Scholars Journal of Applied Medical Sciences

Abbreviated Key Title: Sch J App Med Sci ISSN 2347-954X (Print) | ISSN 2320-6691 (Online) Journal homepage: www.saspublishers.com **OPEN ACCESS**

Ophthalmology

The Relation between Corneal Horizontal Diameter and Ocular Dimensions and Stature in Japanese Adults

Shinji Makino¹, Hiroto Obata²

¹Department of Ophthalmology, Jichi Medical University, Shimotsuke, Tochigi, Japan ²Departments of Ophthalmology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan

Corresponding author: Shinji Makino MD, PhD | Received: 22.04.2019 | Accepted: 26.04.2019 | Published: 30.04.2019 DOI: <u>10.36347/sjams.2019.v07i04.057</u>

Abstract	Original Research Article

To evaluate the relation between corneal horizontal diameter (white-to-white, CHD) and axial length (AL), corneal radius of curvature (CR), anterior chamber depth (ACD), and body height, we measured CHD, AL, CR, and ACD using IOLMaster in 333 eyes of 333 Japanese volunteers and preoperative adults aged 21-89 years. There were 161 male subjects and 172 female subjects. The CHD in Japanese adults was 12.05 ± 0.44 mm. The CHD was significantly greater in males (12.17 ± 0.45 mm) than in females (11.95 ± 0.41 mm) and significantly greater in subjects under 50 years of age than in subjects over 50 years of age. The CHD was strongly associated with CR and ACD.

Keywords: corneal horizontal diameter, axial length, corneal radius of curvature, anterior chamber depth, body height. **Copyright © 2019:** This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source are credited.

INTRODUCTION

Measurement of corneal diameter yields important clinical information for diagnostic purposes (i.e. microcornea, macrocornea, etc.) as well as for new surgical procedures (i.e. phakic intraocular lens implantation, etc.) [1]. Although normal corneal diameter is described in many textbooks, the references had been a few in MEDLINE until 2010. We often think that corneal diameter in elderly people and women are a little smaller than the one in young people and men during cataract surgery and contact lens prescription.

The purposes of this research are as follows; 1) to measure corneal horizontal diameter (white-to-white, CHD) in Japanese adults, 2) to evaluate the relation between CHD and age and gender, and 3) to evaluate the relation between CHD and axial length (AL), corneal radius of curvature (CR), anterior chamber depth (ACD), and body height.

Subjects and Methods

To evaluate above purposes, CHD, AL, CR, and ACD was measured with IOLMaster (Carl Zeiss, Germany) in 333 eyes of 333 Japanese volunteers and preoperative adults aged 21-89 years (mean, 54 ± 19 years). There were 161 male subjects and 172 female subjects.

CHD measurement was repeated three times and the average was calculated. Five valid readings of AL and ACD and three keratometry readings were obtained with IOL Master. CR was defined as the average of the greatest corneal radius of curvature (R1) and the least corneal radius of curvature (R2). The heights were self-reported.

Basically, both eyes was measured, however, the eyes with a history of ocular surgery were excluded in this study. The eyes with refractive errors and cataracts were included in this study. In cases with the data obtained from both eyes, only the data from the right eyes were used because there was a high correlation between right and left eye CHD (r=0.894).

Correlation between CHD and age was statistically analyzed by Spearman's rank correlation test. Correlations between CHD and the other parameters were statistically analyzed by Pearson correlation coefficients and stepwise multiple regression analysis. To analyze the relation between CHD and age alternatively, the subjects were divided into two age groups: group 1, 21-49 years of age (n=135); group 2, 50-89 years of age (n=198) and the statistical analysis was performed by non-paired t-test. A p-value of less than 0.05 was considered statistically significant.

RESULTS

CHD was normally distributed as shown in Fig. 1. The mean CHD was 12.05 ± 0.44 mm (Table 1).

The mean AL, CR, ACD, height was 24.10 ± 1.50 mm, 7.70 ± 0.28 mm, 3.27 ± 0.47 mm, and 160.3 ± 9.4 cm, respectively (Table 1).

Corneal Horizontal Diameter (mm) Fig-1: Distribution of corneal horizontal diameter

	Mean±SD	Range
Corneal horizontal diameter (mm)	12.05 ± 0.44	10.80-13.50
Axial length (mm)	24.10 ± 1.50	21.05-29.97
Corneal radius of curvature (mm)	7.70 ± 0.28	6.79-8.52
Anterior chamber depth (mm)	3.27 ± 0.47	1.89-4.33
Height (cm)	160.3 ± 9.4	134-190

The mean CHD separated by age was shown in Table 2. The mean CHD was 12.17±0.45mm in males

and 11.95 ± 0.41 mm in females with statistically significant gender difference (p<0.001) (Fig. 2).

	Table-2	: Corne	ai norizoittai (nameter	r by age	
	All Subjects		Male		Female	
Age	mean \pm SD	n	mean \pm SD	n	mean \pm SD	n
20-29	12.29 ± 0.42	46	12.39 ± 0.41	26	12.15 ± 0.41	20
30-39	12.29 ± 0.43	55	12.42 ± 0.40	29	12.15 ± 0.42	26
40-49	12.05 ± 0.42	34	12.20 ± 0.39	17	11.89 ± 0.40	17
50-59	11.95 ± 0.42	42	11.99 ± 0.42	16	11.92 ± 0.42	26
60-69	12.01 ± 0.41	74	12.07 ± 0.40	37	11.95 ± 0.42	37
70-	11.86±0.39	82	11.95 ± 0.45	36	11.79±0.33	46
Total	12.05 ± 0.44	333	12.17 ± 0.45	161	11.95 ± 0.41	172

Table-2: Corneal horizontal diameter by age

Fig-2: Relationship between corneal horizontal diameter and gender *p<0.001, non-paired t-test

CHD in males was 12.36 ± 0.41 mm in group 1 and 12.01 ± 0.42 mm in group 2, while the corneal diameter in females was 12.08 ± 0.42 mm in group 1 and 11.88 \pm 0.39mm in group 2. CHD was significantly greater in young group of each gender (p<0.0001) (Fig. 3).

Fig-3: Relationship between corneal horizontal diameter and age

group 1=21-49 years of age, group 2=50-89 years of age, *p<0.0001, non-paired t-test

CHD decreased with age in all subjects (Fig. 4, Spearman's rank correlation test, ρ =-0.363, p<0.0001).

CHD decreased with age in each gender group (p<0.0001).

Fig-4: Relationship between corneal horizontal diameter and age y=12.506-0.008×Age; ρ=-0.363 (p<0.0001)

1653

CHD increased with AL (Fig. 5), CR (Fig. 6), ACD (Fig. 7), and body height (Fig. 8).

Fig-5: Relationship between corneal horizontal diameter and axial length (AL) $y=8.986+0.127\times AL$; r = 0.431 (p<0.0001)

Corneal radius of curvature (mm)

Fig-6: Relationship between corneal horizontal diameter and corneal radius of curvature (CR) $y=6.092+0.774\times CR$; r = 0.491 (p<0.0001)

Anterior chamber depth (mm)

Fig-7: Relationship between corneal horizontal diameter and anterior chamber depth (ACD) $y=10.584+0.45\times$ ACD; r = 0.473 (p<0.0001)

The simple correlation coefficients between CHD and AL, CR, ACD, and height were 0.431, 0.491, 0.473, and 0.355, respectively (Pearson correlation coefficient, p<0.0001) (Table 3). The partial correlation

coefficients between CHD and AL, CR, ACD, and height were -0.029, 0.407, 0.346, and 0.049, respectively, suggesting that CHD was closely related to CR and ACD.

Table-3: Correlation coefficient

		Simple C	orrelation Co	pefficient	
	CHD	AL	CR	ACD	Height
CHD	1.000				
AL	0.431*	1.000			
CR	0.491*	0.469*	1.000		
ACD	0.473*	0.607*	0.164 **	1.000	
Height	0.355*	0.371*	0.426*	0.366*	1.000
		Partial Co	orrelation Co	efficient	
	CHD	AL	CR	ACD	Height
CHD	1.000				
AL	-0.029	1.000			
CR	0.407	0.413	1.000		
ACD	0.346	0.513	-0.407	1.000	
Height	0.049	0.031	0.254	0.100	1.000

CHD: corneal horizontal diameter, AL: axial length, CR: corneal radius of curvature, ACD: anterior chamber depth, *p<0.0001, **p<0.005

Stepwise multiple regression analysis revealed that CHD was correlated with CR and ACD. The following equation was derived by the analysis: CHD= $5.640+0.670\times$ CR+ $0.383\times$ ACD. CHD calculated by this equation was strongly correlated with CHD by actual measurement (Fig. 9).

© 2019 Scholars Journal of Applied Medical Sciences | Published by SAS Publishers, India

1655

DISCUSSION

There are various reports on corneal diameter [1-19] (Table 1). In 2002, Wang and Auffarth [1] showed that very accurate white-to-white measurements are possible with the Orbscan. After that, there are several reports on corneal diameter for various purposes, such as the agreement of various devices [3, 8-10, 14, 19] and preoperative evaluation for phakic IOLs [7, 9, 14, 15, 18]. However, there were few population-based studies [2, 4]. The first published population-based study was done by Rüfer *et al.* [2] in

2005. Their study population included 390 healthy individuals between the ages of 10 and 80 years, and the mean corneal diameter was 11.71 ± 0.42 mm as measured with the Orbscan. In 2010, Hashemi *et al.* [4] reported that the mean corneal diameter in the population of Tehran was 11.68 ± 0.46 mm as measured with the Orbscan. In this present study, the mean corneal diameter was 12.05 ± 0.44 mm as measured with the IOLMaster. According to previous study, values with IOLMaster are generally higher than those with the Orbscan [4, 9].

Table-4: Corneal horizontal diameter reported in different studies and their measurement device

Reference Devices No. of Cycel (cases) Age (meant SD) Sex cycel(cases) Total Mate Wark L et al. 2005 [2] Gameny Orbesent 26(13) N <	References Devices No. of cyces (cases) Sex eyes(cases) Marg L et al. 2002 [1] Germany Orbecan 26(13) 10–80(407±164) MF F 18/56(9/28) 1 Briter F et al. 2003 [2] Iran Cohesan II 74(37) 27/4±7/2 MF F 18/56(9/28) 1 Briter F et al. 2009 [3] Iran Orbecan II 74(37) 27/4±7/2 MF F 18/56(9/28) 1 Hashemi H et al. 2010 [5] Iran Orbecan II 73(37) NA MF F 18/56(9/28) 1 Vendatarama A et al. 2010 [5] Irad Orbecan II 33(37) NA MF F 18/56(9/28) 1 Salouf R et al. 2010 [5] Irad Orbecan II 33(37) NA MF F 12/25) 1 Salouf R et al. 2013 [8] Irad Orbecan II 33(37) NA MF F 12/25) 1 Salouf R et al. 2013 [8] Irad Orbecan II 33(37) NA F 1/22 MF F 12/25) 1 Salouf R et al. 2013 [8] Irad Orbecan II 33(37) NA F 1/22 MF F 12/26) 1 <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>Corneal</th><th>horizontal diamet</th><th>er (mm)</th></tr<>							Corneal	horizontal diamet	er (mm)
Ware L et al. 2002 [1] Germany Grifer F et al. 2005 [2] Germany Germany Grifer F et al. 2005 [2] NA 1201±055 1171±0.42 1115±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44 1105±0.44	Ware L et al. 2002 [1] Germany Briter F et al. 2005 [2] MA NA NA NA NA Riter F et al. 2005 [2] Germany Itrier T et al. 2005 [2] Germany Lean 74(37) 27.4±7.2 MF F 18.56(9.28) 1 Salouit R et al. 2006 [3] Germany Lean Chescan II 74(37) 27.4±7.2 MF F 18.56(9.28) 1 Salouit R et al. 2010 [4] Irean Orbscan II 39(310) 14-31(40.2±16.8) MF 7 15.5244 1 Venkataraman A et al. 2010 [4] Irean Orbscan II 33(37) 27.4±7.2 MF 18.56(9.28) 1 Venkataraman A et al. 2013 [8] Irean Orbscan II 33(37) 27.44106 1 1 Salouit R et al. 2013 [8] Irean Orbscan II 35(37) NA MF 61/2259 1 Martin R et al. 2013 [8] Irean Orbscan II 35(37) NA MF 61/2259 1 1 Martin R et al. 2013 [8] Irean Pretacent II 201(101) 20-46(28 ±59.3) MF 61/200 1 Martin R et al. 2016 [10] Ireal 2013 [8]	References		Devices	No. of eyes (cases)	Age(mean± SD)	Sex eyes(cases)	Total	Male	Female
Marker for the start of the start	Rate, F et al. 2009 [3] Cuescient Zuds 200 Cuescient	Moon م+ ما 2000 [1]	Company	Orboocce	96(19)	V N	VN	12 01 + 025		
Salouf R et al. 2009 [3] Ten Galiei 74331 2734472 MF 16/569/280 1201401 1176404 Hashemi H et al. 2010 [4] Fan Orbsean I 339(410) 14-81(407±16.8) MF 15/569/280 11764032 11764032 Hashemi H et al. 2010 [5] Inan Orbsean I 339(410) 14-81(407±16.8) MF 15/5724 11844032 1194403 Venkataraman A et al. 2010 [5] India Orbsean I 33(37) 18-53(29±7) MF 11/2225 11194102 Sanchis Gimeno JA et al. 2012 [6] Spain Orbsean I 33(37) 18-53(29±7) MF 41/60 11.66±037 1194102 Rentriker DZ et al. 2013 [9] Inan Orbsean II 50(101) 20-46(28±5) MF 41/60 11.66±037 1191402 Marcin R et al. 2013 [9] Inan Orbsean II 50(101) 20-46(28±5) MF 41/60 11.66±037 1191402 Marcin R et al. 2013 [9] Inan Orbsean II 50(101) 20-46(28±5) MF 41/60 11.66±037 1191402 Marcin R et al. 2013 [9] Inan Orbsean II	Salouit R et al. 2009 [3] Team Constant 743 (3) 27,4±7.2 M/F 18/56(9/28) 1 Hasherni H et al. 2010 [3] Iran Orbscant 743 (3) 27,4±7.2 M/F 18/56(9/28) 1 Hasherni H et al. 2010 [3] Iran Orbscant 743 (3) 27,4±7.2 M/F 18/56(9/28) 1 Verkataraman A et al. 2010 [5] India Orbscant 73(37) 27,4±7.2 M/F 18/56(9/28) 1 Sanothis-Gimeno JA et al. 2012 [6] Spain Orbscant 73(37) 14-91(0) M/F 15/249 1 Reinstein DZ et al. 2013 [7] Itaky Orbscant 73(37) 14-91(0) M/F 15/249 1 Reinstein DZ et al. 2013 [8] Orbscant 73(37) 14-91(0) M/F 18/249 1 1 Reinstein DZ et al. 2013 [8] Orbscant 238(164) 18-63(26±7) M/F 14/60 1 1 Martin R et al. 2013 [9] Spain Orbscant 228(164) 18-64(67)(22 ±9) 1 1 Martin R et al. 2013 [9] China Orbscant 228(164)	Rifer F at al 2005 [2]	Germany	Orbectan II	743(390)	10-80(40.7 + 16.4)	M/F (242/148)	1171 ± 0.00	11 77 + 0 37	1164+047
Evelose T4(37) 27.4±7.2 M/F 18/56(0.28) 12.00±0.87 Hashemi H et al. 2010 [4] Iran Orbecan I 3/437) 27.4±7.2 M/F 18/56(0.28) 11.05±0.29 11.05±0.29 Hashemi H et al. 2010 [5] India Orbecan I 3/437) 12.4±1.20 M/F 16/5.245 11.14±0.32 11.9±0.2 Senothic-Gimeno Ja et al. 2012 [6] Spain Orbecan I 3/337) N M/F (1/225) 11.9±0.2 11.9±0.2 Senothic-Gimeno Ja et al. 2012 [6] Spain Orbecan I 3/337) 18-33(29±7) M/F (1/225) 11.9±0.2 11.9±0.2 Reinstein DZ et al. 2013 [9] Iran Orbecan II 3/3(37) 18-33(29±7) M/F (1/225) 11.9±0.2 11.9±0.2 Marin R et al. 2013 [9] Spain Orbecan II 3/3(37) 18-3(36+45) 10.0±0.3 11.9±0.2 11.9±0.2 Marin R et al. 2013 [9] Spain Orbecan II 2/45(64) 18-6/3(36+45) 11.9±0.2 11.9±0.2 Marin R et al. 2013 [9] Spain Orbecan II 2/46(28±5) M/F 4/1/60 11.9±0.2 </td <td>EveSys 74(37) 27.4±7.2 M/F 18/56(9/28) 1 Hashemi H et al. 2010 [4] Iran Orbecan II 33(31) 27.4±7.2 M/F 15/5/244 1 Venkataraman A et al. 2010 [5] India Orbecan II 33(31) 14.81(40.7±16.8) M/F 12/25) 1 Venkataraman A et al. 2010 [5] India Orbecan II 33(37) NA M/F (12/25) 1 Sanchis-Gimeno JA et al. 2013 [9] Irah Orbecan II 37(37) NA M/F (12/25) 1 Sanchis-Gimeno JA et al. 2013 [9] Irah Pentacam HR 101(101) 20-46(28±5) M/F 41/60 1 Salouti R et al. 2013 [9] N/F al.2013 [1] Irah Pentacam HR 101(101) 20-46(28±5) M/F 41/60 1 Martin R et al. 2014 [10] China Orbecan II 378(434) 18-67(36,4±93) M/F 62/102 1 Martin R et al. 2014 [10] China ILas Orbecan II 2004(60) 1 27/41 1 Martin R et al. 2015 [12] Iran Orbecan II 2012(1721)</td> <td>Salouti R et al. 2009 [3]</td> <td>Iran</td> <td>Galilei</td> <td>74(37)</td> <td>27.4±7.2</td> <td>M/F 18/56(9/28)</td> <td>12.01 ±0.61</td> <td></td> <td></td>	EveSys 74(37) 27.4±7.2 M/F 18/56(9/28) 1 Hashemi H et al. 2010 [4] Iran Orbecan II 33(31) 27.4±7.2 M/F 15/5/244 1 Venkataraman A et al. 2010 [5] India Orbecan II 33(31) 14.81(40.7±16.8) M/F 12/25) 1 Venkataraman A et al. 2010 [5] India Orbecan II 33(37) NA M/F (12/25) 1 Sanchis-Gimeno JA et al. 2013 [9] Irah Orbecan II 37(37) NA M/F (12/25) 1 Sanchis-Gimeno JA et al. 2013 [9] Irah Pentacam HR 101(101) 20-46(28±5) M/F 41/60 1 Salouti R et al. 2013 [9] N/F al.2013 [1] Irah Pentacam HR 101(101) 20-46(28±5) M/F 41/60 1 Martin R et al. 2014 [10] China Orbecan II 378(434) 18-67(36,4±93) M/F 62/102 1 Martin R et al. 2014 [10] China ILas Orbecan II 2004(60) 1 27/41 1 Martin R et al. 2015 [12] Iran Orbecan II 2012(1721)	Salouti R et al. 2009 [3]	Iran	Galilei	74(37)	27.4±7.2	M/F 18/56(9/28)	12.01 ±0.61		
	Orbscan II 74(37) 27.4±7.2 M/F 185.69/28) I Hashemi H et al. 2010 [4] Iran Orbscan II 393(410) 14-81(40.7±16.8) M/F 155.244 1 Venkataraman A et al. 2010 [5] India Orbscan 33(37) NA M/F (12.25) 1 Sarchis-Gimeno JA et al. 2013 [5] India Orbscan II 37(337) 18-53(29±7) M/F (12.25) 1 Sarchis-Gimeno JA et al. 2013 [7] Iran Orbscan II 55(25) 22-51(35.04±7.06) M/F 41/60 1 Reinstein DZ et al. 2013 [9] Iran Orbscan II 57(35) 22-51(35.04±7.06) M/F 41/60 1 Martin R et al. 2013 [9] Net al. 2013 [9] Net al. 2013 [9] M/F 41/60 1 1 Martin R et al. 2014 [10] China AL Scan 68(68) 41-84(67.72±9.05) M/F 62/102 1 Martin R et al. 2014 [10] China AL Scan 68(68) 41-84(67.72±9.05) M/F 64/100 1 Martin R et al. 2014 [10] Iran Orbscan II 2002(10181076±8.12) M/F 64/100			EveSvs	74(37)	27.4±7.2	M/F 18/56(9/28)	12.09 ± 0.87		
	Hashemi H et al. 2010 [4] Iran Orbscan I 339(410) 14-81(40.7±16.8) M/F 155/244 1 Venkataraman A et al. 2010 [5] India Orbscan 73(37) NA M/F 122/25) 1 Sanchis-Gimeno JA et al. 2012 [6] Spain Orbscan I 373(37) 18-53(28±7) M/F 1(2/25) 1 Reinstein DZ et al. 2013 [9] Italy Orbscan I 50(25) 22-51(3504±7) M/F 14/60 1 Reinstein DZ et al. 2013 [9] Italy Orbscan I 50(25) 22-51(3504±7) M/F 41/60 1 Martin R et al. 2013 [9] Italy Orbscan I 200(101) 20-46(28±5) M/F 41/60 1 Martin R et al. 2013 [9] China IOLMaster 328(164) 18-67(364±9)3 M/F 41/60 1 Martin R et al. 2014 [11] Iran Orbscan I 20-46(28±5)3 M/F 41/60 1 Martin R et al. 2014 [11] Iran Orbscan I 200(1001) 20-46(28±5)3 M/F 41/60 1 Martin R et al. 2016 [14] Iran Orbscan I 200(1001) <			Orbscan II	74(37)	27.4±7.2	M/F 18/56(9/28)	11.67 ± 0.29		
Venkataraman A et al. 2010 [5] India Orbscant 73(37) NA MF (12/26) 1174-032 Samohis-Gimeno JA et al. 2012 [6] Sami Orbscant 37(37) NA MF (12/26) 1174-032 1194-02 Samohis-Gimeno JA et al. 2012 [6] Sami Orbscant 37(37) 18-35(25) 22-51(55.04±7.06) 11.842.023 1193-022 Reinstein DZ et al. 2013 [9] Tank Porbscant 50(25) 22-51(55.04±7.06) 11.842.023 1193-022 Reinstein DZ et al. 2013 [9] Tank Orbscant 30(101) 20-45(38.54.93) MF 61/160 11.864.037 11814-038 Marin R et al. 2013 [9] Spain Orbscant 328(164) 18-67(364.4493) MF 62/102 1193-040 Marin R et al. 2014 [10] Crina Orbscant 328(164) 18-67(364.4493) MF 62/102 11910-037 Marin R et al. 2016 [14] Tran Orbscant 12-94(67.724.903) MF 62/102 11910-037 Marin R et al. 2016 [14] Tran Orbscant 12-91(57.022) MF 62/141 MA	Venkatarama A et al. 2010 [5] India Orbscan 73(37) NA M/F (12/25) 1 Sanchis-Gimeno J et al. 2012 [6] Eyemetrics 73(37) 18-50(329:17) M/F (12/25) 1 Sanchis-Gimeno J et al. 2012 [6] Spain Orbscan II 50(25) 18-50(35.04±7)60) M/F (12/25) 1 Reinstein DZ et al. 2013 [7] Itapi Orbscan II 50(25) 22-46(28±5) M/F 41/60 1 Sanchis-Gimeno JA et al. 2013 [9] Iran Pentacam HR 101(101) 20-46(28±5) M/F 41/60 1 Salouti R et al. 2013 [9] Iran Orbscan II 328(164) 18-67(36.4±9.3) M/F 62/102 1 Martin R et al. 2014 [10] China AL Scan 68(68) 41-94(67.72±9.05) M/F 62/102 1 Huang J et al. 2014 [10] China AL Scan 68(68) 41-94(67.72±9.05) M/F 63/102 1 Huang J et al. 2016 [11] China IOLMaster 2202(1001) 18-64(67.72±9.05) M/F 63/1224) 1 Hashemi H et al. 2016 [12] Iran Orbscan II	Hashemi H et al. 2010 [4]	Iran	Orbscan II	399(410)	$14-81(40.7\pm16.8)$	M/F 155/244	11.68 ± 0.46	11.76±0.48	11.63 ± 0.45
Bernehis-Gimeno JA et al. 2012 [6] Evenetrics 73(37) MA M/F (12/25) 1132±0.23 119±0.2 Renterio DZ et al. 2013 [7] Itaby Orbesan II 50(25) 22-51(58±5) M/F 1(8) 1193±0.23 119±0.2 Renterio DZ et al. 2013 [7] Itaby Orbesan II 50(25) 22-51(58±5) M/F 41/60 11.76±0.38 1193±0.40 Salouti R et al. 2013 [9] Spain Orbesan II 50(25) 22-46(28±5) M/F 41/60 11.76±0.38 1191±0.38 Martin R et al. 2013 [9] Spain Orbesan II 50(101) 20-46(28±5) M/F 41/60 11.76±0.38 1191±0.38 Martin R et al. 2013 [9] Spain Orbesan II 200(101) 20-46(28±5) M/F 41/60 11.76±0.38 1181±0.38 Huang J et al. 2014 [10] China Orbesan II 200(101) 845(58+5) M/F 21/41 11721±0.44 1180±0.37 Ghartee H et al. 2015 [12] Lina Orbesan II 2000(100) 845(58-055) M/F 21/41 1172±0.44 1180±0.35 Ghartee H t al. 2016 [12] Lin	Banchis-Gimeno Ja et al. 2012 [6] Epemetrics 73(37) NA M/F (12/25) 1 Sanchis-Gimeno Ja et al. 2013 [7] Italy Orbscan II 379(379) 18-53(28±7) M/F (12/25) M/F (12/25) M/F (12/25) 1 Reinstein DZ et al. 2013 [7] Italy Orbscan II 50(25) 220-46(28±5) M/F 41/60 1 Saloui R et al. 2013 [8] Iran Orbscan II 201(101) 20-46(28±5) M/F 41/60 1 Martin R et al. 2013 [9] Spain Orbscan II 201(101) 20-46(28±5) M/F 41/60 1 Martin R et al. 2013 [9] China Orbscan II 201(101) 20-46(28±5) M/F 41/60 1 Martin R et al. 2014 [10] China Orbscan II 238(164) 18-67(36.4±93) M/F 62/102 1 Huang J et al. 2015 [12] Iran Orbscan II 200/Master 100(M00) 8-93(2015468) 1 1 Fu et al. 2016 [14] Iran Orbscan II 100/Master 172/1(171) 40-94(60.72±9055) M/F 41/960 1 F	Venkataraman A et al. 2010 [5]	India	Orbscan	73(37)	NA	M/F (12/25)	1174 ± 0.32		
Sanchis-Gimeno JA et al. 2012 [6] Spain Orbscan II 379(379) $18-53(29\pm7)$ $MF \ 198/181$ 119 ± 0.2 119 ± 0.2 Reinstein DZ et al. 2013 [3] Italy Orbscan IZ $90(25)$ $22-91(35.04\pm706)$ MA 1133 ± 0.28 1193 ± 0.2 Reinstein DZ et al. 2013 [3] Iran Pentacam IZ $90(25)$ $22-91(35.04\pm706)$ MA 1136 ± 0.33 1191 ± 0.2 Martin R et al. 2013 [9] Spain Orbscan IZ $90(25)$ $22-91(35.04\pm3.3)$ $MF \ 41/60$ 1166 ± 0.37 1181 ± 0.38 Martin R et al. 2014 [10] China ALSam $388(68)$ $41-94(67)7\pm9.305$ $MF \ 41/96$ 1169 ± 0.37 1181 ± 0.38 Martin R et al. 2015 [12] Iran Orbscan II $2002(1001)$ $18-67(30+25.0)$ $MF \ 41/96/152.05$ 1160 ± 0.35 Gharaee H et al. 2015 [12] Iran Orbscan II $100Master$ $88(68)$ $41-94(67)7\pm2.905$ $MF \ 41/96/2635$ 1160 ± 0.32 Gharae H et al. 2015 [12] Iran Orbscan II $100(100)$ $8-9(36+25.0)$ $MF \ 41.96/26315$ $117649/26$	Sanchis-Gimeno JA et al. 2012 [6] Spain Orbscan II 379(379) 18-53(29±7) M/F 198/181 Reinstein DZ et al. 2013 [7] Italy Orbscan II 50(25) 22-51(35.04±7)66) MA 1 Reinstein DZ et al. 2013 [9] Iran Pentacam HR 101(101) 20-46(28±5) M/F 41/60 1 Martin R et al. 2013 [9] Spain Orbscan IIZ 101(101) 220-46(28±5) M/F 62/102 1 Martin R et al. 2013 [9] Spain Orbscan IIZ 328(164) 18-67(36.4±9.3) M/F 62/102 1 Martin R et al. 2014 [10] China OLMaster 328(164) 18-67(36.4±9.3) M/F 62/102 1 Huang J et al. 2014 [10] China OLMaster 328(164) 18-67(36.4±9.3) M/F 62/102 1 Hashemi H et al. 2015 [12] Len Orbscan II 2002(1001) 18-45(29.0±58.0) M/F 63/1224) 1 Hashemi H et al. 2016 [15] Iran Orbscan II 1721(1721) 40-91(57.0±8.7) M/F 63/1224) 1 Hashemi H et al. 2016 [14] China IOLMas			Eyemetrics	73(37)	NA	M/F (12/25)	11.92 ± 0.33		
Reinstein DZ et al. 2013 [7]ItalyOrbscan II $50(25)$ $22-51(3504\pm706)$ NA 11.83 ± 0.28 1103 ± 0.40 Salouti R et al. 2013 [9]IanPentacam HR $10(101)$ $20-46(28\pm5)$ M/F 41/60 11.66 ± 0.33 1193 ± 0.40 Martin R et al. 2013 [9]SpainOrbscan II $328(164)$ $18-67(36\pm4\pm9.3)$ M/F 62/102 11.99 ± 0.40 Martin R et al. 2013 [9]SpainOrbscan II $328(164)$ $18-67(36\pm4\pm9.3)$ M/F 62/102 11.99 ± 0.40 Martin R et al. 2014 [10]OhiaAL Scan $68(68)$ $11-64(57,22\pm9.05)$ M/F 62/102 11.90 ± 0.36 Unarg J et al. 2014 [11]IranOrbscan II $2002(1001)$ $18-67(32\pm9.05)$ M/F 27/41NAUharg J et al. 2014 [11]IranOrbscan I $2002(1001)$ $18-67(29.07\pm5.86)$ M/F 27/41NAUharber H et al. 2015 [12]OhinaOrbscan I $2002(1001)$ $18-67(29.07\pm5.86)$ M/F 67/49 $11.807c0.36$ Uharber H et al. 2016 [14]IranOrbscan I $2002(1001)$ $18-45(2907\pm5.86)$ M/F 61/49 $11.807c0.36$ Uharber H et al. 2016 [14]IranOrbscan I $2002(1001)$ $18-45(2907\pm5.86)$ M/F 61/49 $11.807c0.36$ Uber Y et al. 2016 [15]IranOrbscan I $2002(1001)$ $18-45(2907\pm5.86)$ M/F 61/49 $11.807c0.36$ Uharber H et al. 2016 [16]IranOrbscan I $2002(1001)$ $18-45(2907\pm5.86)$ M/F 61/49 $11.877c0.36$ Uber Y et al. 2016 [16]OhianOrbscan I $1007(00)$ $8-392($	Reinstein DZ et al. 2013 [7] Italy Orbscan II 50(25) 22-51(3504±7.06) NA 1 Salouti R et al. 2013 [8] Iran Pentacam HR 101(101) 20-46(28±5) M/F 41/60 1 Martin R et al. 2013 [9] Spain Orbscan II 328(164) 18-67(36.4±9.3) M/F 62/102 1 Martin R et al. 2014 [10] China OLMaster 328(164) 18-67(36.4±9.3) M/F 62/102 1 Huang J et al. 2014 [11] Iran Orbscan II 202(101) 12-46(57.2±9.05) M/F 62/102 1 Huang J et al. 2015 [12] Iran Orbscan II 2002(1001) 18-67(36.4±9.3) M/F 62/102 1 Fu T et al. 2015 [12] Iran Orbscan II 2002(1001) 18-67(50.7±5.2) M/F 63/1224) 1 Fu T et al. 2015 [12] Iran LENSTAR 4737(4787) 40-64(50.7±6.2) M/F 63/1224) 1 Fu T et al. 2016 [14] Iran LENSTAR 4737(4787) 40-64(50.7±6.2) M/F 63/1224) 1 China IOLMaster IOLMaster <td< td=""><td>Sanchis-Gimeno JA et al. 2012 [6]</td><td>Spain</td><td>Orbscan II</td><td>379(379)</td><td>$18-53(29\pm7)$</td><td>M/F 198/181</td><td>11.9 ± 0.2</td><td>11.9 ± 0.2</td><td>11.8±0.2</td></td<>	Sanchis-Gimeno JA et al. 2012 [6]	Spain	Orbscan II	379(379)	$18-53(29\pm7)$	M/F 198/181	11.9 ± 0.2	11.9 ± 0.2	11.8±0.2
Salout R et al. 2013 [g]IranPentacam HR101(101) $20-46(28\pm5)$ $M/F 41/60$ 11.76 \pm 0.381193 \pm 0.40Martin R et al. 2013 [g]SpainOrbscan II $200-46(28\pm5)$ $M/F 41/60$ 11.66 \pm 0.371191 \pm 0.38Martin R et al. 2013 [g]SpainOrbscan II $201(101)$ $20-46(28\pm5)$ $M/F 41/60$ 11.66 \pm 0.371191 \pm 0.38Martin R et al. 2013 [g]SpainOrbscan II $238(164)$ $18-67(364\pm93)$ $M/F 62/102$ 12.99 ± 0.40 1181 \pm 0.38Huang J et al. 2014 [10]ChinaDLMaster $88(68)$ $41-84(67.72\pm9.05)$ $M/F 27/41$ 1127 ± 0.44 1160 ± 0.35 Gharemet H et al. 2015 [12]ChinaDLMaster $68(68)$ $41-84(67.72\pm9.05)$ $M/F 419/1224$ 11.60 ± 0.35 Fu T et al. 2015 [12]IranLENSTAR $473(772+8)$ $M/F 419/1224$ $11.87(mean)$ 11.60 ± 0.35 Ober Y et al. 2016 [14]ChinaDLMaster $100(100)$ $8-392.018\pm5.12$ $M/F 51/49$ $11.37(mean)$ Ober I et al. 2016 [15]KiterNo $100(100)$ $8-392.018\pm5.12$ $M/F 51/49$ $11.87(mean)$ Ober I et al. 2016 [15]KiterIndatter $100(100)$ $8-392.018\pm5.12$ $M/F 51/49$ $11.37(mean)$ Shajari M et al. 2016 [16]GermanyIOLMaster $100(100)$ $8-392.018\pm5.12$ $M/F 51/49$ $11.87(mean)$ Shajari M et al. 2016 [16]GermanyIOLMaster $100(100)$ $8-392.018\pm5.12$ $M/F 17/23$ $12.2-6.51$ Shajari M et al. 2016 [16]Germany <td>Salouti R et al. 2013 [8] Iran Pentacam HR 101(101) 20-46(28 \pm 5) M/F 41/60 1 Martin R et al. 2013 [9] Spain Orbssen IIz 101(101) 20-46(28 \pm 5) M/F 41/60 1 Martin R et al. 2013 [9] Spain Orbssen IIz 328(164) 18-67(38.4 \pm 9.3) M/F 62/102 1 Huang J et al. 2014 [10] China AL Scan 68(68) 41-84(67.72 \pm 9.05) M/F 27/41 1 Huang J et al. 2015 [12] China AL Scan 68(68) 41-84(67.72 \pm 9.05) M/F 27/41 1 Fu T et al. 2015 [12] Iran IOLMaster 68(68) 41-84(67.72 \pm 9.05) M/F 41/9%/58.1% 1 Fu T et al. 2015 [12] Iran IOMaster 100(100) 8-93(20.18 \pm 5.12) M/F 41/9%/58.1% 1 Fu T et al. 2016 [15] Iran LENSTAR 473(4787) 40-64(50.7 \pm 6.2) M/F 41/9%/58.1% 1 China IOLMaster 100(100) 8-39(20.18 \pm 5.12) M/F 51/49 1 China ITan LENSTAR 4737(4787) 40-6</td> <td>Reinstein DZ et al. 2013 [7]</td> <td>Italy</td> <td>Orbscan II</td> <td>50(25)</td> <td>$22-51(35.04\pm7.06)$</td> <td>NA</td> <td>11.83 ± 0.28</td> <td></td> <td></td>	Salouti R et al. 2013 [8] Iran Pentacam HR 101(101) 20-46(28 \pm 5) M/F 41/60 1 Martin R et al. 2013 [9] Spain Orbssen IIz 101(101) 20-46(28 \pm 5) M/F 41/60 1 Martin R et al. 2013 [9] Spain Orbssen IIz 328(164) 18-67(38.4 \pm 9.3) M/F 62/102 1 Huang J et al. 2014 [10] China AL Scan 68(68) 41-84(67.72 \pm 9.05) M/F 27/41 1 Huang J et al. 2015 [12] China AL Scan 68(68) 41-84(67.72 \pm 9.05) M/F 27/41 1 Fu T et al. 2015 [12] Iran IOLMaster 68(68) 41-84(67.72 \pm 9.05) M/F 41/9%/58.1% 1 Fu T et al. 2015 [12] Iran IOMaster 100(100) 8-93(20.18 \pm 5.12) M/F 41/9%/58.1% 1 Fu T et al. 2016 [15] Iran LENSTAR 473(4787) 40-64(50.7 \pm 6.2) M/F 41/9%/58.1% 1 China IOLMaster 100(100) 8-39(20.18 \pm 5.12) M/F 51/49 1 China ITan LENSTAR 4737(4787) 40-6	Reinstein DZ et al. 2013 [7]	Italy	Orbscan II	50(25)	$22-51(35.04\pm7.06)$	NA	11.83 ± 0.28		
Martin R et al. 2013 [9]Corbscan IIz101(101) $20-46(28\pm5)$ M/F 41/6011.66±0.371181±0.38Martin R et al. 2013 [9]SpainOrbscan II $3281(64)$ 18-67/364 ±9.33M/F 62/10211.99±0.401181±0.38Huang J et al. 2014 [10]ChinaAL Scan $3281(64)$ 18-67/364 ±9.33M/F 62/10211.99±0.4011.90±0.35Huang J et al. 2014 [11]ChinaAL Scan $88(68)$ $41-84(67.72\pm9.05)$ M/F 27/41 1127 ± 0.44 10.003Fu T al. 2015 [12]ChinaOhinaAL Scan $68(68)$ $41-84(67.72\pm9.05)$ M/F 27/41 11.87 ± 0.36 11.80±0.35Fu T al. 2015 [12]ChinaOhinaAL Scan $100Master$ $120(10)$ $18-87(20)\pm5.08$ M/F 57/41 NA Chen Y et al. 2016 [13]I-anLENSTAR $478(47)(20)$ 11.87 ± 0.36 11.80 ± 0.35 Chen Y et al. 2016 [14]I-anLENSTAR $478(49)(20)\pm6.2$ M/F 41/9%/51.81 $11.87(mean)$ Chen Y et al. 2016 [15]SwitzerlandPentacam $107(66)$ NA NA $11.87(mean)$ Subarin M et al. 2016 [16]Germany $107(60)$ $8-39(2018\pm5.12)$ M/F 51/49 $11.87(mean)$ Subarin M et al. 2016 [16]Germany $107(66)$ NA NA $11.87(mean)$ Subarin M et al. 2016 [16]Germany $107(66)$ NA NA 11.37 ± 0.34 Subarin M et al. 2016 [16]Germany $107(66)$ $21-71(365\pm15.5)$ M/F 17/23 12.20 ± 0.5 Subarin M et al. 2016 [16] <td< td=""><td>Martin R et al. 2013 [9] Corbscan Iiz 101(101) 20-46(28±5) M/F 41/60 1 Martin R et al. 2013 [9] Spain Orbscan Ii 328(164) 18-67(36.4±9.3) M/F 62/102 1 Huang J et al. 2014 [10] China ALscan 68(68) 41-84(67.72±9.05) M/F 62/102 1 Huang J et al. 2014 [10] China ALscan 68(68) 41-84(67.72±9.05) M/F 62/102 1 Fu T et al. 2015 [12] Iran Orbscan II 2002(1001) 18-45(2907±5.86) M/F 63/1224) 1 Harbmin H et al. 2016 [14] Iran Orbscan II 100(100) 8-39(20.18±5.12) M/F 41.9%/Se.1% 1 Chen Y et al. 2016 [15] China LENSTAR 478/14773 40-64(50.7±6.2) M/F 51/49 1 Chen Y et al. 2016 [16] China LENSTAR 478/14773 40-64(50.7±6.2) M/F 51/49 1 Chen Y et al. 2016 [16] China LENSTAR 478/14773 40-64(50.7±6.5) M/F 51/49 1 Guber I et al. 2016 [14] China LENSTAR 478/14773</td><td>Salouti R et al. 2013 [8]</td><td>Iran</td><td>Pentacam HR</td><td>101(101)</td><td>$20-46(28\pm5)$</td><td>M/F 41/60</td><td>11.76 ± 0.38</td><td>1193 ± 0.40</td><td>11.64 ± 0.32</td></td<>	Martin R et al. 2013 [9] Corbscan Iiz 101(101) 20-46(28±5) M/F 41/60 1 Martin R et al. 2013 [9] Spain Orbscan Ii 328(164) 18-67(36.4±9.3) M/F 62/102 1 Huang J et al. 2014 [10] China ALscan 68(68) 41-84(67.72±9.05) M/F 62/102 1 Huang J et al. 2014 [10] China ALscan 68(68) 41-84(67.72±9.05) M/F 62/102 1 Fu T et al. 2015 [12] Iran Orbscan II 2002(1001) 18-45(2907±5.86) M/F 63/1224) 1 Harbmin H et al. 2016 [14] Iran Orbscan II 100(100) 8-39(20.18±5.12) M/F 41.9%/Se.1% 1 Chen Y et al. 2016 [15] China LENSTAR 478/14773 40-64(50.7±6.2) M/F 51/49 1 Chen Y et al. 2016 [16] China LENSTAR 478/14773 40-64(50.7±6.2) M/F 51/49 1 Chen Y et al. 2016 [16] China LENSTAR 478/14773 40-64(50.7±6.5) M/F 51/49 1 Guber I et al. 2016 [14] China LENSTAR 478/14773	Salouti R et al. 2013 [8]	Iran	Pentacam HR	101(101)	$20-46(28\pm5)$	M/F 41/60	11.76 ± 0.38	1193 ± 0.40	11.64 ± 0.32
Martin R et al. 2013 [9]SpainOrbscan II $328(164)$ $18-67(36.4\pm9.3)$ $M/F 62/102$ 11.69 ± 0.37 11.69 ± 0.40 Huang J et al. 2014 [10]ChinaIOLMaster $328(164)$ $18-67(35.4\pm9.3)$ $M/F 62/102$ 11.69 ± 0.40 Huang J et al. 2014 [11]ChinaIOLMaster $328(164)$ $18-67(35.4\pm9.3)$ $M/F 62/102$ 11.69 ± 0.40 Gharaee H et al. 2014 [11]IranIoLMaster $68(68)$ $41-84(67.7\pm9.05)$ $M/F 27/41$ 112 Gharaee H et al. 2015 [12]ChinaIOLMaster $1721(121)$ $40-91(57.0\pm8.7)$ $M/F 23/616)$ 11.65 ± 0.36 11.60 ± 0.35 Hashemi H et al. 2015 [12]ChinaOrbscan II $2002(1001)$ $8-93(20.18\pm5.12)$ $M/F 51/49$ $11.87-0.34$ 11.66 ± 0.36 Hashemi H et al. 2016 [14]ChinaOrbscan II $100(100)$ $8-93(20.18\pm5.12)$ $M/F 51/49$ $11.87-0.34$ 11.66 ± 0.52 Guber I et al. 2016 [15]SwitzerlandPentacam $107(56)$ NANANA 11.86 ± 0.52 Guber I et al. 2016 [16]Germany $107(56)$ NANA 11.86 ± 0.62 11.65 ± 0.61 Shajari M et al. 2016 [16]Germany $107(56)$ NANA 11.86 ± 0.62 11.65 ± 0.61 Shajari M et al. 2016 [16]Germany $107(56)$ NANA 11.86 ± 0.52 11.65 ± 0.61 Shajari M et al. 2016 [16]Germany $107(56)$ NANA 11.86 ± 0.52 11.65 ± 0.61 Shajari M et al. 2016 [16]Germany $107(56)$ NANA 10.8	Martin R et al. 2013 [9] Spain Orbscan II 328(164) 18-67(38,4±9.3) M/F 62/102 1 Huang J et al. 2014 [10] China AL Scan 68(68) 41-84(67.72±90.5) M/F 62/102 1 Huang J et al. 2014 [11] Iran Orbscan I 328(164) 18-67(38,4±9.3) M/F 62/102 1 Fu T et al. 2014 [11] Iran Orbscan II 2002(1001) 18-45(29.07±5.80) M/F 62/102 1 Fu T et al. 2015 [12] Iran Orbscan II 2002(1001) 18-45(29.07±5.80) M/F 63/1244) 1 Hashemi H et al. 2015 [12] Iran Orbscan II 2002(1001) 18-45(29.07±5.80) M/F 63/1244) 1 Hashemi H et al. 2016 [14] Iran Orbscan II 100(100) 8-39(20.18±5.12) M/F 63/1244) 1 Guber I et al. 2016 [15] Switzerland Pentacam 107(56) NA NA NA 1 Guber I et al. 2016 [16] Switzerland Pentacam H 107(56) NA NA NA NA Suber I et al. 2016 [15] Swit			Orbscan Iiz	101(101)	$20-46(28\pm 5)$	M/F 41/60	11.66 ± 0.37	1181 ± 0.38	11.56 ± 0.32
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	Induction Interview 328(164) 18-67(36.4 \pm 9.3) M/F 62/102 1 Huang J et al. 2014 [10] China AL Scan 68(68) 41-84(67.72 \pm 90.5) M/F 27/41 1 Gharasee He al. 2015 [12] Lens Orbaster 68(68) 41-84(67.72 \pm 90.5) M/F 62/102 1 Fu T et al. 2015 [12] Iran Orbaster 1721(1721) 40-91(57.0 \pm 8.7) M/F 63/14) 1 Hashemi H et al. 2015 [13] Iran China IOLMaster 1721(1721) 40-91(57.0 \pm 8.7) M/F 63/1224) 1 Hashemi H et al. 2016 [14] China IOLMaster 1721(1721) 40-91(57.0 \pm 8.7) M/F 63/1224) 1 Guber I et al. 2016 [15] Switzerland Pentacam 100(100) 8-39(20.18 \pm 5.12) M/F 51/49 1 Guber I et al. 2016 [16] Switzerland Pentacam 107(56) NA NA NA 1 Shijari M et al. 2016 [16] Switzerland Pentacam 107(56) NA NA NA 1 Suber I et al. 2016 [16]	Martin R et al. 2013 [9]	Spain	Orbscan II	328(164)	$18-67(36.4\pm9.3)$	M/F 62/102	11.69 ± 0.37		
	Huang J et al. 2014 [10] China AL Scan 68(68) 41-84(67.72±9.05) M/F 27/41 1 Idharee H al. 2014 [11] Iran IOLMaster 68(68) 41-84(67.72±9.05) M/F 27/41 1 Fu T et al. 2015 [12] Iran Orbaster 68(68) 41-84(6.7.72±9.05) M/F (387/14) 1 Fu T et al. 2015 [12] Iran Orbaster 1721(1721) 40-91(57.02±9.05) M/F (387/14) 1 Hashemi H et al. 2015 [13] Iran LENSTAR 473(4.787) 40-64(50.7±6.2) M/F (497/1224) 1 Ohen Y et al. 2016 [14] Iran LENSTAR 473(4.787) 40-64(50.7±6.2) M/F 41.9%/58.1% 1 Ouber I et al. 2016 [15] China IOLMaster 100(100) 8-39(20.18±5.12) M/F 51/49 1 Guber I et al. 2016 [16] Switzerland Pentacam 107(56) NA NA NA NA Shidari M et al. 2016 [16] Germany IOLMaster 107(56) NA NA NA NA Shidari M et al. 2016 [16] Germany			IOLMaster	328(164)	$18-67(36.4\pm9.3)$	M/F 62/102	12.19 ± 0.40		
	IOLMaster 68(68) 41-84(67.72±9.05) M/F 27/41 Gharaee H et al. 2014 [11] Iran Orbscan II 2002(1001) 18-46(5.72±9.05) M/F 237/41 Fu T et al. 2015 [12] Iran Orbscan II 2002(1001) 18-46(5.72±9.05) M/F 439/Y1224) 1 Hashemi H et al. 2015 [13] Iran LENSTAR 4787(4787) 40-91(57.0±8.07) M/F 419/W581% 1 Orbscan II IOM 00100 8-39(20.18±5.12) M/F 41.9W581% 1 1 Orbscan I Orbscan I 100(100) 8-39(20.18±5.12) M/F 51/49 1 Ouber I et al. 2016 [16] China Orbscan I 100(100) 8-39(20.18±5.12) M/F 17/23 Shajari M et al. 2016 [16] Germany IOLMaster 107(56) NA NA NA Shajari M et al. 2016 [16] Germany IOLMaster 107(56) M/F 17/23 1 1 Shajari M et al. 2016 [16] Germany IOLMaster 107(56) M/F 17/23 1 1 1 1 1 1 1 1 <td>Huang J et al. 2014 [10]</td> <td>China</td> <td>AL Scan</td> <td>68(68)</td> <td>$41 - 84(67.72 \pm 9.05)$</td> <td>M/F 27/41</td> <td>1127 ± 0.44</td> <td></td> <td></td>	Huang J et al. 2014 [10]	China	AL Scan	68(68)	$41 - 84(67.72 \pm 9.05)$	M/F 27/41	1127 ± 0.44		
	Gharaee H et al. 2014 [11] Iran Orbscan II 2002(1001) 18-45(2907±5.86) M/F (385/616) 1 Fu T et al. 2015 [12] China IOLMaster 172(1(1721) 40-91(57).0±8.7) M/F (397/1224) 1 Hashemi H et al. 2015 [13] China ILENSTAR 172(1(1721) 40-91(57).0±8.7) M/F (397/1224) 1 Anahemi H et al. 2016 [14] China Drbscan II 100(100) 8-39(20.18±5.12) M/F 51/49 1 Chen Y et al. 2016 [15] Switzerland Pentacam 107(56) NA NA NA 1 Guber I et al. 2016 [16] Switzerland Pentacam 107(56) NA NA NA 1 Switzerland Pentacam HR 107(56) NA NA NA NA NA 1			IOLMaster	68(68)	$41 - 84(67.72 \pm 9.05)$	M/F 27/41	NA		
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	Fu T et al. 2015 [12] China IOLMaster 1721(1721) 40-91(57.0±8.7) M/F (497/1224) 1 Hashemi H et al. 2015 [13] Iran LENSTAR 478(4.487) 40-91(57.0±8.7) M/F (497/1224) 1 Chen Y et al. 2016 [14] China UCN5acn II 000(100) 8-39(20.18±5.12) M/F 51/49 1 Chen Y et al. 2016 [15] Switzerland Pentacam 100(100) 8-39(20.18±5.12) M/F 51/49 1 Guber I et al. 2016 [15] Switzerland Pentacam 107(56) NA NA 1 Shajari M et al. 2016 [16] Switzerland Pentacam 107(56) NA NA 1 Shajari M et al. 2016 [16] Germany 107(56) NA NA NA 1 Shajari M et al. 2016 [16] Germany 107(56) NA NF 17/23 1 Lenstar 40(40) 21-71(36.5±15.5) M/F 17/23 1 1 1 1 2 1 1 2 1 1 2 1 2 1	Gharaee H et al. 2014 [11]	Iran	Orbscan II	2002(1001)	$18-45(29.07\pm5.86)$	M/F (385/616)	11.65 ± 0.36	11.60 ± 0.35	11.71 ± 0.36
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	Hashemi H et al. 2015 [13] Iran LENSTAR 4787(4787) 40-64(50.7\pm6.2) M/F 41,9%/58.1% 1 Ohen Y et al. 2016 [14] China Orbscan II 1000(100) 8-39(20.18±5.12) M/F 51/49 1 Guber I et al. 2016 [15] Switzerland Orbscan II 100(100) 8-39(20.18±5.12) M/F 51/49 1 Guber I et al. 2016 [15] Switzerland Pentacam 107(56) NA NA 1 Shajari M et al. 2016 [16] Switzerland BioGraph 107(56) NA NA 1 Shajari M et al. 2016 [16] Germany IOLMaster 40(40) 21-71(36.5±15.5) M/F 17/23 Sung Y et al. 2016 [16] LenStar 40(40) 21-71(36.5±15.5) M/F 17/23 Sung Y et al. 2016 [17] Korea Pentacam HR 88(88) (59±13) M/F 23/54 Sung Y et al. 2016 [18] Iran Orbscan II 78(41) 21-71(36.5±15.5) M/F 17/23 Sung Y et al. 2016 [18] Korea Pentacam HR 80(40) 21-71(36.5±15.5) M/F 17/23 Sung Y	Fu T et al. 2015 [12]	China	IOLMaster	1721(1721)	$40 - 91(57.0 \pm 8.7)$	M/F (497/1224)	11.75 ± 0.40		
Chen Y et al. 2016 [14] China Orbscan II 100(100) 8-39(20.18±5.12) M/F 51/49 11.57±0.34 Guber I et al. 2016 [15] Switzerland Trace 100(100) 8-39(20.18±5.12) M/F 51/49 11.33±0.36 Shajari Me tal. 2016 [16] Switzerland Pentacam 107(56) NA NA 11.38±0.52 Shajari Me tal. 2016 [16] Germany IOMaster 40(40) 21-71(36.5±15.5) M/F 17/23 11.8±0.4 Shajari M et al. 2016 [16] Germany IOMaster 40(40) 21-71(36.5±15.5) M/F 17/23 11.8±0.4 Sung Y et al. 2016 [17] Kora Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 12.3±0.4 Sung Y et al. 2016 [17] Kora Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 12.3±0.4 Sung Y et al. 2016 [17] Kora Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 12.3±0.4 Sung Y et al. 2016 [18] Kora Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 12.3±0.4 Sung Y et al. 2016 [18	Chen Y et al. 2016 [14] China Orbscan II 100(100) 8-39(20.18±5.12) M/F 51/49 1 Guber I et al. 2016 [15] Switzerland Pentacam 107(56) NA NA 1 Shajari M et al. 2016 [16] Switzerland Pentacam 107(56) NA NA 1 Shajari M et al. 2016 [16] Switzerland Pentacam 107(56) NA NA 1 Shajari M et al. 2016 [16] Germany IOLMAster 40(40) 21-71(36.5±15.5) M/F 17/23 1 Shajari M et al. 2016 [16] Germany IOLMAster 40(40) 21-71(36.5±15.5) M/F 17/23 1 Sung Y et al. 2016 [17] Korea Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 1 Sung Y et al. 2016 [17] Korea Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 1 Sung Y et al. 2016 [17] Korea Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 1 Sung Y et al. 2016 [17] Ina Na 38(88) 0(40)	Hashemi H et al. 2015 [13]	Iran	LENSTAR	4787(4787)	$40-64(50.7\pm6.2)$	M/F 41.9%/58.1%	11.87(mean)		
	iTrace iTrace 100(100) 8-39(20.18±5.12) M/F 51/49 1 Guber I et al. 2016 [15] Switzerland Pentacam 107(56) NA NA NA 1 Shajari M et al. 2016 [16] Switzerland Pentacam 107(56) NA NA NA 1 Shajari M et al. 2016 [16] Germany IOLMaster 40(40) 21-71(36.5±15.5) M/F 17/23 1 Shajari M et al. 2016 [16] Germany H 40(40) 21-71(36.5±15.5) M/F 17/23 1 Sung Y et al. 2016 [17] Korea Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 1 Sung Y et al. 2016 [17] Korea Pentacam HR 88(88) 5(5±13.5) M/F 17/23 1 Zheng QY et al. 2016 [18] Orbican II 78(41) 21-71(36.5±15.5) M/F 17/23 1 Zheng QY et al. 2016 [19] Iran Orbican II 78(41) 21-71(36.5±13.5) M/F 17/23 1 Zheng QY et al. 2017 [19] Iran Orbican II 78(41) 21-71(36.5±13.5)	Chen Y et al. 2016 [14]	China	Orbscan II	100(100)	$8-39(20.18\pm5.12)$	M/F 51/49	11.57 ± 0.34		
Guber I et al. 2016 [15] Switzerland Pentacam 107(56) NA NA 11.86±0.52 BioGraph BioGraph 107(56) NA NA 12.12±0.51 Shajari M et al. 2016 [16] Germany 107(56) 21-71(36.5±15.5) M/F 17/23 12.12±0.03 Shajari M et al. 2016 [16] Germany 107(56) 21-71(36.5±15.5) M/F 17/23 113.40.4 Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 113.40.4 Sung Y et al. 2016 [17] Koraa Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 12.3±0.4 Sung Y et al. 2016 [18] Koraa Pentacam HR 88(88) (59±13) M/F 17/23 12.0±0.5 Sung Y et al. 2016 [18] China Orbsacn II 78(41) 21-71(36.5±15.5) M/F 17/23 12.0±0.5 Sung Y et al. 2016 [18] China Orbsacn II 78(41) 21-71(36.5±15.5) M/F 17/23 11.3±0.5 Sung Y et al. 2016 [18] China Orbsacn II 78(41) 21-71(36.5±15.5) M/F 53/54 11.1.35±0.25	Guber I et al. 2016 [15] Switzerland Pentacam 107(56) NA NA NA NA NA 1 Shajari M et al. 2016 [16] Sermany IO/Master 107(56) NA NA NA NA 1 Shajari M et al. 2016 [16] Germany IOLMaster 40(40) 21-11(36.5±15.5) M/F 17/23 1 Sung Y et al. 2016 [16] LentStar 40(40) 21-71(36.5±15.5) M/F 17/23 1 Sung Y et al. 2016 [17] Korea Pentacam HR 88(88) 21-71(36.5±15.5) M/F 17/23 1 Sung Y et al. 2016 [17] Korea Pentacam HR 88(88) 21-71(36.5±15.5) M/F 17/23 1 Zheng QY et al. 2016 [18] IChina Orbscan 188(88) 21-71(36.5±15.5) M/F 17/23 1 Zheng QY et al. 2016 [18] Ichina Orbscan 178(41) 21-45(31.21±7.48) M/F 17/23 1 Zalouit R et al. 2016 [18] Ichina Orbscan 100(100) 33-86(65.9±3.33) M/F 58/42 1 Resent study Jo			iTrace	100(100)	$8-39(20.18\pm5.12)$	M/F 51/49	1133 ± 0.36		
BioGraph I07(56) NA NA 12.12±0.51 Shajari M et al. 2016 [16] Germany I07(56) NA NA 12.12±0.51 Shajari M et al. 2016 [16] Germany IOMaster 40(40) 21-71(36.5±15.5) M/F 17/23 12.0±0.3 Pentcam HR 40(40) 21-71(36.5±15.5) M/F 17/23 113±0.4 LenStar 40(40) 21-71(36.5±15.5) M/F 17/23 12.3±0.4 LenStar 40(40) 21-71(36.5±15.5) M/F 17/23 12.0±0.5 Visante OCT 40(40) 21-71(36.5±15.5) M/F 17/23 12.0±0.5 Sung Y et al. 2016 [17] Korea Pentacam HR 88(88) (59±13) M/F 17/23 12.0±0.5 Zheng QY et al. 2016 [18] China Orbican II 78(41) 21-47(31.21±149) 11.4±0.5 Salouti R et al. 2016 [18] China Orbican II 78(41) 21-45(31.21±149) 11.72±0.45 Salouti R et al. 2016 [19] Iran IoM(100) 31-86(65.9±3.3) M/F 58/42 11.72±0.42 Pentacam HR 100(100)	BioGraph IO7(56) NA NA NA I Shajari M et al. 2016 [16] Germany IOLMaster 40(40) 21-71(36.5±15.5) M/F 17/23 I Entracem HR 40(40) 21-71(36.5±15.5) M/F 17/23 M/F 17/23 I LenStar 40(40) 21-71(36.5±15.5) M/F 17/23 M/F 17/23 I Sung Y et al. 2016 [17] Korea Pentacam HR 88(88) 21-71(36.5±15.5) M/F 17/23 I Zheng QY et al. 2016 [18] China Pentacam HR 88(88) (59±13) M/F 24/54 I Zaloui R et al. 2016 [18] China Orbscan II 78(41) 21-43(3.21±7.48) M/F 28/74 I I Saloui R et al. 2017 [19] Iran IOLMaster 100(100) 33-86(65.9±3.3) M/F 58/42 I I Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 I I	Guber I et al. 2016 [15]	Switzerland	Pentacam	107(56)	NA	NA	11.86 ± 0.52		
Shajari M et al. 2016 [16] Germany IOLMaster 40(40) 21-71(36.5±15.5) M/F 17/23 12.0±0.3 Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 118±0.4 Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 118±0.4 LenStar 40(40) 21-71(36.5±15.5) M/F 17/23 12.3±0.4 Visante OCT 40(40) 21-71(36.5±15.5) M/F 17/23 12.3±0.4 Subag Y et al. 2016 [17] Korea Pentacam HR 88(8) 21-71(36.5±15.5) M/F 17/23 12.0±0.5 Subag Y et al. 2016 [18] Korea Pentacam HR 88(8) 21-71(36.5±15.5) M/F 17/23 11.4±0.5 Salouti R et al. 2017 [19] Iran 78(41) 21-45(3.121+24) M/F 52/19 11.3±0.29 Salouti R et al. 2017 [19] Iran IO(100) 33-86(6.5±3.3) M/F 58/42 11.7±0.45 Pentacam HR 100(100) 33-86(6.5±3.3) M/F 58/42 11.7±0.42 10.41±0.42	Shajari M et al. 2016 [16] Germany IOLMaster 40(40) 21-71(36.5±15.5) M/F 17/23 Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 M/F 17/23 LenStar 40(40) 21-71(36.5±15.5) M/F 17/23 M/F 17/23 Sung Y et al. 2016 [17] Korea Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 Sung Y et al. 2016 [17] Korea Pentacam HR 88(88) (59±13) M/F 22/19 1 Zheng QY et al. 2016 [18] China Orbscan II 78(41) 21-46(65.9±33) M/F 52/19 1 Salouti R et al. 2017 [19] Iran IOLMaster 100(100) 33-86(65.9±33) M/F 58/42 1 Present study Johant IOLMaster 303(33) 21-89(54±19) M/F 161/172 1			BioGraph	107(56)	NA	NA	12.12 ± 0.51		
Pentacam HR 40(40) 21-71(36,5±15,5) M/F 17/23 11,8±0.4 LenStar 40(40) 21-71(36,5±15,5) M/F 17/23 11,8±0.4 LenStar 40(40) 21-71(36,5±15,5) M/F 17/23 12,3±0.4 Sung Y et al. 2016 [17] Korea Pentacam HR 840(40) 21-71(36,5±15,5) M/F 17/23 12,3±0.4 Sung Y et al. 2016 [18] Korea Pentacam HR 840(15) 21-71(36,5±15,5) M/F 17/23 12,4±0.5 Salouti R et al. 2016 [18] Korea Pentacam HR 84(15) 21-45(3,1±13+48) M/F 22/19 11,4±0.5 Salouti R et al. 2017 [19] Iran 10LMaster 100(100) 33-86(6,5,9±3.3) M/F 58/42 11,712,40.45 Pentacam HR 100(100) 33-86(6,5,9±3.3) M/F 58/42 11,41±0.42	Pentacam HR 40(40) 21-71(36.5±15.5) M/F 17/23 LenStar 40(40) 21-71(36.5±15.5) M/F 17/23 LenStar 40(40) 21-71(36.5±15.5) M/F 17/23 Sung Y et al. 2016 [17] Korea Pentacam HR 88(88) (59±13) M/F 17/23 Sung Y et al. 2016 [18] Korea Pentacam HR 88(88) (59±13) M/F 34/54 Zhong QY et al. 2016 [18] China Orbscan II 78(41) 21-45(31.21±7.48) M/F 22/19 1 Salouit R et al. 2017 [19] Iran IO(Master 100(100) 33-86(65.9±3.3) M/F 58/42 1 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 1 1 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 1 1 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 1 1	Shajari M et al. 2016 [16]	Germany	IOLMaster	40(40)	$21 - 71(36.5 \pm 15.5)$	M/F 17/23	12.0 ± 0.3		
LenStar LonStar 40(40) 21-71(36.5±15.5) M/F 17/23 12.3±0.4 Nug Y et al. 2016 [17] Kora Visante OCT 40(40) 21-71(36.5±15.5) M/F 17/23 12.0±0.5 Sung Y et al. 2016 [17] Kora Pentacam HR 88(88) (59±13) M/F 34/54 11.4±0.5 Zheng QY et al. 2016 [18] China Pentacam IR 88(81) 21-45(3).21±7.48) M/F 58/42 11.36±0.29 Salouti R et al. 2017 [19] Iran 100(100) 33-86(65.9±3.3) M/F 58/42 11.74±0.42 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 11.74±0.42	LenStar LenStar 40(40) 21-71(36.5±15.5) M/F 17/23 Sung Y et al. 2016 [17] Visante OCT 40(40) 21-71(36.5±15.5) M/F 17/23 Sung Y et al. 2016 [17] Korea Pentacam HR 88(80) (59±13) M/F 24/54 Slowig Y et al. 2016 [18] China Orbican II 78(41) 21-45(3121±7.48) M/F 22/19 1 Saloui R et al. 2016 [19] Iran IOLMaster 100(100) 33-86(65.9±3.3) M/F 58/42 1 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 1 1 Present study Japan JOLMaster 333(333) 21-89(54±19) M/F 161/172 1;			Pentacam HR	40(40)	$21 - 71(36.5 \pm 15.5)$	M/F 17/23	11.8 ±0.4		
Visante OCT 40(40) 21-71(36.5±15.5) M/F 17/23 12.0±0.5 Sung Y et al. 2016 [17] Korea Pentacam HR 88(88) (59±13) M/F 34/54 11.4±0.5 Zheng QY et al. 2016 [18] China Orbica 178(41) 78(41) 78(41) 11.34±0.5 Salouti R et al. 2016 [19] China Orbicater 100(100) 31-46(31.21±17.49) 11.36±0.29 Salouti R et al. 2017 [19] Iran IclMaster 100(100) 31-86(56.9±3.3) M/F 58/42 11.72±0.45 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 11.41±0.42	Visante OCT 40(40) 21-71(36.5±15.5) M/F 17/23 Sung Y et al. 2016 [17] Korea Pentacam HR 88(88) (59±13) M/F 24/54 Zheng QY et al. 2016 [18] China Orbscan II 78(41) 21-45(31.21±7.48) M/F 52/19 1 Salouit R et al. 2017 [19] Iran IOLMaster 100(100) 33-86(65.9±3.3) M/F 58/42 1 Present study Japan IOLMaster 100(100) 33-86(65.9±3.3) M/F 58/42 1			LenStar	40(40)	$21 - 71(36.5 \pm 15.5)$	M/F 17/23	12.3±0.4		
Sung Y et al. 2016 [17] Korea Pentacam HR 88(88) (59±13) M/F 34/54 114±0.5 Zheng QY et al. 2016 [18] China Orbscan II 78(41) 21-45(31.21±7.48) M/F 22/19 11.36±0.29 Salouti R et al. 2017 [19] Iran IOLMaster 100(100) 33-86(65.9±3.3) M/F 58/42 11.72±0.45 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 11.41±0.42	Sung Y et al. 2016 [17] Korea Pentacam HR 88(88) (59±13) M/F 34/54 Zheng QY et al. 2016 [18] China Orbscan II 78(41) 21-45(31.21±7.48) M/F 22/19 1 Salouë R et al. 2017 [19] Iran IOLMaster 100(100) 33-86(65.9±3.3) M/F 58/42 1 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 1 1 Present study Japan IOLMaster 333(333) 21-89(54±19) M/F 161/172 1;			Visante OCT	40(40)	$21 - 71(36.5 \pm 15.5)$	M/F 17/23	12.0 ± 0.5		
Zheng QY et al. 2016 [18] China Orbscan II 78(41) 21-45(31.21±7.48) M/F 22/19 11.36±0.29 Salouti R et al. 2017 [19] Iran IOLMaster 100(100) 33-86(65.9±3.3) M/F 58/42 11.72±0.45 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 11.72±0.45 11.41±0.42	Zheng QY et al. 2016 [18] China Orbscan II 78(41) 21-45(31.21±7.48) M/F 22/19 1 Salouti R et al. 2017 [19] Iran IOLMaster 100(100) 33-86(65.9±3.3) M/F 58/42 1 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 1 1 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 1 1 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 1 1 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 181/172 1	Sung Y et al. 2016 [17]	Korea	Pentacam HR	88(88)	(59 ± 13)	M/F 34/54	11.4 ± 0.5		
Salouti R et al. 2017 [19] Iran IOLMaster 100(100) 33-86(65.9±3.3) M/F 58/42 11.72±0.45 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 11.41±0.42	Salouti R et al. 2017 [19] Iran IOLMaster 100(100) 33-86(65.9±3.3) M/F 58/42 1 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 1 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 1 Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 1 Present study Japan IOLMaster 333(333) 21-89(54±19) M/F 161/172 11	Zheng QY et al. 2016 [18]	China	Orbscan II	78(41)	$21 - 45(31.21 \pm 7.48)$	M/F 22/19	11.36 ± 0.29		
Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 11.41±0.42	Pentacam HR 100(100) 33-86(65.9±3.3) M/F 58/42 1 present study Japan IOLMaster 333(333) 21-89(54±19) M/F 161/172 1;	Salouti R et al. 2017 [19]	Iran	IOLMaster	100(100)	$33 - 86(65.9 \pm 3.3)$	M/F 58/42	11.72 ± 0.45		
	present study Japan IOLMaster 333(333) 21-89(54±19) M/F 161/172 11			Pentacam HR	100(100)	$33 - 86(65.9 \pm 3.3)$	M/F 58/42	11.41 ± 0.42		
present study Japan IOLMaster 333(333) 21-89(54±19) M/F 161/172 12.05±0.44 12.17±0.45		present study	Japan	IOLMaster	333(333)	21-89(54土19)	M/F 161/172	12.05±0.44	12.17土0.45	11.95±0.41

© 2019 Scholars Journal of Applied Medical Sciences | Published by SAS Publishers, India

Our results indicated significantly larger corneal diameters in men. Although Rüfer *et al.* [2] did not find statistically significant differences between male and female, values in male (11.68 ± 0.37 mm) are larger than those in female (11.64 ± 0.47 mm). In addition, corneal diameter in male was larger than that in female in many previous reports [4, 6, 8, 9].

In our study, CHD decreased with increasing age. Rüfer *et al.* [2] reported that age was significantly correlated with a decrease in the corneal diameter, whereas Hashemi et al. [4] found no significant correlation between age and the corneal diameter. However, these different findings may be attributable to ethnic, genetic, and environmental factors [4].

In our study, we evaluate the relation between CHD and AL, CR, ACD, and body height. However, there are few reports that describe the relationship between corneal diameter and other ocular biometrics. Hashemi et al. [13] described that corneal diameter significantly correlated with AL and CR. They indicated that corneas with a larger CR, i.e. flatter surface, are larger in diameter. Hashemi et al. [20] described decreases in AL of the eye with aging. Since AL is one of the important indices of eye size, when it is large, other ocular components would be large as well. There seems to be an optical explanation for this observation. We believe that as part of the emmetropization process in long eyes, which tend to be myopic, the cornea might elongate to increase CR and shift towards hyperopia to compensate for myopia [13]. On the other hand, as demonstrated, corneal diameter directly correlated with spherical equivalent. This relationship is due to the role of CR in different types of refractive error.

There are limitations to this study. First, we did not evaluate the refractive error data in this study. Second, it is necessary to examine the longitudinal changes for each individual. Furthermore, as only relatively normal corneas were measured in this study, the relevance of these results to post-operative corneas or corneas with pathological alterations remains unknown.

CONCLUSIONS

The CHD in Japanese adults was 12.05±0.44mm. The CHD was significantly greater in males than in females and significantly greater in subjects under 50 years of age than in subjects over 50 years of age. The CHD was strongly associated with CR and ACD.

Disclosure

No conflicts of interest were declared in relation to this paper.

REFERENCES

- 1. Wang L, Auffarth GU. White-to-white corneal diameter measurements using the eyemetrics program of the Orbscan topography system. Dev Ophthalmol. 2002; 34: 141-146.
- 2. Rüfer F, Schröder A, Erb C. White-to-white corneal diameter: normal values in healthy humans obtained with the Orbscan II topography system. Cornea. 2005; 24(3): 259-261.
- Salouti R, Nowroozzadeh MH, Zamani M, Ghoreyshi M, Salouti R. Comparison of horizontal corneal diameter measurements using Galilei, EyeSys and Orbscan II systems. Clin Exp Optom. 2009; 92(5): 429-433.
- 4. Hashemi H, KhabazKhoob M, Yazdani K, Mehravaran S, Mohammad K, Fotouhi A. Whiteto-white corneal diameter in the Tehran Eye Study. Cornea. 2010; 29(1): 9-12.
- Venkataraman A, Mardi SK, Pillai S. Comparison of Eyemetrics and Orbscan automated method to determine horizontal corneal diameter. Indian J Ophthalmol. 2010; 58(3): 219-222.
- Sanchis-Gimeno JA, Sanchez-Zuriaga D, Martinez-Soriano F. White-to-white corneal diameter, pupil diameter, central corneal thickness and thinnest corneal thickness values of emmetropic subjects. Surg Radiol Anat. 2012; 34(2): 167-170.
- Reinstein DZ, Lovisolo CF, Archer TJ, Gobbe M. Comparison of postoperative vault height predictability using white-to-white or sulcus diameter-based sizing for the visian implantable collamer lens. J Refract Surg. 2013; 29(1): 30-35.
- Salouti R, Nowroozzadeh MH, Zamani M, Ghoreyshi M, Khodaman AR. Comparison of horizontal corneal diameter measurements using the Orbscan IIz and Pentacam HR systems. Cornea. 2013; 32(11): 1460-1464.
- 9. Martin R, Ortiz S, Rio-Cristobal A. White-towhite corneal diameter differences in moderately and highly myopic eyes: partial coherence interferometry versus scanning-slit topography. J Cataract Refract Surg. 2013; 39(4): 585-589.
- Huang J, Savini G, Li J, Lu W, Wu F, Wang J, Li Y, Feng Y, Wang Q. Evaluation of a new optical biometry device for measurements of ocular components and its comparison with IOL Master. Br J Ophthalmol. 2014; 98(9): 1277-1281.
- 11. Gharaee H, Abrishami M, Shafiee M, Ehsaei A. White-to-white corneal diameter: normal values in healthy Iranian population obtained with the Orbscan II. Int J Ophthalmol. 2014; 7(2): 309-312.
- Fu T, Song YW, Chen ZQ, He JW, Qiao K, Sun XF, Zhang H, Wang JM. Ocular biometry in the adult population in rural central China: a population-based, cross-sectional study. Int J Ophthalmol. 2015; 8(4): 812-817.
- 13. Hashemi H, Khabazkhoob M, Emamian MH, Shariati M, Yekta A, Fotouhi A. White-to-white corneal diameter distribution in an adult

© 2019 Scholars Journal of Applied Medical Sciences | Published by SAS Publishers, India 1657

population. J Curr Ophthalmol. 2015; 27(1-2): 21-24.

- 14. Chen Y, Xia X. Comparison of the Orbscan II topographer and the iTrace aberrometer for the measurements of keratometry and corneal diameter in myopic patients. BMC Ophthalmol. 2016; 16: 33.
- 15. Guber I, Bergin C, Perritaz S, Majo F. Correcting interdevice bias of horizontal white-to-white and sulcus-to-sulcus measures used for implantable collamer lens sizing. Am J Ophthalmol. 2016; 161: 116-125.
- Shajari M, Lehmann UC, Kohnen T. Comparison of corneal diameter and anterior chamber Depth measurements using 4 different devices. Cornea. 2016; 35(6): 838-842.
- 17. Sung Y, Chung S, Nam SM. Novel technique to measure horizontal corneal diameter using a

Scheimpflug image on the Pentacam. Cont Lens Anterior Eye. 2016; 39(3): 234-238.

- Zheng QY, Xu W, Liang GL, Wu J, Shi JT. Preoperative biometric parameters predict the vault after ICL implantation: A retrospective clinical study. Ophthalmic Res. 2016; 56(4): 215-221.
- 19. Salouti R, Nowroozzadeh MH, Tajbakhsh Z, Bagheri M, Ghoreyshi M, Azizzadeh M, Razeghinejad MR. Agreement of corneal diameter measurements obtained by a swept-source biometer and a Scheimpflug-based topographer. Cornea. 2017; 36(11): 1373-1376.
- Hashemi H, Jafarzadehpur E, Ghaderi S, Yekta A, Ostadimoghaddam H, Norouzirad R, Khabazkhoob M. Ocular components during the ages of ocular development. Acta Ophthalmol. 2015; 93: e74-81.

© 2019 Scholars Journal of Applied Medical Sciences | Published by SAS Publishers, India