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Abstract: The aim of this work to classification of regions in CT Abdomen where we define the hepatocellular 

carcinoma, liver, spine and ribs, the features of the classified regions of the whole images (as raw data) were classified 

furthers using linear discriminate analysis. The result of the classification showed that the HCC areas were classified well 

from the rest of the tissues although it has characteristics mostly similar to surrounding tissue. Several texture features 

are introduced using Daubechies wavelet, The Daubechies wavelet measures the gray level variations in a CT images, 

and it complements the coefficient of Daubechies wavelet Features extracted from the coefficient can be used to estimate 

the size distribution of the sub patterns. The Daubechies wavelet and its features seem very useful in texture 

classification. The classification accuracy of hepatocellular carcinoma 97.1 %, liver accuracy 91.7 %, While the spine 

and ribs   showed a classification accuracy of 97.1, 91.2 % respectively. 
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INTRODUCTION: 
The most familiar medical imaging studies for 

early identification of liver diseases comprise 

ultrasonography (US), computed tomography (CT), 

magnetic resonance imaging (MRI). CT is often the 

preferred method for diagnosing many different cancers 

than ultrasonography, since the image allows a 

physician to confirm the presence of a tumor and to 

measure its size, precise location and the extent of the 

tumor's involvement with other nearby tissue. Despite 

the excellence of CT images has been appreciably 

improved during the last years, it is hard in some cases, 

even for experienced doctors, to make a 100% precise 

diagnosis. In radiology computer-aided diagnosis 

(CAD) are procedures in medicine that help doctors in 

the analysis of medical images. 

  

In clinical practice, when dynamic CT of the 

liver is performed, three image series are usually 

acquired: the first one – before the contrast agent 

injection, the next two ones – after its injection, at 

arterial and at portal phase of its propagation [1]. The 

two post-injection acquisition moments correspond, 

respectively, to the maximal concentration of contrast 

agent that reaches the liver first via the hepatic artery, 

next – via the portal vein. The arterial phase starts after 

about 25-35 seconds after the intravenous injection of 

contrast agent, the portal one – after about 60-70 

seconds. In some cases, a fourth – delayed hepatic 

phase is considered [2]. It takes place after about 5 -10 

minutes succeeding the injection. Each of the three (or 

even four) images enhances a different tissue property 

that could reveal a development of pathology. In the 

case of the liver CT – it can be excessive or insufficient 

growth of the arterial or of the portal vascular tree. 

After injection of the contrast agent, the high 

vascularization regions are more enhanced than those 

with normal vasculature, and less vascularized regions 

appear darker. The presence of contrast agent in hepatic 

vessels results also in changes of texture properties, 

imperceptible to the naked eye. 

 

Hepatocellular Carcinoma (HCC), the most 

common primary liver tumor, accounts for 85-90% of 

primary liver cancer. It is the third most common cause 

of cancer death and the fifth most common cancer 

worldwide. 

 

The traditional methods to differentiate normal 

liver tissues from abnormal ones are largely depending 

on the radiologist experience. Thus Computer-Aided 

Diagnosis (CAD) systems based on image processing 

and artificial intelligence techniques have aroused a lot 

of interest, since they can provide constructive 
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diagnosis suggestions to clinicians for decision-making 

[3]. 

 

Only seldom physicians use 3 phasic CT 

images for detecting HCC tumor in the liver. The first 

series of CT scanning is performed during the arterial 

phase, which takes place 20 to 30 seconds after the 

injection of the contrast agent. This is the time period 

when the majority of the contrast agent is flowing 

through the hepatic artery. The second series of CT 

scanning is taken from 60 to 70 seconds after the 

initiation of the infusion, when the majority of the 

contrast agent is flowing through the hepatic portal 

vein. This set of CT is defined as the portal-venous 

phase (PVP). A third scanning is often performed 

during the equilibrium phase (10– 20 minutes after the 

infusion) when the contrast agent is equally 

concentrated in the hepatic artery and portal vein.  

 

In general, HCC diagnosis is based on 

noninvasive imaging tests [4,5]. In patients with 

cirrhosis and a focal hepatic lesion = 2 cm, the 

diagnosis may be confidently established on the basis of 

typical imaging features showing areas of arterial 

enhancement and regions promptly “washed out” 

(fainter than the liver tissue) in the venous or delayed 

phase of four-phase multidetector computed 

tomography (CT) exam (where the four phases are 

unenhanced, arterial, venous, and delayed) [4, 6]. 

 

Wavelet and Wavelet Transform: 

The main idea of this approach consists in the 

observation that pixels belonging to one element of the 

object can possess similar properties for example, the 

gray value. Further, wavelet transforms surface rapidly 

in various regions, such as telecommunications, radar 

target recognition, and texture image classification [7]. 

The main advantage of wavelets is that they have a 

varied window size, which can be wide for slow 

frequencies and narrow for the fast ones, thus resulting 

in optimal time-frequency resolution in all frequency 

ranges [8]. Discrete wavelet packet analysis is an 

extension of the discrete wavelet trans forms, and 

discrete wavelet packet transform (DWPT) al lows both 

detailed and approximate results to be decom posed 

further. 

 

A wavelet transform is the representation of a 

function by wavelets, and it is a generalization of the 

classical wavelet tree decomposition, providing an 

effective representation of the time frequency properties 

[9]. 

 

Recently, wavelet transforms rapidly emerged 

in such various fields as telecommunications, radar 

target recognition, and texture image classification [10]. 

The main advantage of wavelets is that they have a 

varied window size, which can be wide for slow 

frequencies and narrow for the fast ones, thus resulting 

in optimal time-frequency resolution in all frequency 

ranges [11]. Furthermore, owing to the fact that 

windows are adapted to the transients of each scale, 

wavelets lack the requirement of stationary [10]. 

 

Traditionally, discrete wavelet transform only 

recursively decomposes the low frequency band, but 

some high-frequencies are worth it to decompose for 

getting more information. Discrete wavelet packet 

analysis is an extension of the discrete wavelet 

transforms, and discrete wavelet packet transform 

(DWPT) allows both detailed and approximate results 

to be decomposed further, which can use a low-pass 

filters collection and high-pass filters collection to 

decompose the coefficient of detailed results. 

 

Thus, the detailed sub-bands can be further 

decomposed. The advantage of wavelet packet analysis 

is that it can possibly combine the different levels of 

decomposition in order to achieve the optimum time-

frequency representation of the original [11]. 

 

In less than 20 years, wavelets have risen from 

a research curiosity to a standard signal processing tool 

in engineering and applied mathematics. While the 

mathematical foundations of wavelets and 

multiresolution analysis were laid down by Mallat and 

Meyer [12], [13], Daubechies had a lasting impact on 

the field with her construction of the first family of 

compactly supported, orthogonal wavelet bases of L2 

(R) [14]. Owing to their remarkable properties and ease 

of implementation, the Daubechies wavelets became 

popular right away and led to a multitude of successful 

signal processing applications, such as compression, 

denoising, classification, or fusion, especially during the 

wavelet rush that took place in the 1990s. 

 

A good part of the success of wavelets is due 

to their fundamental vanishing moment property or, 

equivalently, the ability of the scaling functions to 

reproduce polynomials. Indeed, the special way in 

which the basic functions interact with polynomials is 

the crucial ingredient that endows wavelets with their 

good approximation properties for signals in Sobolev 

and/orBesov spaces; in particular, it explains why 

piecewise smooth signals tend to have sparse wavelet 

expansions. This observation applies particularly well 

to the field of image processing, where wavelets have 

had (and are still having) a profound impact. In this 

paper, we construct generalized wavelet bases that can 

be tuned to wider classes of signals, e.g., with multiple 

narrow bands or exponential trends. Still, we will retain 

the user-friendly properties of Daubechies wavelets; 

namely, compact support and othonormality (or 

biorthogonality if one also wants to include symmetry). 

Our starting point is the constraint that the scaling 

functions should reproduce a predefined set of 
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exponential polynomials that is, functions of the form P 

(t) e
αt   

where a polynomial is and is a complex 

parameter. For the aforementioned signal types, 

exponential polynomials ensure approximation 

properties that are comparable to those provided by 

standard polynomials for slowly varying signals. 

 

Illustration 

Our derivations have concrete implications for 

discrete signal processing, as illustrated in Fig. 1. We 

compare discrete orthonormal wavelet transforms of a 

signal made of two distinct frequency components. 

Classical 8-tap Daubechies filters were used in Fig. 

1(a). We observe that a significant part of the energy is 

contained in the wavelet sub bands, because the scaling 

filters are not suitable for the representation of pure 

sinusoids.  

 

For Fig. 1(b), the filters (of the same length) 

were adapted to the input signal, so that it gets 

transferred entirely in the scaling function sub bands. 

From a practical standpoint, the only difference 

between (a) and (b) is that the latter uses scale-

dependent filters. This shows that tuning our 

generalized wavelet bases to the class of signals to be 

decomposed can yield sparser representations than 

classical wavelets, at strictly the same computational 

cost. 

 

 
 

RESULTS AND DISCUSSION: 

In this paper there were features extracted from 

Hepatocellular Carcinoma (HCC) CT images using 

Daubechies wavelets based on Texture Analysis. And 

this features showed significant correlation with the 

predefined classes (HCC, Liver, Spine and Ribs). 

 

 
Fig 2: show Scatter plot generated using discriminante analysis function for four classes represents: HCC, Liver, 

Spine and Ribs. 

 

To classify the hepatocellular carcinoma, liver, 

spine and ribs the features of the classified regions of 

the whole images (as raw data) were classified furthers 

using linear discriminate analysis. The result of the 

classification showed that the HCC areas were 

classified well from the rest of the tissues although it 

has characteristics mostly similar to surrounding tissue.  
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(A)                                                                                   (B) 

Fig (3) CT images image (A) and classification map (B), the original image (A) classified to (B) color map 

demonstrate the liver lesion. 

 

Table 1: Showed the classification accuracy of the HCC using linear discriminant analysis: 
 

Classes 
Predicted Group Membership Total 

HCC Liver Spine Ribs 

Original 

HCC 97.1 2.9 .0 .0 100.0 

Liver 8.3 91.7 .0 .0 100.0 

Spine 2.9 .0 97.1 .0 100.0 

Ribs .0 .0 8.8 91.2 100.0 

94.2% of original grouped cases correctly classified 

 

Table (1) show classification score matrix 

generated by linear discriminante analysis and 

classification accuracy of 94.2%. The classification 

accuracy of hepatocellular carcinoma 97.1 %, liver 

accuracy 91.7 %, While the spine and ribs   showed a 

classification accuracy of 97.1, 91.2 % respectively. 

 

CONCLUSION: 

The classification of regions in CT Abdomen 

we define the hepatocellular carcinoma, liver, spine and 

ribs and the features of the classified regions of the 

whole images (as raw data) were classified furthers 

using linear discriminate analysis. The result of the 

classification showed that the HCC areas were 

classified well from the rest of the tissues although it 

has characteristics mostly similar to surrounding tissue. 

 

Several texture features are introduced using 

Daubechies wavelet. The Daubechies wavelet measures 

the gray level variations in an image. It complements 

the coefficient of Daubechies wavelet   Features 

extracted from the coefficient can be used to estimate 

the size distribution of the sub patterns. The Daubechies 

wavelet and its features seem very useful in texture 

classification. 
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