Scholars Journal of Applied Medical Sciences (SJAMS)

Abbreviated Key Title: Sch. J. App. Med. Sci. ©Scholars Academic and Scientific Publisher A Unit of Scholars Academic and Scientific Society, India www.saspublishers.com ISSN 2320-6691 (Online) ISSN 2347-954X (Print)

Radio Diagnosis

Ultrasound Evaluation of Kidneys in Chronic Type II Diabetes

Dr. M.Jayanth^{1*}, Dr. V.Chandrasekhar², Dr. M.Prabakaran³

¹Resident, Sree Balaji Medical College, 7, Work's Road, Chrompet, Chennai, Tamilnadu, India ²Professor, Sree Balaji Medical College, 7, Work's Road, Chrompet, Chennai, Tamilnadu, India ³Professor & HOD, Sree Balaji Medical College, 7, Work's Road, Chrompet, Chennai, Tamilnadu, India

- To examine with the use of Duplex Doppler Ultrasound and to illustrat, whether there was a correlation with various clinical stages of the disease and its sonographic findings.
- To correlate and study asymptomatic patients with elevated renal vascular resistance and patients with mild impairment of renal function.

METHODOLOGY Study Design

The study was Hospital-based comparative cross-sectional study, performed in the Department of Radio – Diagnosis in Sree Balaji Medical College and Hospital, Chennai with the study population including adult male and female population who were known case of Diabetes Mellitus, between April 2017 to October 2018. The study population was 120 subjects.

Inclusion criteria

- Diabetics aged more than 18 years of age who give consent for the study
- Biochemically diagnosed for nephropathy in cases group

Exclusion criteria

• Any secondary causes or co-morbid conditions

- Previously diagnosed renal anomalies and chronic renal diseases
- Treated for any known renal pathology in last 1 year

Tools Used

The patients in the study were evaluated using ultrasonography with a probe of 3.5 - 5 MHZ that is curvilinear Kidney length & thickness of renal parenchyma: The examinations was done with person in supine position. To detect horse – shoe kidneys, the para – aortic region was examined. The width of kidneys, its length, its thickness and cortical size were calculated. Both lower and upper poles were defined. With sublect in decubitus position, sagittal view was also obtained.

Available online: https://saspublishers.com/journal/sjams/home

Resistive index

The technique used in measurement of RI is meticulous as there one has to use high frequency probe supplemented by color or power Doppler sonography. Arcuate arteries that are adjacent to the CM junction and interlobar arteries that are adjacent to medullary pyramids were insonated with Doppler gate of two to four millimeter. For each kidney, the mean resistive index was obtained[34]. Other details collected were demographic parameters like age, gender and other relevant details like history of diabetes mellitus, history of dialysis treatment, serum urea, uric acid concentration,creatinine clearance,eGFR, proteinuria were also collected.

Statistical methods

Descriptive statistics: Descriptive analysis was carried out by mean and standard deviation (SD) as well as median and interquartile range (IQR) for quantitative variables, frequency and proportion for categorical variables. Bar diagram, pie diagram and box plots were used for representing the data.

Inferential statistics: The association between explanatory variables and Doppler findings was assessed by cross tabulation and comparison of percentages. Pearson's chi square test, Fisher's exact test, one way ANOVA with post-hoc test of LSD were used to test for the statistical significance. P value < 0.05 was considered statistically significant.

Fig-1 and 2: shows ultrasound image of the measurement of right and left kidney lengths

Fig-3: Shows ultrasound image of the measurement of renal parenchymal thickness

Fig-4 and 5: shows increased echogenicity and reduced kidney size and cortical thickness, suggestive of chronic renal disease

Fig-6-8: Show colour Doppler study of the kidneys with measurement of resistive index

RESULTS AND ANALYSIS

The age group of controls and cases were not significantly differing from each other which is further

shown by independent t-test depictive of comparable age distribution.(p>.05)

Tuble 1. Inge ubt	inducion	or stud	Bubjects					
Croups	Age (in	n voluo						
Gloups	Mean SD		p-value					
Controls (n=30)	56.4	10.8	0.12					
Cases (n=90)	58.7	11.5	0.12					
Independent t-test used;								
P-value <0.05 is significant.								

Table-1: Age distribution of study subjects

Ta <u>ble-2</u>	2: Age	catego	orization	of the	cases	(Dial	betic I	Nep	hropat	hy)
										_	

Age categories (in years)	Frequency	Percentage		p-value					
<50	26	28.8							
50-69	49	54.4							
70-79	13	14.4	15.6	<.001					
>80	2	2.2							
Total	90	100.0							
Non-parametric chi-square test used;									
p-value<.05 is significant.									

It was found that, maximum of the patients were falling under 50-69 age groups (54.4%) that was

followed by persons aged ${<}50$ years (28.8%) and only 2 persons belonged to age group ${>}80$ years.

Table-3: Gender distribution of the study groups

	Grou								
Condon	Con	trols	Cases		Cases		χ2	p-value	
Gender	(n=3	30)	(n=9	0)					
	No	%	No	%					
Male	18	60.0	59	65.5	2.7	.10			
Female	12	40.0	31	34.5					
Pearson's chi-square test used;									
	p-v	alue <.	05 is s	signific	ant;				

Table-4: Distribution of study subjects

Subjects	Number	Percentage			
Control	30	25.0			
Diabetic nephropathy Group I	30	25.0			
Diabetic nephropathy Group II	30	25.0			
Diabetic nephropathy Group III A	12	10.0			
Diabetic nephropathy Group III B	14	11.7			
Diabetic nephropathy Group III C 4 3.3					
Non-parametric chi-square test used; Chi-square = 1.3, p-value=.23					
p-value <0.05 is significant					

M.Jayanth et al., Sch. J. App. Med. Sci., Dec, 2018; 6(12): 5031-5036

Table 3 shows that, there were a comparatively higher proportion of male participants than their counterparts in both the controls (60.0% vs 40.0%) as well as in cases 65.5% vs 34.5%).

Table 4 shows that, the study subjects were equally dispersed between all the groups with 30 in

each of those. In diabetic nephropathy group III, the sub-classifications included group IIIA, group IIIB, group IIIc and maximum representation were from group III B (46.6%) and it was minimum by group IIIc (13.3%).

Table-5: Distribution of Renal Leng	th betw	een the	groups	s of Ri	ight Kie	dney (in cm)
Country 1	107	111	10.0	11	10.0	10.0 11.0

Control	10.7	11.1	10.8	.11	10.9	10.8, 11.0
Diabetic nephropathy Group I	11.6	12.1	11.8	.14	11.9	11.7, 12.0
Diabetic nephropathy Group II	10.9	11.5	11.2	.15	11.3	11.1, 11.4
Diabetic nephropathy Group III A	10.7	11.2	10.9	.15	11.0	10.9, 11.1
Diabetic nephropathy Group III B	9.8	10.1	9.9	.18	10.0	9.9, 10.02
Diabetic nephropathy Group III C	9.1	9.3	9.2	.08	9.2	9.12, 9.27

The median (50th percentile) renal length (inter-quartile range, i.e between 25th percentile and 75th percentile) fluctuated with values of 10.9 (10.8, 11.0), 11.9 (11.7, 12.0), 11.3 (11.1, 11.4), 11.0 (10.9,

11.1), 10.0 (9.9, 10.02) and 9.2 (9.12, 9.27) respectively among controls, group I, group II, group IIIA, group IIIB, group IIIC that have been included in this study.

Groups	Min	Max	Mean	SD	Median	IQ Range
Control	10.9	11.5	11.15	.18	11.15	11.0, 11.3
Diabetic nephropathy Group I	11.7	12.4	12.01	.15	12.0	11.9, 12.1
Diabetic nephropathy Group II	11.1	11.9	11.53	.17	11.55	11.4, 11.62
Diabetic nephropathy Group III A	10.9	11.4	11.14	.16	11.15	11.0, 11.3
Diabetic nephropathy Group III B	10.1	10.7	10.42	.13	10.45	10.3, 10.52
Diabetic nephropathy Group III C	9.4	9.6	9.5	.09	9.5	9.42, 9.57

The range, mean and standard deviations, median and inter-quartile range were displayed. The statistical analysis used here was one-way ANOVA with LSD post-hoc testing done. The mean and SD of controls, group I, group II, group IIIA, group IIIB, group IIIC were $11.15 \pm .18$, $12.01 \pm .15$, $11.53 \pm .17$,

11.14 \pm .16, 10.42 \pm .13, 9.5 \pm .09 centimeters respectively. Their lengths ranged from 10.9 to 11.5, 11.7 to 12.4, 11.1 to 11.9, 10.9 to 11.4, 10.1 to 10.7 and 9.4 to 9.6 among the controls, group I, group II, group IIIA, group IIIB, group IIIC respectively.

					0	
Groups	Min	Max	Mean	SD	Median	IQ Range
Control	13.7	14.3	13.9	.17	13.9	13.8, 14.0
Diabetic nephropathy Group I	14.0	15.3	14.9	.30	15.0	14.9, 15.1
Diabetic nephropathy Group II	13.8	14.4	14.1	.28	14.15	15.0, 14.3
Diabetic nephropathy Group III A	13.2	14.3	13.5	.23	13.5	13.4, 13.67
Diabetic nephropathy Group III B	11.8	13.5	12.2	.47	12.05	11.9, 12.27

Table-7: Distribution of Renal parenchymal thickness for Right Kidney (in mm)

The mean and SD of controls, group I, group II, group IIIA, group IIIB, group IIIc were $13.9 \pm .17$, $14.9 \pm .30$, $14.1 \pm .28$, $13.5 \pm .23$, $12.2 \pm .47$, $10.3 \pm .10$ millimeters respectively. Their lengths ranged from 13.7 to 14.3, 14.0 to 15.3, 13.8 to 14.4, 13.2 to 14.3, 11.8 to 13.5 and 10.2 to 10.4 among the controls, group I, group II, group IIIA, group IIIB, group IIIC respectively. The median (50th percentile) renal length (inter-quartile range, i.e between 25th percentile and 75th percentile) fluctuated with values of 13.9 (13.8, 14.0), 15.0 (14.9, 15.1), 14.15 (15.0, 14.3), 13.5 (13.4, 13.67), 12.05 (11.9, 12.27) and 10.3 (10.22, 10.3) respectively among controls, group I, group IIIA, group IIA, group IIA, group IIA, group IIA, group IIA, group IIA, group IIIA, group IIIA,

The mean and SD of controls, group I, group II, group IIIA, group IIIB, group IIIC were $14.6 \pm .19$, $15.5 \pm .23$, $15.03 \pm .21$, $14.29 \pm .20$, $12.38 \pm .13$, $10.7 \pm .09$ millimeters respectively. Their lengths ranged from 13.7 to 14.3, 14.0 to 15.3, 13.8 to 14.4, 13.2 to 14.3, 11.8 to 13.5 and 10.2 to 10.4 among the controls, group I, group II, group IIIA, group IIIB, group IIIC respectively. The median (50th percentile) renal length (inter-quartile range, i.e between 25th percentile and 75th percentile) fluctuated with values of 14.6 (14.5, 14.72), 15.6 (15.4, 15.7), 15.0 (14.9, 15.2), 14.25 (14.12, 14.47), 12.4 (12.3, 12.5) and 10.75 (10.7, 10.87) respectively among controls, group I, group IIIA, g

Available online: https://saspublishers.com/journal/sjams/home

Table-8: Distribution of Renal parenchymal thickness for left Kidney (in mm)												
Groups	Min	Max	Mean	SD	Median	IQ Range						
Control	14.3	14.9	14.6	.19	14.6	14.5, 14.72						
Diabetic nephropathy Group I	15.2	15.9	15.5	.23	15.6	15.4, 15.7						
Diabetic nephropathy Group II	14.7	15.4	15.03	.21	15.0	14.9, 15.2						
Diabetic nephropathy Group III A	14.0	14.7	14.29	.20	14.25	14.12,14.47						
Diabetic nephropathy Group III B	12.1	12.6	12.38	.13	12.4	12.3, 12.5						
Diabetic nephropathy Group III C	10.7	10.9	10.77	.09	10.75	10.7, 10.87						
One-way ANOVA with LSD post-hoc test used;												
F-value= 518.7, p<.001												

M.Jayanth et al., Sch. J. App. Med. Sci., Dec, 2018; 6(12): 5031-5036

Table-9: Parenchymal echogenecity in Diabetics Normo-echogenic Hyper-echogenic Groups χ2 p-value No % No % Diabetic nephropathy Group I (n=30) 30 100.0 0 0.0 Diabetic nephropathy Group II (n=30) 30 100.0 0 0.0 Diabetic nephropathy Group III A (n=12) 3 25.0 9 75.0 <.001 63.8 Diabetic nephropathy Group III B (n=14) 4 10 28.6 71.4 Diabetic nephropathy Group III C (n=4) 0 0.0 4 100.0 Fisher's exact test used;p-value<.05 is significant

The proportion of hyperechogenecity (75.0%, & 100%) when compared against normo-71.4%

echogenecity (25.0%, 28.6% & 0.0%) was higher in diabetic nephropathy group IIIA, IIIB, IIIC respectively

Table-10: Distribution of Resistive Index between the groups

Groups	Min	Max	Mean	SD	Median	IQ Range			
Control	.588	.690	.648	.027	.647	.630, .675			
Diabetic nephropathy Group I	.596	.744	.661	.035	.663	.636, .682			
Diabetic nephropathy Group II	.612	.780	.686	.047	.680	.643, .723			
Diabetic nephropathy Group III A	.649	.790	.736	.042	.747	.700, .767			
Diabetic nephropathy Group III B	.685	.800	.739	.035	.744	.709, .763			
Diabetic nephropathy Group III C	.822	.859	.840	.015	.839	.826, .854			
One-way ANOVA with LSD post-hoc test used;									
F-value= 31.98, p<.001									

The mean and SD of RI for controls, group I, group II, group IIIA, group IIIB, group IIIc were 0.64 $\pm .02, 0.66 \pm .03, 0.68 \pm .04, 0.73 \pm .04, 0.73 \pm .03, 0.84$ \pm .01 respectively. Their RI ranged from 0.58 to 0.69,

0.59 to 0.74, 0.61 to 0.78, 0.64 to 0.79, 0.68 to 0.80 and 0.82 to 0.85 among the controls, group I, group II, group IIIA, group IIIB, group IIIc respectively.

|--|

Groups	RI <0.70		RI ≥0.70		~~~	n voluo	
	No	%	No	%	χ2	p-value	
Control(n=30)	30	100.0	0	0.0			
Diabetic nephropathy Group I (n=30)	26	86.7	4	13.3	54.4	<.001	
Diabetic nephropathy Group II (n=30)	18	60.0	12	40.0			
Diabetic nephropathy Group III A (n=12)	3	25.0	9	75.0			
Diabetic nephropathy Group III B (n=14)	3	21.4	11	78.6			
Diabetic nephropathy Group III C (n=4)	0	0.0	4	100.0			
Fisher's exact test used; p-value<.05 is significant							

The proportion of RI < 0.70 was higher in the controls, group I and group II against the $RI \ge 0.70$ group with the values as follows, 100.0% vs 0.0%, 86.7% vs 13.3%, 60.0% vs 40.0% respectively. Contrarily, the proportion of subjects in $RI \ge 0.70$ group was higher in diabetic nephropathy group IIIA, group IIIB, group IIIC than the RI <0.70 group and the values

are as follows, 75.0% vs 25.0%, 78.6% vs 21.4%, 100.0% vs 0.0% respectively.

DISCUSSION

Acute and Chronic renal failure can be differentiated with USG. Urological pathologies due to medical nephropathy can be excluded; course of the

Available online: https://saspublishers.com/journal/sjams/home

disease can be assessed with USG. Our study has overall portrayed the utility of ultrasonography in diagnosing DKD and its clinical relevance.

The following interpretations were made after a prospective observational study on 120 diabetic subjects, grouped into controls (n = 30) and cases (n =ninety) of them had nephropathy due to diabetes.

Based on the measurement of right and left renal length sonologically in diabetic nephropathy subjects, it was interpreted that the length diminished while the disease was getting progressed.

Based on the measurement of right and left renal parenchymal thickness sonologically in diabetic nephropathy subjects, it was interpreted that the renal parenchymal thickness diminished while the disease was getting progressed.

Based on the assessment of renal parenchymal echogenicity, it was interpreted that diabetic nephropathy group I and II had normal echogenicity and group III C had hyperechogenicity on sonographc images.

Based on the distribution of resistive index among diabetic nephropathy subjects, it was interpreted that the resistive index increased when the disease severity was increased.

CONCLUSION

In assessing the types of nephropathy and the progression, ultrasonographic evaluation plays a vital role .Diabetic nephropathy in type 2 diabetes is not only the cause of chronic renal failure (CRF), but also nondiabetic renal diseases. USG is used for identifying the cause of chronic renal failure in diabetics and various other reasons have to be simultaneously evaluated in order to improve the quality of life of the patients saving the time getting delayed in specific diagnosis. Most of type two diabetics with CRF had "small kidneys" in the study, due to the association with nephropathy in most cases.

REFERENCES

- 1. Cole N. Author, Speaker, Educator and Podocast Kidney Quotes - BrainyQuote [Internet]. [Cited 2018 Sep 18]. Available from: https://www.brainyquote.com/topics/kidney
- Global Report on Diabetes Who. Library Cataloguing-in-Publication Data Global report on diabetes [Internet]. 2016 [cited 2018 Sep 17]. Available from: http://www.who.int/about/licensing/copyright_for m/index.html
- Kaveeshwar S, journal JC-TA medical, 2014 undefined. The current state of diabetes mellitus in India. ncbi.nlm.nih.gov [Internet]. [cited 2018 Sep 17]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC39 20109/
- 4. Warram JH, Gearin G, Laffel L, Krolewski AS. Effect of duration of type I diabetes on the prevalence of stages of diabetic nephropathy defined by urinary albumin/creatinine ratio. Journal of the American Society of Nephrology. 1996 Jun 1;7(6):930-7.
- Prevention of chronic kidney and vascular disease: Toward global health equity—The Bellagio 2004 Declaration. Elsevier [Internet]. [cited 2018 Sep 19]; Available from: https://www.sciencedirect.com/science/article/pii/S 0085253815512556
- Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third national health and nutrition examination survey. Is J Kidney Dis [Internet]. 2003 Jan [cited 2018 Sep 19];41(1):1–12. Available
- http://www.ncbi.nlm.nih.gov/pubmed/12500213
- Middleton R, Foley R, JH-ND, 2005 undefined. The unrecognized prevalence of chronic kidney disease in diabetes. academic.oup.com [Internet]. [Cited 2018 Sep 19]; Available from: https://academic.oup.com/ndt/articleabstract/21/1/88/1819015