within 15 to 20 years of 

diagnosis of type 2 diabetes mellitus. However 20% of 

type2 diabetic patients found to have retinopathy by the 

time they are diagnosed with diabetes [1,2].In addition, 

several factors such as, duration of diabetes mellitus, 

hypertension, hyperlipidemia, nephropathy, poor 

glycemic control, anemia, alcohol consumption and 

pregnancy can influence the development and 

progression of diabetic retinopathy [3-6]. 

                       

Hyperglycemia is a key factor in the 

development of diabetic retinopathy which can activate 

multiple biochemical pathways involved in the 

pathogenesis of diabetic retinopathy. It causes increased 

flux of glucose through several pathways mainly, 

hexosamine pathway, aldose reductase and protein 

kinase C (PKC) pathway. Activation of hexosamine 

pathway can further causes altered glycosylation of 

transcription factors and activation of inflammatory 

genes [7]. Non enzymatic glycosylation can leads to 

functional alteration of several proteins. Increased 

formation of sugar alcohols (such as sorbitol) from 

aldose reductase pathway can deplete NADPH required 

for the cell to fight against oxidative stress [8]. Protein 

kinase C pathway activation can trigger changes in 

retinal blood flow, thickening of the basement 

membrane, extracellular matrix expansion and increase 

in vascular permeability [7]. All these factors finally 

cause endothelial cell dysfunction, pericyte apoptosis, 

microvascular leakage and microaneurysms leading to 

retinal ischemia which can trigger angiogenesis in 

retina which is a hallmark of diabetic retinopathy.     

 

Microvascular leakage caused by increased 

expression of potent vasoactive molecules such as 

Vascular Endothelial Growth Factor (VEGF), 

Transforming Growth Factor-β (TGF-β), Interleukin-1 

(IL1), Tumor Necrosis Factor-(TNF-𝛼), Matrix 

Metalloproteinases (MMPs), etc. can result in 

development of macular edema (ME). The same 

vasoactive molecules can also trigger hypoxia induced 

neovascularization in the retina [9-13].The new blood 

vessels thus formed are thin and fragile. They can 
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rupture and bleed into the vitreous cavity leading to loss 

of visual acuity, contraction of the vitreous, retinal 

detachment and severe loss of vision [14-17].  

 

Laser photocoagulation therapy has been used 

worldwide as the most effective course of treatment in 

preventing severe vision loss in diabetic patients 

[18,19].  Anti-VEGF agents are also in use to trap 

VEGF and to stop macular edema as well as 

angiogenesis [20,21]. In recent years, several anti-

angiogenic molecules such as PKC inhibitors, tyrosine 

kinase receptor blockers etc. have been tried and are 

under clinical trial for the treatment of angiogenesis in 

diabetic retinopathy.   

 

Pathogenesis of diabetic retinopathy a biochemical 

view:  

One of the most important factors in the 

pathogenesis of diabetic vascular complications is 

hyperglycemia induced abnormal activation of several 

metabolic pathways. A major part of it comprises of 

hyperactive polyol pathway, increased flux of glucose 

through hexosamine pathway, oxidative stress and 

increased activation of PKC pathway.    

 

Polyol pathway   
Cells or tissues in the hyperglycemic milieu 

which are independent of insulin [nerve fibers, retina, 

lens, kidney etc.] can freely uptake glucose, which will 

be acted upon by aldose reductase that reduces glucose 

to sorbitol and NADP
+
. Further sorbitol dehydrogenase 

oxidizes sorbitol to fructose and NAD
+
.This reaction 

consume NADPH and NADP
+ 

starts accumulating with 

compromising anti-oxidant defense system. The 

excessively produced sorbitol simultaneously starts 

accumulating in these tissues also cause osmotic 

stress[22-26]. Aldose reductase (AR) is the rate limiting 

enzyme in polyol pathway.  Expression of aldose 

reductase protein have been shown to be elevated in 

nerve fibers, ganglion cells and Muller cells derived 

from  diabetic patients with retinopathy when compared 

to no diabetic individuals [7,26,27]. Rate of polyol 

formation in ex vivo rat retinas have shown increased 

flux of glucose through polyol pathway which increase 

with the duration of diabetes and hyperglycemia [28]. 

Julia V. Busik, et al. 2002 showed that hyperglycemia 

itself causes increased uptake of glucose by retinal 

endothelial cells and pigment epithelial cells in culture, 

coupled with accumulation of sorbitol in tissues [29]. 

 

In addition to decrease cytosolic NADPH, 

polyol pathway also found to increase the ratio of 

NADH/NAD
+
.  The remarkable detrimental effects of 

this pathway also include, decrease in the activity of 

Na
+
/K

+
 ATPase enzyme, activation of PKC pathway, a 

compromise in the antioxidant defense, which 

collectively can cause micro vascular damage, leading 

to diabetic retinopathy and other complications of 

diabetes [8,30,31][Fig. 1].   

 

 
( ↑= increase; ↓= decrease; X= blocked, ETC- Electron Transport Chain) 

 

Fig-1: Showing Polyol pathway and its effects 
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Oxidative stress  

                        Another pathophysiological condition in 

diabetes is an increase in the oxidative stress. When 

compare to other tissues retina has a high oxygen 

uptake and lipid peroxidation as its polyunsaturated 

fatty acids content is high. This is the reason why retina 

is more susceptible to oxidative stress [32].Several 

studies have indicated that, reactive oxygen species 

(ROS) activate signaling pathways that promote 

angiogenesis [33-35]. Vascular endothelial cells and 

smooth muscle cells contain NAD(P)H oxidases and are 

found to be good source of ROS formation from 

molecular oxygen [36,37]. NO is a vasodilator, 

synthesis of which is upregulated in diabetes. Nitric 

Oxide has been shown to promote ROS production. 

Possible mechanism could be interference of nitric 

oxide (NO) in reaction of mitochondrial cytochrome c 

oxidase enzyme complex preventing oxygen reduction 

to water, thereby promoting ROS production by the 

reactive oxygen molecule [38-39]. 

 

 
(X = blocked,    ▪▪▪   = Inhibition) 

Fig-2: Showing Oxidative stress; sources and consequences 

 

Hyperactive aldose reductase, PKC pathway, 

hexosamine pathway, variation in the metabolism of 

lipoproteins, advanced glycated end products (AGE), 

induced by hyperglycemia could be the major sources 

for ROS [40].Structural changes in the biomolecules 

(DNA and protein modification and lipid per oxidation) 

due to ROS attack decide the functional status and 

thereby integrity of all the cellular reactions. Among all 

the body cells pericytes were found to be highly 

responsive to oxidative stress which was proven by 

several in vivo studies where lack of their function or 

loss of pericytes itself have been shown to augment 

endothelial proliferation [28, 41-46]. When the loss 

crosses a particular limit blood vessels become fragile 

and start bleeding leading to macular edema. This may 

end up in development of diabetic retinopathy [Fig. 2].    

 

Non-enzymatic glycation reactions and formation of 

advanced glycated end products 

Advanced glycated end products are formed by 

the Maillard reaction. It is a non-enzymatic reaction 

between aldehyde group of a glucose molecule and 

amino group of a protein. Advanced glycated end 

products have been implicated in the aging of proteins 

and alteration in their function [49,50].These complex 

molecules induce specific effects by binding to specific 

receptors on the target tissue called receptors for 

advanced glycated end products (RAGEs). There were 

two types of receptors found. One that is anchored on 

cell membrane and another freely circulating form 

lacking transmembrane domain. Membrane bound form 

of RAGE are involved in pathogenic effects of AGEs. 

In contrast the soluble extracellular ligand binding 

domains formed by alternative splicing of RAGE 

mRNA, scavenge AGEs and prevent damages caused 

by them [51-53]. 

 

In pericytes AGEs found to induce apoptosis 

with an increased activity of caspase-3, caused due to a 

decreased Bcl-2/Bax ratio and nuclear factor-κB (NF-

κB) activation [54,55]. Since pericytes play an 

important role in the maintenance of micro vascular 

homeostasis, loss of pericytes can induce, endothelial 

cell (EC) injury in the retinal blood vessels and 

angiogenesis, leading to diabetic retinopathy [Fig. 3] 

[48]. 
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Fig-3: Showing Advanced glycation end product induced angiogenesis in the retina 

 

                   Literature show, through the intracellular 

ROS generation AGEs can induce the expression of 

intracellular cell adhesion molecule-1 (ICAM-1) and 

monocyte chemo attractant protein-1 (MCP-1) by micro 

vascular ECs. These events can induce leukocyte 

adhesion on ECs, leading to breakdown of blood retinal 

barrier (BRB) (consisting of retinal vascular 

endothelium and retinal pigment epithelium which 

maintain the transport of substances between blood and 

retinal tissue) [7,53,56].  Ming Lu, 1997 in an in vitro 

study found that AGE-induces VEGF expression in a 

dose and time-dependent manner. Anti-VEGF antibody 

has shown to block capillary endothelial cell 

proliferation in these tissues exposed to AGE [57]. As 

AGEs have the ability to increase retinal VEGF gene 

expression they might be involved in the pathogenesis 

of diabetic retinopathy.  

 

Hexosamine pathway  

                    Hexosamine pathway was proposed to be 

one of the culprits for insulin resistance, growth factors 

expression and there bydiabetic vascular complications. 

This pathway involves the conversion of fructose-6-

phosphate to glucosamine-6-phosphate by glutamine: 

fructose -6-phosphate amidotransferase (GFAT).This is 

a rate-limiting step in this pathway. Glucosamine-6-

phosphate will be rapidly metabolized to UDP-N-

acetyl-glucosamine. Hexosamines found to be involved 

in the synthesis of glycoproteins, gangliosides, 

proteoglycans, glycolipids etc.[58-61]. Altered 

glycation of the transcription factors found to alter the 

expression of inflammatory genes. Studies regarding 

the role of GFAT in ophthalmic complications of 

diabetes are lacking. But it is hypothesized that undue 

channeling of glucose via hexosamine pathway might 

affect neuroprotective effect of insulin thereby inducing 

apoptosis of retinal neurons.  

 

 
                     Fig-4: Showing Association of hexosamine pathway with diabetic retinopathy 

 

                 This could be mediated by protein kinase B 

and possibly linked with altered glycosylation of 

proteins [62,63].  Reports have shown involvement of 

hexosamine pathway in the expression of transforming 
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growth factor-β1 (TGF-β1), plasminogen activator 

inhibitor-1 (PAI-1) etc. which are already proved to be 

the culprits for several vascular complications in the 

diabetes [7,64] [Fig 4].  

 

Increased PKC activation 

                 The protein kinase C is a large group of 

structurally related family of serine/threonine kinases 

involved in cell signaling cascade that mediates several 

unique functions. The family of PKCs includes at least 

eleven isoforms (α, β1, β2 etc.) and are the key targets 

for lipid second messengers in the downstream 

signaling cascade [65,66]. Ca
2+ 

ions, diacylglyceral 

(DAG), phosphatidylserine are found to be some of the 

activators of these molecules. Increased de novo DAG 

synthesis has been seen in animal models due to the 

inhibition of glyceraldehyde-3-phosphate 

dehydrogenase or accelerated reduction of 

dihydroxyacetone phosphate to glycerol-3-phosphate. 

Researchers stated that it would even activate PKC in 

cultured vascular cells, retina and glomeruli in 

vivo[62,67]. The activities of PKC-α, -β1, -β 2, and -δ 

were found to be stimulated immensely with DAG and 

found to be linked with pathogenesis of diabetic 

retinopathy [58]. PKC activation can cause 

vasoconstriction in the retina by increasing the 

expression of endothelin-1 (ET-1) [68]. Consequences 

of PKC activation would be an increase in blood flow 

through capillaries, increased vascular permeability, 

cytokine activation, basement membrane thickening, 

angiogenesis, which ends with retinopathy and other 

complications tangled with diabetes [7,68-70] [Fig 5]. 

 

 
(↑= Increased; X = Blocked) 

                                   Fig-5: Showing PKC activation in the pathogenesis of diabetic retinopathy 

 

Leukostasis 

                    Aggregation of leukocytes on the vessel 

wall was found to be one of the causes and earlier 

events in the pathogenesis of diabetic retinopathy. 

Leukocytes have a capacity to adhere to the vascular 

endothelium, and can produce highly toxic superoxide 

radicals and proteolytic enzymes [71]. Adhesion 

process was shown to be mediated by a member of 

immunoglobulin supergene family of cellular adhesion 

molecules called, vascular cell adhesion molecule 

(VCAM) which acts as a chemotactic factor for 

leukocytes, help in adhesion to vascular wall, and if 

required migrating to adjacent tissue [72]. 

                     

Vascular endothelial growth factor is shown to 

promote leukostasis and vascular leakage, through the 

activation of intracellular cell adhesion molecule-1 

(ICAM-1) in the diabetic retinas [73]. In addition, 

AGEs were also been demonstrated to increase 

leukostasis by increasing the expression of ICAM-1 in 

retinal microvascular endothelial cells in culture 

[53,74]. 

                     

Blockages in capillaries and formation of 

acellular capillaries found to be associated with 

leukostasis in the diabetic retina [75]. Blockage of 

ICAM-1 by monoclonal antibodies prevented leukocyte 

adhesion and found to maintain the BRB, which would 

indicate one of the primary events in diabetic 

retinopathy is ICAM-1upregulation [76]. Also, 

inhibition of the AGE receptor (RAGE) with Pigment 

Epithelial Derived Factor (PEDF) or pyridoxal 

phosphate had been shown to inhibit leukostasis and 

expression of ICAM [77]. So inhibition of leukostasis 

may prevent endothelial cell and pericyte death which 

may prevent diabetic retinopathy.   
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                       Fig-6: Showing Involvement of leukostasis in the pathogenesis of retinopathy 
 

It is found that, expression of MCP-1 in 

vascular endothelium is increased due to 

hyperglycemia. AGEs were also found to trigger the 

expression MCP-1 gene by inducing ROS generation 

[72].Increased numbers of leukocytes, in patients with 

retinopathy found to be significantly correlated with an 

increased expression of retinal ICAM-1 and CD18 in 

retinal endothelium. The CD18 molecules on the 

leukocytes helps leukocytes to attach themselves to 

intercellular adhesion molecule-1 (ICAM-1) on the 

surface of retinal endothelium in diabetic animals [78].   

                           

The increased leukostasis and recruitment of 

macrophages and other inflammatory cells mediated by 

over expression of cell adhesion molecules shown to 

cause alteration of tight jounctional proteins such as, 

VE- Cadherin, ZO-1, Claudin. This causes infiltration 

of inflammatory cells into the retinal tissue, leading to 

breakdown of the blood retinal barrier which is a 

hallmark of diabetic retinopathy [Fig 6] [79]. 

 

THERAPEUTIC APPROACHES   

Inhibitors of Polyol pathway 

Trials carried out by inhibiting aldose 

reductase yielded inconsistent results. The long-term 

sorbinil (an inhibitor of aldose reductase) trial also 

indicated that sorbinil found to reduce the rate of 

progression of microaneurysms, but failed to check the 

worsening of retinopathy [80]. Trials with zenarestat 

(aldose reductase inhibitor), gave hopeful results with 

diabetic neuropathy, which need to be validated for 

future use for retinopathy [62].Six months double blind 

study with tolrestat was failed to show any clinically 

significant cure for retinopathy [81].The trial carried out 

by Dagher Z, 2004 showed that apoptosis of pericytes 

and endothelial cells, activation of complement system 

in the capillary wall thereby formation of acellular 

capillaries can be prevented by the use of aldose 

reductase inhibitors [24]. 

 

PKC inhibitors 

PKC inhibitors were well studied and showed 

certain hope in treatment of diabetic retinopathy. This 

was supported by several studies in which, leukostasis, 

endothelial cell proliferation, angiogenesis, and 

permeability induced by VEGF were suppressed by the 

use of PKC- β selective inhibitor ruboxistaurin or 

LY333531 [82-84]. New phase III clinical trial (Protein 

Kinase C-β Inhibitor–Diabetic Retinopathy Study) with 

ruboxistaurin reported decrease in the progression of 

retinopathy, reduced requirement for Laser 

photocoagulation and improved visual acuity in diabetic 

retinopathy patients [85].Ruboxistaurin also found to 

act as an anti-angiogenic agent via suppression of 

phosphorylation of ERK1/2 and Akt [86]. Treatment of 

human retinal microvascular endothelial cells with 

Rottlerin, transfection of PKC-δ-DN, or siRNA for 

PKC-δ all found to decrease the vascular leakage and 

restored lost tight junctional proteins, ZO-1 and ZO-2. 

Which showed that inhibition of PKC-δ can prevent 

breakdown of blood retinla barrier [87]. This indicates 

PKC inhibitors could be used for the treatment of 

diabetic retinopathy.   

 

Advanced glycated end product inhibitors 

Inhibitors of Advanced glycated end product 

formation had also shown a promising results in 

improvement of diabetic retinopathy. A recently found 

inhibitor LR-90 had shown to reduce the death of reinal 

capillary pericytes and endothelial cells by preventing 
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AGE formation, thereby reducing the formation of 

acellular capillaries in streptozotocine induced diabetic 

rats [88,89]. A RAGE-Ig fusion protein in diabetic rats 

shown to inhibit capillary degeneration, accumulation 

of albumin in the neural retina, nitration of retinal 

proteins, retinal leukostasis and ICAM-1 expression in 

streptozotocine induced diabetic rats [90]. The systemic 

administration of sRAGE in diabetic rats found to 

significantly inhibit blood–retinal barrier breakdown, 

leukostasis, and expression of ICAM-1 in the retina 

[91].Olmesartan, angiotensin II type 1 receptor blocker 

shown to inhibit the AGE-induced NF-kappaB 

promoter activity and expression of RAGE gene in 

cultured micro vascular endothelial cells. It was also 

shown to block AGE-induced up-regulation of VEGF 

mRNA levels and further increase in DNA replication 

in the endothelial cells [92].Sulforaphane and RAGE-

Ab shown to inhibit the AGE-induced decrease in DNA 

synthesis, apoptotic cell death, and up-regulation of 

monocyte chemo attractant protein-1 mRNA levels in 

pericytes [93]. 

 

Antioxidants  

As a therapeutic strategy to specifically target 

ROS in patients with PDR, Yamagishi S, et. al. 2011 

proposed that, PEDF could be a best treatment option 

for retinopathy as it has an anti-oxidative, anti-

angiogenic, anti-inflammatory and neuroprotective 

effects [94]. Vitamin C and E supplementation in type2 

diabetic retinopathy patients found to reduce NO 

induced stress in the eyes [95].Pazdro R, et al. 

demonstrated a protective role of Vitamin E against 

lipid per oxidation, however its effects on protein and 

DNA oxidation is yet to be evaluated [96].Treatment of 

diabetic rats with retinopathy, with lipoic acid had 

demonstrated a reduced pericyte loss and formation of 

acellular capillaries in the retinal capillary endothelial 

cells. This had also shown to reduce the expression of 

angiogenic factors, angiopoietin-2 and VEGF [97]. An 

intracellular labile iron chelator, 

salicylaldehydeisonicotinoyl hydrazine has been shown 

to reduce the apoptosis of retinal pigment epithelial 

cells induced by hydrogen peroxide in vitro have been 

proven to be use full in several disease conditions 

[98].So anti-oxidants have been found to be useful for 

the management of retinopathy. However appropriate 

dose and combination of antioxidants, better root for the 

administration and their side effects are yet to be 

addressed.   
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