Review in Different Morphology of Pituitary Gland Using Magnetic Resonances Imaging
Shayma Hamed1*, Ayad CE1, Alaa Ibrahim2,4, Nisreen Hassan2, Anna Mohamed Ahmed2, Nmariq Abdbalrhman2, Kawthar Moh. Sharif Abdurrehman3

1Sudan University of Science and Technology, College of Medical Radiology Sciences, Khartoum, Sudan
2Department of Radiological Sciences, Al-Ghad International College, Tabouk, KSA
3Department of Radiological Sciences, Al-Ghad International College, Riyadh, KSA
4University of Medical Sciences and Technology, Khartoum, Sudan

DOI: 10.36347/sjams.2020.v08i10.037 | Received: 11.10.2020 | Accepted: 25.10.2020 | Published: 29.10.2020

*Corresponding author: Shayma Hamed

Abstract
Magnetic resonance (MR) occurs in the magnetic system that contains both magnetic moments and angular momentum [1]. Various radiological modalities that had been used to study gland such as computed tomography but MRI has proved to be an accurate diagnostic modality for the assessment of pituitary gland. Normal pituitary gland shows variation in size and shape, transient changes in the shape or signal intensity of the pituitary gland appears at different stages of life [2]. The gland tends to be rounded in shape at birth and becomes more flattened with age. This review study aimed to summarize the author’s articles about the shapes of normal pituitary gland when they are using the magnetic resonance imaging as imaging modalities. Authors discussed and illustrated the various shapes of gland are convex, concave most common in females and the flat shape are common in males.

Keywords: Review, Pituitary gland, magnetic resonance imaging

Copyright © 2020 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

BACKGROUND
The pituitary gland (hypophysis cerebri) is a reddish grey, ovoid body which lies within the hypophyseal fossa of the sphenoid bone. The gland measures about 12 mm in transverse and 8 mm in antero-posterior diameter and weighs about 500 mg. It is covered superiorly by diaphragma sellae, which is pierced centrally by an aperture for the infundibulum. Structurally the gland is divided into a larger anterior region (adenohypophysis) and smaller posterior region (neurohypophysis). They differ in structure, development, and their vascular and neural supplies. The gland produces several hormones that regulate growth, metabolism and reproduction. Deviations from the normal functions of the gland certainly derange the harmony of life [3]. Pituitary gland morphology is altered in many situations like Prolactinomas (60%)[4], somatotrophic adenoma(30%) [5] and pituitary adenomas which accounts for 10-15% of all diagnosed intracranial neoplasms[6].

Variation in the pituitary gland shape in sagittal section:

Fig-1: Scheme grade score for the shape evaluated in sagittal views Grade 1 (G1) call “Concave”, Grade 2 (G2) call “Concave” (different than G1, less than center of gland 2 mm.), Grade 3 (G3) call “Flat”[7]
OBJECTIVES

This review study aimed to summarize the author’s articles about the shapes of normal pituitary gland when they are using the magnetic resonance imaging as imaging modalities. Authors discussed and illustrated the various shapes of gland such as convex, concave and flat most common seen in the mid sagittal and coronal images.

MATERIALS AND METHODS

6 articles in different peer reviewed journals were selected by authors and then analyzed and summarized in table1 to compare between different findings. The manuscripts were selected according to the main objective of this review article, any manuscript that were not found as full-text were excluded from this review article. The article was accessed provided by open access internet using Google scholar search.
The most common shape was flat which was seen in 46% of people followed by convex in 31.2% and concave shape in 22.8% [9].

The superior margins of the glands were convex in 19; The superior margins of the glands were concave in 33 patients [10].

The shape of the superior surface of the gland (SS) was convex upper border was more common in females the flat upper surface was more common [11].

This study not focused in shape and reported that there no statistically significant difference between pituitary height and pituitary volume in both sexes [12].

The most of frequency grade of shape, in sagittal views were type of “flat” in male all groups, in female groups higher frequency type of “convex” same as coronal views [7].

Convex upper border was more common in females In males, frequency of flat upper surface was more common [13].

DISCUSSION

This manuscript considered attempt to enhance the role of MR imaging in assessment of pituitary gland shape and elevating accurate method for the measurement in the mid sagittal. Authors found that the mid sagittal and coronal T1-weighted images are the most practical method to evaluate the gland shape.

Table 1 shows the shape different in pituitary gland with convex shape most common in female and flat shape in male. Some authors correlated the different in shape of the gland with gender and age groups Wolpert, S.M et al. 1984 found that concave shape more often in the older than in the younger women vice versa to convex shape more common in younger women[10]. In agreement with Lamichhane, T.R et al. found a higher frequency of convex upper border in female than in male [11]. This difference was much higher in 10-20 year age group. In females, frequency of convex upper margin peaked in 10-20 years age group and in males, it was found in 20-30 year age group. There was no gender difference in the shape of the upper border in 20-30 year age group, though the frequency of flat upper margin was higher in this age group. Sanjay, S.C et al. also noted that the gland was more convex/globular in the younger age group (20-29) but as advanced the superior surface became more concave [14].

Flat superior surface was seen predominantly in the age group (30-39). Consistency with Ikram, M.F et al. Convex upper border was more common in females in < 20 years cases. In males, frequency of flat upper surface was more common. Also found a higher frequency of convex upper border in female (38%) than in male (12%) [13].

This difference was much higher in 11-20 year age group (male=7%, female = 56%). In females, frequency of convex upper margin peaked in 16-20 years age group (71%) and in males, it was found in 20-25 year age group (30%). There was no gender difference in the shape of the upper border in 21 - 30 year age group, though the frequency of flat upper margin was higher in this age group.

Keanninsiri, C et al. The most of frequency grade of shape, in sagittal views were type of “flat” in male all groups (1-3) 58%, 62% and 65% but no
significant (p = 0.724) and 48%, 58% in female groups except in female groups 2(11-20 years) higher frequency type of “convex” equal to 54% include statistic significant (p=0.001). In coronal views most of frequency grade of shape type of “flat” was shown in 64% 64% and 67% in male and no significant (p = 0.746), 44% 38% and 60% in female but in groups 2(11-20 years) tend type to “convex” include this groups was statistic significant (p = 0.016) [7].

CONCLUSION

This review article considers as reference values for the shape of pituitary gland, the midsagittal MR sections reflect the gland morphology more accurately. Authors discussed and illustrated the various shapes of gland are convex, concave most common in females and the flat shape are common in males.

REFERENCES