
Scholars Journal of Applied Medical Sciences (SJAMS)

Sch. J. App. Med. Sci., 2017; 5(11C):4512-4516

©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublishers.com

Bacteriological Profile and Antibiotic Susceptibility Patterns of Bacteria Isolated From Wound Swab Samples from Patients Attending a Tertiary Care Hospital Dr. M. Nishanthy^{1*}, Dr. Chitralekha Saikumar²

¹Postgraduate student in Dept. of Microbiology, Sree Balaji Medical College and Hospital, Chennai, Tamil Nadu, India ²Professor and Head of Department of Microbiology, Sree Balaji Medical College and Hospital, Chennai, Tamil Nadu, India

Wound infections can be caused by bacteria, fungi, protozoa, virus [3].Wound infections is one of the most common hospital acquired infections [4].Gram positive bacteria which are predominantly known to cause wound infections are S. aureus, CONS, negative Enterococcus. gram bacteria includes Kleibsella, Pseudomonas, Е. Coli, Proteus. Acinetobacter [5]. Wound infections can either be surgical or due to trauma. But in this study we have excluded surgical site wound infections and included the wound infections due to trauma. Wound contamination with bacterial organisms is a serious problem which increases the duration of hospital stay especially in surgical practice where sterile site gets contaminated and later become infected [6].Wound infections prolong duration of stay in the hospital than the wounds which heel faster without infections [7]. Emergence of resistant strains to antibiotics has become a global threat to community as wound infections are leading causes of mortality and morbidity around (70-

immunity [2].

Available online at https://saspublishers.com/journal/sjams/home

80%) in hospitals [8]. Hence this study was done to update on bacteriological profile of wound infections and their sensitivity, resistant patterns to different kinds of antibitoics.

MATERIALS AND METHODS

The study was carried out in Microbiology department, over a period of 6months from May to October 2017 at Sree Balaji Medical College and Hospital, Chennai. A total of 242 wound swab samples were received in the laboratory. All these samples were routinely subjected to gram stain and culture in nutrient agar, blood agar, mac-conkey agar and incubated at 37 deg C overnight; gram staining was performed for all isolates. Gram positive isolates were further tested for catalase test, slide coagulase, tube coagulase test. Gram negative isolates were identified by colony morphology, staining reactions, oxidase test, motility and standard biochemical test was done to confirm them [9].

M. Nishanthy & Chitralekha Saikumar., Sch. J. App. Med. Sci., Nov 2017; 5(11C):4512-4516

The antibiotic sensitivity test was done by Kirby-Bauer disc diffusion method on Muller Hinton Agar with commercially available disc penicillin(10units), erythromycin (15mcg), clindamycin (2mcg), tobramycin (10mcg), gentamicin (10mcg), amikacin (30mcg), ciprofloxacin (5mcg), cotrimoxazole (1.25/23.75mcg), ceftazidime (30mcg), ceftriaxone (30mcg), cefoxitin (30mcg), cefotaxime (30mcg), cefuroxime (30mcg), cefazolin (30mcg), ampicillin (10mcg), rifampicin (5mcg), tetracycline (30mcg), tigecycline (15mcg), cotrimoxazole (1.25/23.75µg), vancomycin (30mcg) linezolid (30mcg), high level gentamicin, levofloxacin (5mcg), chloramphenicol (30mcg), piperacillin tazobactam (100/10mcg), amoxyclav 20/10(30mcg), meropenem (10mcg), imipenem (10 mcg), aztreonam (30mcg), colistin.

Results were interpreted according to CLSI guidelines.

RESULTS

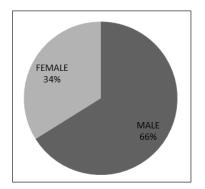


Fig-1: Total no. of samples was 242.Out of these Male were 160, Female were 82

	Table-1. growin pattern of bacterna								
S.No.	Growth	No.Of Samples	% Of Samples						
1.	Culture Positive	212	87.6%						
2.	Culture Negative	30	12.4%						
Total		242	100						

Table-1: growth pattern of bacteria

Table-2: Gender wise distribution of growth positive cases

Gender	Grow	vth	No C	browth	Total
	No.	%	No. %		
Male	140	87.5	20	12.5%	160
Female	72	87.8	10	12.1%	82
Total	212	87.6	30	12.4	242

Table-3: Distribution of bacterial isolates

Organism	No.Of Isolates	% Of Total Isolates
	Gram Positive Bacteria	
S.Aureus	43(75.43%)	20.33
Cons	13(22.80%)	6.13
Enterococcus	1(1.75%)	0.47

Organism	Gram Negative Bacteria	% Of Total Isolates
Kleibsella pneumoniae	33(21.29)	15.56
Kleibsella oxytoca	15(9.67)	7.07
Pseudomonas species	41(26.45)	19.33
E. coli	34(21.93)	16.03
Proteus vulgaris	12(7.74)	5.66
Proteus mirabilis	6(3.87)	2.83
Acinetobacter species	11(7.09)	5.18
Citrobacter species	1(0.64)	0.47
Providencia	1(0.64)	0.47
Aeromonas hydrophila	1(0.64)	0.47
Total	155	73.07

Table-4: Antibiotic susceptibility of gram positive isolates									
	Sensitive		Intermediate		Resistant		Total		
Antibiotics	No.	%	No.	%	No.	%			
Ciprofloxacin	22	38.5	5	8.7	24	42.1	61		
Penicillin	49	85.9	0	0	1	1.7	50		
Cefoxitin	47	82.4	0	0	0	0	47		
Cotrimoxazole	39	68.4	0	0	18	31.5	57		
Erythromycin	35	61.4	0	3.5	21	36.8	56		
Clindamycin	35	61.4	0	0	21	36.8	56		
Gentamicin	37	64.9	2	3.5	14	24.5	53		
Rifampicin	26	45.6	0	0	1	1.7	27		
Vancomycin	51	89.4	0	0	0	0	51		
Linezolid	47	82.4	0	0	1	1.7	48		
Tetracycline	38	66.6	0	0	6	10.5	44		
Chloramphenicol	27	47.3	0	0	1	1.7	28		
Tigecycline	1	1.7	0	0	0	0	1		

M. Nishanthy & Chitralekha Saikumar., Sch. J. App. Med. Sci., Nov 2017; 5(11C):4512-4516

	Sens	Sensitive Intermediate		nediate	Resis		
Antibiotics	No.	%	No.	%	No.	%	Total
Ciprofloxacin	47	30.3	7	4.5	49	31.6	103
Amoxicillin	4	2.5	4	2.5	84	54.1	92
Clavulanicacid							
Ampicillin	5	3.2	2	1.2	101	65.1	108
Chloramphenicol	20	12.9	2	1.2	13	8.3	35
Amikacin	59	8.0	3	1.9	20	12.9	82
Gentamicin	53	34.1	9	5.8	43	27.7	105
Ceftriaxone	40	25.8	6	3.8	76	9.0	122
Cefazolin	18	11.6	18	11.6	97	62.5	133
Ceftazidime	27	17.4	12	7.7	56	36.1	95
Cefuroxime	21	13.5	21	13.5	79	50.9	121
Meropenem	75	48.3	3	1.9	9	5.8	87
Imipenem	53	34.1	9	5.8	24	15.4	86
Piperacillin Tazobactam	73	47.0	8	5.1	23	14.8	104
Tetracycline	12	7.7	3	1.9	35	22.5	50
Aztreonam	42	27.0	12	7.7	36	23.2	90
Colistin	41	26.4	0	0	0	0	41

Table-6: Antibiotic susceptibility of s.aureus to different antibiotics

Antibiotics	Sensitive		Res	istant	Total
	No.	%	No.	%	
Ciprofloxacin	26	60.4	15	34.8	41
Penicillin	42	97.6	0	0	42
Cefoxitin	42	97.6	0	0	42
Erythromycin	26	60.4	17	39.5	43
Clindamycin	26	60.4	17	39.5	43
Gentamicin	20	46.5	15	34.8	35
Vancomycin	18	41.8	0	0	18
Linezolid	17	39.5	0	0	17
Cotrimoxazole	14	32.5	11	25.5	25
Tetracycline	13	30.2	1	2.3	14
Chloramphenicol	6	13.9	1	2.3	7

Antibiotics	Sens	Sensitive		Resistant	
	No.	%	No.	%	
Ciprofloxacin	15	36.5	3	7.3	18
Ceftazidime	12	29.2	10	24.3	22
Cefipime	9	21.9	3	7.3	12
Amikacin	25	60.9	8	19.5	33
Gentamicin	23	56.0	12	29.2	35
Aztreonam	27	65.8	11	26.8	38
Tobramycin	9	21.9	21	51.2	30
Piperacillin Tazobactam	19	46.3	0	0	19
Meropenem	30	73.1	2	4.8	32
Imipenem	19	46.3	9	21.9	28
Colistin	41	100	0	0	41

 Table-7: Antibiotic susceptibility of pseudomonas species to different antibiotics

Table-8: Antibiotic susceptibility of kleibsella species to different antibiotics

Antibiotics	Sens	Sensitive		Resistant	
	No.	%	No.	%	
Ciprofloxacin	10	20.8	12	25	35
Cefazolin	8	16.6	33	68.7	41
Ceftriaxone	5	10.4	4	8.3	9
Ampicillin	2	4.1	44	91.6	46
Amoxicillin	2	4.1	39	81.2	41
Clavulanicacid					
Gentamicin	19	39.5	18	37.5	37
Cefuroxime	14	29.1	34	70.8	48
Piperacillin Tazobactam	23	47.9	11	22.9	34
Meropenem	42	87.5	3	6.2	45
Imipenem	27	56.2	8	16.6	35
Cotrimoxazole	18	37.5	28	58.3	46

Table-9: Antibiotic susceptibility of E.coli species to different antibiotics

	Sens	Sensitive		Resistant	
Antibiotics	No.	%	No.	%	
Ciprofloxacin	17	50	13	38.2	30
Cefazolin	8	23.5	22	64.7	30
Ceftriaxone	8	23.5	20	58.8	28
Ampicillin	2	5.8	27	79.4	29
Amoxicillin	1	2.94	33	97	34
Clavulanicacid					
Gentamicin	17	50	10	29.4	27
Cefuroxime	5	14.7	29	85.2	34
Piperacillin Tazobactam	20	58.8	11	32.3	31
Meropenem	24	70.5	4	11.7	28
Imipenem	15	44.1	6	17.6	21
Cotrimoxazole	6	17.6	19	55.8	25

DISCUSSION

Out of 242 samples ,culture positive cases are 212(87.6%),culture negative cases are 30(12.4%).Among 160 (66%)male patients and 82 (34%) female patients,140(87.5%) and 72(87.8%) were found growth positive respectively. Most common gram positive isolates were s.aureus, followed by CONS, enterococci. The most sensitive antibiotics against gram positive isolates were penicillin, cefoxitin, linezolid,

vancomycin, cotrimoxazole. Most common gram negative isolates were kleibsella species, followed by pseudomonas aeruguinosa, E.Coli, proteus vulgaris, proteus mirabilis, Acinetobacter, providencia, Citrobacter species. The most effective antibiotics against gram negative bacterial isolates were meropenem, piperacillin tazobactam, amikacin, gentamicin, imipenem, colistin.

M. Nishanthy & Chitralekha Saikumar., Sch. J. App. Med. Sci., Nov 2017; 5(11C):4512-4516

Out of 43 isolates of s.aureus ,there was 85.9% percent sensitivity towards penicillin,82.4% sensitivity to cefoxitin, followed by vancomycin(89.4%), linezolid(82.4%), cotrimoxazole(68.4%) and resistance was higher with erythromycin(39.5%) followed by clindamycin(39.5%), ciprofloxacin(34.8%).The most sensitive antibiotics against kleibsella species were meropenem(87.5%), imipenem(56.2%), Piperacillin tazobactam(47.9%), gentamicin(39.5%) and resistant pattern was observed with ampicillin(91.6%),followed amoxicillin clavulanic acid(81.2%), by cefuroxime(70.8%) cefazolin (68.7%). and Pseudomonas species were highly sensitive to colistin (100%),meropenem(73.1%),aztreonam(65.8%), amikacin(60.9%), gentamicin(56%), imipenem (46.3%), and were resistant to tobramycin(51.2%), gentamicin (29.2%), ceftazidime (24.3%), imipenem (21.9%). E.Coli isolates were highly sensitive to meropenem (70.5%), piperacillin tazobactam (58.8%), ciprofloxacin (50%), imipenem (44.1%). E. coli isolates were highly resistant to amoxicillin (97%), cefuroxime (85.2%), ampicillin (79.4%), cefazolin (64.7%), ceftriaxone (58.8%). Gram negative bacterial isolation increases with cases of hospital acquired infections [10]. Regarding antibiotic susceptibility testing penicillin, cefoxitin, vancomycin, linezolid were most effective antibiotics against gram positive bacterial isolates and meropenem, imipenem, piperacillin tazobactam were most effective against gram negative bacterial isolates.

CONCLUSION

It is necessary for every medical practitioner to update his knowledge on profile of bacteriological wound infections as it is the major cause of mortality and morbidity. Wound infections are predominant cases in hospital setup. Hence profound knowledge regarding antibiotic sensitivity pattern is essential in selecting appropriate drug for management of bacterial wound infections. A proper control of antibiotic usage will prevent the emergence of resistant strains of bacteria.

REFERENCES

- 1. Nazeer HA, Shaik KM, Kolasani BP. Aerobic bacteriology of wound infections with special reference to MRSA. Journal of Clinical & Experimental Research. 2014;2(1):74-9.
- 2. Mahat P, Manandhar S, Baidya R. Bacteriological Profile of Wound Infection and Antibiotic Susceptibility Pattern of the Isolates. J Microbiol Exp 2017; 4(5): 00126.
- Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clinical microbiology reviews. 2006 Apr 1;19(2):403-34.
- Amadi ES, Uzoaru PN, Orji I, Nwaziri AA, Iroha IR. Antibiotic resistance in clinical isolates of Pseudomonas aeruginosa in Enugu and Abakaliki,

Nigeria. Internet Journal of Infectious Diseases. 2009;7(1):201-10.

- Dhiraj Kumar Chaudhary. "Bacteriological Profile and Antibiotic Susceptibility Pattern of Wound Infection in Children". EC Microbiology 5.3, 2017: 93-100.
- Pondei K, Fente BG, Oledapo O. Current Microbial Isolates from Wound Swabs, Their Culture and Sensitivity Pattern at the Niger Delta University Teaching Hospital, Okolobiri, Nigeria. Trop Med Health. 2013; 41(2):49-53.
- Henzelmann M, Scott M, Lam T. Factors predisposing to bacterial invasion and infection. AmJ Surg 2002; 183(2):179-90.
- 8. Collier M. Recognition and management of wound infections. Worldwide wounds. 2004 Jan:1-0.
- Cheesbrough M. District laboratory practice in tropical countries. Cambridge university press; 2006 Mar 2.
- Banjara MR. Study of Air, Water and Wound Infection in Different Wards of TUTH. M.Sc. dissertation submitted to the Central Department of Microbiology, Nepal. 2002.

Available online at https://saspublishers.com/journal/sjams/home