Scholars Journal of Applied Medical Sciences (SJAMS)

Abbreviated Key Title: Sch. J. App. Med. Sci.

©Scholars Academic and Scientific Publisher

A Unit of Scholars Academic and Scientific Society, India

www.saspublishers.com

ISSN 2320-6691 (Online) ISSN 2347-954X (Print)

Radiological

Comparative Study between Mammography and Ultrasound in Diagnosis of Malignant Breast Masses in Correlation to Histopathology

Mawahib Rizig¹, Awadia Gareeballah¹, Ragaa Ahmed Aburaida¹, Ala M. A. Elgyoum^{2*}, Ahmed. Abd Elrahim¹
¹Faculty of Radiological Sciences and Medical Imaging, Alzaiem Alazhari University, Khartoum, Sudan
²National Ribat University, Faculty of Radiological and Nuclear Medicine Science, Diagnostic Radiology Department, Nile Street Burri, Postal Code 11111, Khartoum, Sudan

Original Research Article

*Corresponding author Mawahib Rizig

Article History

Received: 01.10.2018 Accepted: 13.10.2018 Published: 30.10.2018

DOI:

10.36347/sjams.2018.v06i10.042

Abstract: This was descriptive, comparative study, done in Khartoum Oncology Hospital in the period from February 2015 to April 2017, to compare between ultrasound and mammography in diagnosis of malignant breast masses, the study done in 201 women suffering from breast mass and the confirm diagnosis it had malignant. The data was collected by data collection sheet specially design for this study and including all variables then analyzed by statistical package for social sciences (SPSS). The study found that most breast malignant masses occur in age group (41 to 70 years), the ultrasound features of malignant was mostly irregular, hypoechoic, speculated, punctate calcification and associated lymphadenopathy, the mammographic features was mostly hyperdense, irregular, calcification, lymphadenopathy and the biopsy reveal that the most common type of malignant was invasive ductal carcinoma 97.50%. The study concluded that ultrasound was more accurate and sensitive than mammography for diagnosis of malignant breast masses (97.98%, 83.08 % respectively).

Keywords: Breast, ultrasound, mammography and histopathology.

INTRODUCTION

Breast cancer is the most common cancer diagnosed in women, accounting for more than 1 in 10 new cancer diagnoses each year, it is the most common type and second most common cause of death from cancer among women in the world[1,2].

The standard of care for breast diagnosis is known as the triple test – the combination of clinical assessment, breast imaging (usually mammography and/or ultrasound), and where indicated, needle sampling; this combination of these three separate methods of breast assessment provides a highly accurate means of dividing findings into normal, abnormal but benign, and malignant categories.

The aim of breast cancer screening is to reduce deaths from breast cancer by detecting and treating the disease at an earlier stage than that at which the disease would have presented clinically [3].

Mammography is the foundation of breast imaging and is used to screen asymptomatic women for breast cancer. Worldwide over one million women are diagnosed with breast cancer every year (10% of all new cancers); regular mammographic screening has been proven to reduce mortality from the disease, and the reduction was 24% in women over the age of 50 years invited for screening. The aim of routine screening by X-ray mammography is to decrease deaths from breast cancer by detecting and treating cancers when they are small and at an early stage, even the

sensitivity, or accuracy, of mammography is affected by the experience of the radiologist [1,3].

OBJECTIVES

The aim of the study is to compare between Mammography and Ultrasound in Diagnosis of Malignant breast masses in correlation to Histopathology Results among Sudanese population.

MATERIALS AND METHODS

This is a comparative and descriptive study done in Khartoum state Sudan in Khartoum Oncology Hospital in the period from February 2015 to April 2017, the study done in 201 Sudanese women with palpable breast lump came to the area of the study during the duration of the study with breast mammogram , ultrasound and histopathology results

confirm that it was malignant, any malignant mass feature by each of them and histopathology confirm it was benign must excluded, Permission from the hospital was taken for data collection, the Study was deal with the patients who was already perform ultrasound, mammography and histopathology. The data was collected by data sheet specially design for the study includes patient's demographic data then ultrasound features of mass, mammographic features and histopathology results, After data collection, the data sheets was symbolized, classified and analyzed by Statistical Package for Social Sciences (SPSS).

RESULTS AND DISCUSSION

The study found that the higher incidence of malignant breast masses was found in age group (41-55 years and 56-70 years) respectively (41.79% and 25.87%), the mean age of 51.61 years, this results agree with H Hasni, MMed who state that malignancy occurs in age 39-66 years as shown in table 1[4].

The study reveal that more than halve of breast masses occurs in left side (50.75%) then in the right side (45.77%) and least occurs bilateral as shown in table 2, this results agree with Raga A. Abouraida who found that 54.6% of malignant breast masses are located in the left breast[5].

The study demonstrate that more common and more than halve of breast lesion involved UOQ (54.23%), followed by central (22.98%) in mammography as shown in table 3, this results go online with this results agree with Raga A. Abouraida who found that (54.6%) of malignant breast are located in UOQ[5] and also agree with literature[6].

Concerning mammographic finding of malignant breast mass the study reveals that (92%) had irregular outline, (85.07) had ill-defined margin, speculated (43.3%) most of them hyperdense (80.1%), L N are detected in 31.8% of cases mammographic feature in (83.1%) were malignant feature, (13.4%) suspicious and (3.5%) diagnosed as benign breast mass. Concerning sonographic finding of malignant breast mass the study reveals that (55.7%) had irregular

outline, this results similar to H Hasni, M Med [4]. speculated (26.9%), most of them hypoechoic (98%), L N are detected in (67.7%) of cases those results generally similar to Stavros *et al.* 1995[7]. But disagrees with them in that LN in our study absent in 67% [7]. Table 4 and figure 1. Regarding the final diagnose by ultrasound feature and mammography (97.99%) were diagnosed as malignant feature of breast masses and (2.01%) diagnosed as benign breast mass (figure 1) this results agree Stavros *et al.* 1995 whom state that ultrasound diagnose two case only as malignant by histopathology (98.4% sensitivity)[7].

According to histopathology results the study found that most of them had IDC (97.5%), these results agree with Stavros et al. 1995 whom state that the most common one was IDC [7]. and all of other tumors had (2.5%) from all malignant with incidence 0.5% for each. Concerning grading of IDC the study reveal that most of them was grade III (84.1%) followed by II (10.4%) and least of them was grade I. table 5and 6. The study found that there was significant correlation between histopathology results sonographic feature and diagnostic feature by ultrasound mammography for malignant breast masses as it diagnosed 195 cases as malignant and only 4 cases as benign (one of them phyllodies tumor, one poorly differentiated carcinoma and two IDC) p value <0.01, most of them hypoechoic in feature, in mammography most of IDC diagnosed as malignant (165 cases) 25 cases diagnosed as suspicious and 7 case diagnosed as benign p<0.01, table 7-8 and 9.

Finally the study found that both ultrasounds was more sensitive and accurate than mammography for diagnosis of malignant breast mass it had sensitivity and accuracy of (97.98%) (83.08%) for ultrasound and mammography respectively, table 10. These results agree with Wei T se Yang *et al.* whom was state sensitivity of ultrasound was 97% and with H Hasni, M Med who state that Ultrasound had a high a sensitivity of 100%, specificity of 85.7% for distinguishing a malignant mass. Although agree with Tan K P *et al.* whom found that a sensitivity of USG was higher compared with MMG (82% versus 49%)[4,8,9].

Table-1: shows frequency distribution of age

		1 1 1 1 1		
Age group	Frequency	Percent	Valid Percent	Cumulative Percent
25-40 years	44	21.9	21.9	21.9
41-55 years	84	41.8	41.8	63.7
56-70 years	52	25.9	25.9	89.6
71-85 years	19	9.5	9.5	99.0
more than 85 years	2	1.0	1.0	100.0
Total	201	100.0	100.0	
Minimum =26, max	imum= 90, m	eans=51.6	1,Std.Deviation	=13.265

Table-2: shows frequency distribution of side of mass

_ = = = = = = = = = = = = = = = = = = =							
Site of mass	Frequency	Percent	Valid Percent	Cumulative Percent			
UOQ	109	54.2	54.2	54.2			
LOQ	14	7.0	7.0	61.2			
UIQ	16	8.0	8.0	69.2			
LIQ	13	6.5	6.5	75.6			
CENTRAL	46	22.9	22.9	98.5			
Central and LLO	3	1.5	1.5	100.0			
Total	201	100.0	100.0				

Table-3: Shows frequency distribution of site of mass

Side of mass	Frequency	Percent	Valid Percent	Cumulative Percent
right	92	45.8	45.8	45.8
left	102	50.7	50.7	96.5
both	7	3.5	3.5	100.0
Total	201	100.0	100.0	

Table-4: Shows main features of mass by ultrasound and mammography

Table-4: Shows main features of mass by ultrasound and mammography								
Outline	Regular	irregular						
Mammography	8%	92%						
Ultrasound	55.7%	7.5%						
Shape	Round	Oval	Speculated	Lobulated	Others (multifocal)			
Mammography	24.4%	6.5%	43.3%	17.9%	=			
Ultrasound	-	-	26.9%	9.5%	0.5%			
Margin	Ill defined	Well defined						
Mammography	85.1%	14.9%						
Ultrasound								
Echogenicity	Hypodense	Hyperdense	Hypoechoic	Hyperechoic	Mixed multi-septated			
Mammography	13.9%	80.1%	-	ı				
Ultrasound	-	-	98%	1%	1%			
LN	Present	Absent						
Mammography	36.4%	63.6%						
Ultrasound	67.7%	32.3%						

Table-5: Shows frequency distribution of histopathology results

Table-3. Shows frequency distribution of histopathology results								
History	Feat	Feature us						
Histopathology	Benign	Malignant	Total					
IDC	2	192	194					
lobar carcinoma	0	1	1					
phyloddies tumor	1	0	1					
poorly differentiated carcinoma	1	0	1					
myxoid liposarcoma	0	1	1					
Papillary carcinoma	0	1	1					
Total	4	195	199					
P	value =0.000							

Table-6: Shows frequency distribution of grading malignant breast mass

Grading of IDC	Frequency	Percent	Valid Percent	Cumulative
carcinomas				Percent
1	5	2.5	2.6	2.6
2	21	10.4	10.8	13.3
3	169	84.1	86.7	100.0
Total	195	97.0	100.0	
Not mention	6	3.0		
Total	201	100.0		

Table-7: Shows cross tabulation between ultrasound final diagnosed and histopathology results

Histopathology results	Frequency	Percent	Valid Percent	Cumulative
				Percent
IDC	196	97.5	97.5	97.5
lobar carcinoma	1	.5	.5	98.0
phyloddies tumor	1	.5	.5	98.5
poorely differentiated	1	.5	.5	99.0
carcinoma				
myxoidliposarcoma	1	.5	.5	99.5
papillarycarcinoma	1	.5	.5	100.0
Total	201	100.0	100.0	

Table-8: Shows cross tabulation between mammography final diagnosed and histopathology results

Histopathology	Feat	Feature by mammography					
Thstopathology	Benign	Malignant	suspicious	Total			
IDC	6	165	25	196			
lobar carcinoma	0	1	0	1			
phyloddies tumor	0	0	1	1			
poorly differentiated carcinoma	1	0	0	1			
myxoid liposarcoma	0	0	1	1			
Papillary carcinoma	0	1	0	1			
Total	7	167	27	201			
P value =0.000							

Table-9: Shows cross tabulation echogenicity of mass and tumor type

				ation conogement, or		7 I				
	histopathology									
Echogenicity	IDC	lobar carcinoma	phyloddies tumor	poorely differentiated carcinoma	myxoid liposarcoma	papillarycarcinoma	Total			
Hypoechoic	189	1	1	0	1	1	193			
Hyperechoic	2	0	0	0	0	0	2			
Multiseptated	1	0	0	1	0	0	2			
Total	192	1	1	1	1	1	197			
	P value =0.000									

Table-10: Shows comparative study for US and Mammography in sensitivity and accuracy for diagnosis of malignant breast lesion

Diagnosed	TN TP		FN	FN FP	
Us	0 195		4	4 0	
Mammography	0	167	34	0	201
Compitivity	97.98%		83.08%		
Sensitivity	ultrasound		Mammo		
Agguegav	97.9	98%	92.09.0/		
Accuracy	ultrasound		83.08 % mammography		
Total	199		201		
Total	U	JS	201 mammography		

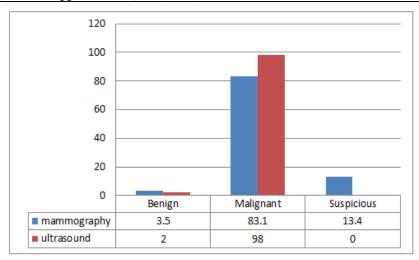


Fig-1: Shows final diagnosed of mass by ultrasound and mammography

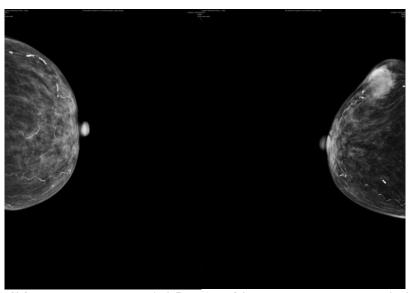


Image (1) a- 80 yrs. C\O: Rt breast lump + pain \ 5 months O/ E: Rt breast small lump 3X3 CM with free AX, speculated hyperdense mass

 $Image~(1)~b-~80~yrs.~C\C:~Rt~breast~lump~+~pain~\\ \C & E:~Rt~breast~small~lump~3X3~CM~with~free~AX~,~RT~UOQ~suspicious~mass$

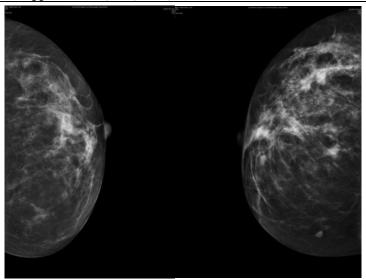
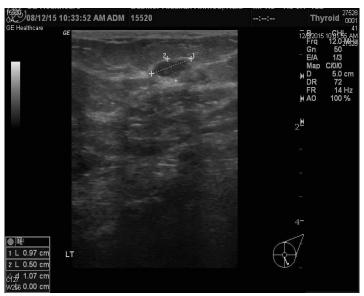



Image (2) a. 32 yrs. nulliparous C\O: RT nipple bloody discharge + pain \ 2 weeks EX: no lumps only bloody nipple discharge with free axilla BIL, Mammo: RT br UOQ speculated ill-defined lesion

 $Image~(2)~b.~32~yrs.~nulliparous~C\backslash O:~RT~nipple~bloody~discharge+pain \backslash 2~weeks~EX:~no~lumps~only~bloody~nipple~discharge~with~free~axilla~BIL,~US:~RT~BR~multiple~malignant~lesion$

CONCLUSION

The study found that the higher incidence of malignant breast masses was found in age group (41-55 years and 56-70 years), occurs in left side more than right side, more commonly involved UOQ and central Concerning mammographic finding region. malignant breast mass the study reveals that had irregular outline, had ill-defined margin, speculated lobulated, most of them hyperdense with presence of LN in some cases. Concerning sonographic finding of malignant breast mass it irregular outline, speculated, speculated, L N are detected in most of cases. According to histopathology results the study found that most of them had IDC. Concerning grading of IDC the study reveal that most of them was grade III .The study found that there was significant correlation between histopathology results and final suggesting feature by

ultrasound for benign and malignant, although between histopathology results and final suggesting feature by mammography for benign and malignant. Finally the study found that ultrasound was more sensitive and accurate than mammography for diagnosis of malignant breast mass it had sensitivity and accuracy of (97.98%) versus (83.08%) for mammography.

RECOMMENDATION

Further studies in benign and malignant breast masses using ultrasound, histopathology and elastography.

REFERENCES

 Niederhuber JE, Armitage JO, Doroshow JH. Abeloff's clinical oncology. Elsevier Health Sciences. 2013.

Mawahib Rizig et al., Sch. J. App. Med. Sci., Oct, 2018; 6(10): 3900-3906

- 2. Cameron JL, Cameron AM. Current surgical therapy. Elsevier Health Sciences. 2013.
- 3. Michell MJ, ed. Breast cancer. Cambridge University Press. 2010.
- 4. Hasni H, Meah FA,Norlia A,Sharifa NA, Zolifiqar A. Ultrasound in the Assessment of the Palpable Breast. Med J Malaysia. 2004; 59(4):486-94.
- Raga Ahmed Abouraida, Effectiveness of ultrasound in diagnosis of breast masses, AAU, Khartoum, Sudan. 2012
- 6. Bassett, Mahoney, Apple, D'Orsi. Breast Imaging. Saunders, an imprint of Elsevier Inc. 2011; ISBN: 978-1-4160-5199-2
- 7. Stavros TA, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules: Use of sonography to distinguish between benign and malignant lesions .Radiology. 1995;196:123-134.
- 8. Yang WT, Mok CO,King W, Tang AMetreweli C. Role of high frequency ultrasonography in evaluation of palpable breast masses in Chinese women: alternative to mammography?. J Ultrasound Med.1996;15(9):637-44.
- 9. Tan KP. Comparative accuracy of ultrasound and mammography in detection of breast cancer. Med J Malaysia. 2014;69(2):79-85.