Outcome of Single Level Instrumented Posterior Lumber Interbody Fusion (PLIF) Using Corticocancellous Bone Chips and Cages in Spondylolisthesis

Mohammed Mohsin Reza¹*, Abdullah Al Mamun Choudhury², Md. Hossain Rasel¹, Abul Kalam Azad³, Humayun Kabir Reza⁴

¹Assistant Registrar (Ortho), National Institute of Traumatology & Orthopaedic Rehabilitation (NITOR), Sher E Bangla Nagar, Dhaka-1207, Bangladesh
²Medical Officer (Ortho), National Institute of Traumatology & Orthopaedic Rehabilitation (NITOR), Sher E Bangla Nagar, Dhaka-1207, Bangladesh
³Junior Consultant (Ortho), 250 Bed General Hospital, Netrokona, Bangladesh
⁴Medical Officer, OSD, Directorate General of Health Services (DGHS), Dhaka, Bangladesh

DOI: 10.36347/sjams.2020.v08i01.101 | Received: 09.12.2019 | Accepted: 22.12.2019 | Published: 08.01.2020

*Corresponding author: Mohammed Mohsin Reza

Abstract

Background: A Posterior Lumbar Interbody Fusion (PLIF) procedure allows the surgeon to insert bone graft and cage into the disc space from a unilateral approach. PLIF fuses the anterior (front) and posterior (back) columns of the spine through a single posterior approach. By using cage, restoration of disc height and indirectly foraminal height can occur. Pedicle screws and rods give immediate stability. Objective: To determine the clinical outcomes of posterior lumbar interbody fusion (PLIF) using cage combined with decompression and stabilization of lumbar spine for spondylolisthesis. Methods: This prospective observational study was conducted in the National Institute of Traumatology Orthopedic and Rehabilitation from July 2015 to June 2017. All spondylolisthetic patients of both sexes age above 18 years were included in this study. A total number of 20 patients were enrolled as per inclusion and exclusion criteria. Diagnosis of spondylolisthesis and instability was made by history, clinical examination and X-ray. Magnetic resonance imaging (MRI) of the lumbosacral spine was done routinely to delineate the intra-spinal pathoanatomy. Surgery was done by posterior lumbar interbody fusion using cage, bone graft and stabilization by pedicle screws and rods. Preoperative and postoperative pain status was recorded by self-evaluated Visual Analog Score (VAS) and disability by Oswestry Disability Index (ODI). Results: Total number of patients were 20 where male was 5(25.0%) and female found 15(75.0%) and mean age group was 43.8±9.7 years. Twelve patients (60%) had spondylolisthesis at L4/L5 level and 8(40%) patients had at L5/S1 level. Regarding clinical assessment, the ODI percentage has been decreased from 58.2±1.6 to 18.2±.4, VAS for back pain has come down from 7.0±0.46 to 2.25±0.55 and VAS for leg pain has come down from 6.6±0.51 to 1.3±0.46 six months after surgery. According to Macnab criteria the overall functional outcome was, 18(90%) found excellent and only 2(100%) found good. Regarding radiological variables of the of the study patients, pre-operatively, mean slip angle was found 15.1±1.2 degree, total lumbar angle 21.0±3.0 degree and mean measurement of slip 31.4%±2.3%. Six months after surgery, mean slip angle 7.6±1.1 degree, total lumbar angle 21.0±3.0 degree and mean measurement of slip was 12.7%±1.0%. There was significant increase in disc space height and foraminal height post-operatively (p value < 0.05). Fusion rate was 100% according to Hackenbaur criteria. Conclusion: This study permits to conclude that spondylolisthesis lumbar spine can be treated with posterior lumbar interbody fusion and spinal stabilization. This method enhances neurological recovery, reduce pain and improve working status with early rehabilitation.

Keywords: Spondylolisthesis, surgery outcome, Surgical Anatomy, pre-operative level.

Copyright © 2020. This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source are credited.

INTRODUCTION

Herbiniaux, a Belgian obstetrician, noted a bony prominence in front of sacrum that caused problems in delivery generally is credited with having first described Spondylolisthesis. The term spondylolisthesis was used by Kilian in 1854 is derived from Greek spondylos, meaning ‘vertebra’ and olisthenie meaning ‘to slip’. Spondylolisthesis is defined as anterior or posterior slipping of one segment of spine on the next lower segment [1]. In 1989, Wiltse and Rothman separated the post-surgical type from the pathologic type producing 6 different classifications that is congenital, isthmic, degenerative, traumatic,
Pathologic and post-surgical, which is the common form used today [2, 3]. Compression of spinal nerve roots by lumbar spinal stenosis (LSS) in spondylolisthesis is a major clinical problem associated with intermittent claudication, pain, numbness, and lack of normal sensitivity. Such compression has been shown to induce neurophysiologic dysfunction, degeneration, and reduced blood flow in nerve roots in animal models and human as well. Reduced blood flow in nerve roots induces neurogenic intermittent claudication [4]. The prevalence of spondylolisthesis and spondylolysis in general population is 6% [5]. Controlled clinical studies comparing conservative and surgical treatment are rare and there are few reports on long-term results. The outcome of those studies favors surgical management over conservative treatment [4]. The most widely used surgical techniques are all based on the principles of decompression and fusion, with or without instrumentation [10]. Lumbar spinal fusion has been established as an effective treatment modality for proper patients with low back and leg pain suffering from degenerative lumbar spinal disorder. Numerous efforts have been undertaken to fulfill the aim of spinal fusion procedure, which is a solid arthrodesis of unstable segment finally relieving patients from pain and restoring their global spinal function. Among various techniques introduced so far, posterior lumbar interbody fusion (PLIF) with instrumentation is considered as one of most solid and biomechanically sound methods for fusion [11]. Several procedures have been described for interbody fusion with or without instrumentation: posterior lumbar interbody fusion (PLIF), anterior lumbar interbody fusion (ALIF), circumferential 360° fusion (front and back) and more recently, the transforaminal lumbar interbody fusion (TLIF) [9]. A posterior lumbar interbody fusion (PLIF) has the advantages of spinal canal decompression, anterior column reconstruction, decompression of foraminar stenosis, and reduction of the sagittal slips from a single posterior approach. The PLIF using double cage has been a standard practice till recently. However, there are many studies now with PLIF using single cages with comparable results and lesser complications [12]. Degenerative spondylolisthesis is a common condition which occurs most frequently in the lower lumbar spine, most commonly at the level of L4/L5. The extent of the slip is usually graded using the Meyerding classification with grades I and II representing up to 25% and 50% displacement respectively. These are referred to as low-grade slips. The initial management of the condition is non-operative. However, should this fail surgical intervention is then considered. Posterolateral Fusion (PLF) and Posterior Lumbar Interbody Fusion (PLIF) are procedures that can be undertaken for the surgical management of degenerative low grade spondylolisthesis. With additional instrumentation and posterolateral fusion, the overall fusion rate has been high, ranging from 96% to 100%, and the clinical success has been satisfactory as reported in the literature. In practice, several kinds of bone grafts have been used for interbody fusion. Aim of the presented study was to evaluate whether the PLIF with cage and instrumentation is effective regarding clinical and functional outcome, fusion rate, structural restoration and complications in treatment of spondylolisthesis. A review by [6], suggested that the indications for surgical treatment are; persistent or recurrent back and/or leg pain or neurogenic claudication, with significant reduction of quality of life, despite a reasonable trial of non-operative treatment (a minimum of 3 months); progressive neurological deficit and bladder or bowel symptoms and symptomatic instability (1998). Did an experimental clinical study of angulatory and translational lumbar spine intervertebral motion using flexion-extension radiographs obtained the lateral plane [7]. These “bending” films were obtained from 59 asymptomatic individuals undergoing routine pre-employment examination. Results indicate that there is 7 to 10 degrees of angulatory motion present in the lumbar spine but a large range of values exist so that norms of angulatory motion cannot be more precisely defined. There is 2 to 3 mm of translational motion present in the lumbar spine at each intervertebral level (1989). Showed a translation greater than 3 mm and angular motion beyond 10° were defined as being unstable, which required surgical treatment (2013) [3]. Conducted a study on a total of 72 patients who underwent posterior lumbar interbody fusion (PLIF) for the management of spondylolisthesis [8]. The first is the method of Meyerding. The anteroposterior (AP) diameter of the superior surface of the lower vertebral body is divided into quarters and a grade of I–IV is assigned to slips of one, two, three or four quarters of the superior vertebra, respectively [14]. The second method, first described by Tailard expresses the degree of slip as a percentage of the AP diameter of the top of the lower vertebra Tailard [15]. Method of measuring slip grading in lateral view x-ray (1977). Shown in a retrospective study from one-hundred forty patients lumbar interbody fusion with metallic cages, resulted in a statistically significant (p<0.01) improvement in foraminal dimensions postoperatively [16, 17], have described the technique of measurement of foraminal height pre-operatively and post-operatively in a degenerative disc disease patient (2015). Showed, for studies of patients with low back problems, the Oswestry Disability Index (ODI) may be a sufficient measure of health status and patient function, without the need for additional condition-specific instruments [18].

OBJECTIVES

A. General Objective

1. To determine the clinical outcomes of posterior lumbar interbody fusion (PLIF) using cage combined with decompression and stabilization of lumbar spine for spondylolisthesis.
B. Specific Objectives

1. To determine the frequency of postoperative back pain in patients of spondylolisthesis.
2. To find out the functional outcome of surgery.
3. To assess the recovery rate from disability.
4. To find out operative complication (per-operative and post-operative).

METHODS

This prospective observational study was conducted in the National Institute of Traumatology Orthopedic and Rehabilitation from July 2015 to June 2017. All spondylolisthetic patients of both sexes age above 18 years were included in this study. A total number of 20 patients were enrolled as per inclusion and exclusion criteria. Diagnosis of spondylolisthesis and instability was made by history, clinical examination and X-ray. Magnetic resonance imaging (MRI) of the lumbosacral spine was done routinely to delineate the intra-spinal pathoanatomy. Surgery was done by posterior lumbar interbody fusion using cage, bone graft and stabilization by pedicle screws and rods. Preoperative and postoperative pain status was recorded by self-evaluated Visual Analog Score (VAS) and disability by Oswestry Disability Index (ODI). Radiologically preoperative and post-operative disc height, foraminal height, angle of total lumbar lordosis and slip reduction, preoperative pelvic parameters (Pelvic tilt, pelvic incidence and sacral slope) were measured in standing lateral films. Hackenberg criteria were used for assessment of bony fusion. The overall functional outcome was assessed by Macnab's criteria.

Analytic Frame Work

Data was processed and analyzed using computer software program Microsoft Excel 2010. The data present on categorical scale was expressed as frequency and corresponding percentage, while the quantitative data was presented as mean and standard deviation (SD). Comparison between preoperative and postoperative data was done. Post-operative final outcome was evaluated using student t-test. For all analyses level of significance will be set at 0.05 and p-value <0.05 was considered significant.

RESULTS

Total number of patients were 20 where male was 5(25.0%) and female found 15(75.0%) and mean age group was 43.8±9.7 years (Table-1). Twelve patients (60%) had spondylolisthesis at L4/L5 level and 8(40%) patients had at L5/S1 level. Regarding clinical assessment, the ODI percentage has been decreased from 58.2±1.6 to 18.2±.4, VAS for back pain has come down from 7.0±0.46 to 2.25±0.55 and VAS for leg pain has come down from 6.6±0.51 to 1.3±0.46 six months after surgery.
Table-3: Radiological variables of all study samples (n=20)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Slip Angle (Degree)</th>
<th>Total Lumbar Angle (Degree)</th>
<th>Measurement of slip %</th>
<th>Disc Space Height mm</th>
<th>Foraminal Height mm</th>
<th>Fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>Mean</td>
<td>15.1</td>
<td>7.6</td>
<td>21.0</td>
<td>31.4</td>
<td>27.3</td>
<td>12.7</td>
</tr>
<tr>
<td>SD</td>
<td>1.6</td>
<td>1.2</td>
<td>3.0</td>
<td>2.3</td>
<td>1.9</td>
<td>1.0</td>
</tr>
<tr>
<td>P value</td>
<td><0.001*</td>
<td><0.001*</td>
<td><0.001*</td>
<td><0.001*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig-2: Results of slip angle (in degree) pre-operatively and 6 months after surgery (n=20)

Slip angle of the patients pre-operatively was 15.1±1.6. Six months after operation, it came down to 7.6±1.2 degree. P value is <0.05 (Table-3 & Figure-2).

After six months follow up, the total lumber angle in degree increased from 21.0±3.0° to 31.4±2.3°. Slip percentage of the patients pre-operatively was 27.3±1.9%. Six months after operation, it came down to 12.7±1.0%. Here, p value is <0.05. Mean disc space height of the patients pre-operatively was 07.6±1.1mm. Six months after operation, it increased to 12.2±1.7mm. Foraminal height of the patients pre-operatively was 13.0±0.8mm. Six months after operation, it increased to 14.7±0.93mm (Figure-3).

Table-4: Pelvic parameters of all study samples (n=20)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Pelvic Incidence (PI)</th>
<th>Sacral slope (SS)</th>
<th>Pelvic tilt (PT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
</tr>
<tr>
<td>Mean</td>
<td>69.6</td>
<td>47.5</td>
<td>53.3</td>
</tr>
<tr>
<td>SD</td>
<td>7.3</td>
<td>5.7</td>
<td>5.2</td>
</tr>
<tr>
<td>p value</td>
<td><0.001*</td>
<td><0.001*</td>
<td><0.001*</td>
</tr>
</tbody>
</table>
Evaluating the pre-operative and post-operative (6 months after operation) mean pelvic incidence (PI) has come down from 69.6±7.3 to 47.5±5.7. Here, the P value is <0.05. Evaluating the pre-operative and post-operative (6 months after operation) mean sacral slope (SS) has come down from 53.3±5.2 to 40.5±2.5. Here, the P value is <0.05. Evaluating the pre-operative and post-operative (6 months after operation) mean pelvic tilt (PT) has come down from 16.6±3.3 to 11.6±1.3. Here, the P value is <0.05 (Figure-4 & Table-4).

![Figure 4](image)

Table 5: Clinical Variables of all study samples (n=20)

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Visual Analog Score Back Pain</th>
<th>Visual Analog Score Leg Pain</th>
<th>Oswestry Disability Index (ODI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
</tr>
<tr>
<td>Mean</td>
<td>7.0</td>
<td>2.25</td>
<td>6.6</td>
</tr>
<tr>
<td>SD</td>
<td>0.46</td>
<td>0.55</td>
<td>0.51</td>
</tr>
<tr>
<td>P value</td>
<td><0.001*</td>
<td><0.001*</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

NB: FHL= Flexor Hallucis Longus, EHL= Extensor Hallucis Longus, TA= Tibialis Anterior

![Figure 6](image)

Evaluating the pre-operative and post-operative (6 months after operation) mean visual analog score (VAS) for back pain, the VAS has come down from 7.0±0.46 to 2.25±0.55. Here, the P value is <0.05 (Figure-5).

![VAS for Back Pain](image)

In the study, the pre-operative VAS for leg pain is 6.6±0.51 and after 6 months follow up is 1.3±0.47. Again, the p value is <0.05 (Figure-6).

![VAS for Leg Pain](image)
The pre-operative ODI of the sample is 58.2%±1.6%. Six months after operation, the ODI reduced to 18.2%±4.4% (Figure-7).

Table-6: Results on motor function assessment pre-operatively and six months after surgery (n=20)

<table>
<thead>
<tr>
<th>Motor deficit</th>
<th>No of patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-operative</td>
<td>12</td>
<td>60.0</td>
</tr>
<tr>
<td>Present</td>
<td>8</td>
<td>40.0</td>
</tr>
<tr>
<td>Absent</td>
<td>2</td>
<td>10.0</td>
</tr>
<tr>
<td>6 months after operation</td>
<td>18</td>
<td>90.0</td>
</tr>
</tbody>
</table>

Pre-operatively, 12 (60.0%) patient had motor deficit (assessed clinically according to MRC grading). After six months of operation, it reduced to 2 (10.0%) (Table-6).

Table-7: Incidence of Major and Minor Operative Complications (n=20)

<table>
<thead>
<tr>
<th>Complications</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor complication</td>
<td>2</td>
<td>10.0</td>
</tr>
<tr>
<td>Major complication</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

In terms of complications, 02 (10.0%) of the patients developed minor complications and none of the patients developed major complication (Table-7).

Table-8: Results on post-operative functional outcome by Macnab criteria (n=20)

<table>
<thead>
<tr>
<th>Post-operative Macnab criteria</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>18</td>
<td>90.0</td>
</tr>
<tr>
<td>Good</td>
<td>2</td>
<td>10.0</td>
</tr>
<tr>
<td>Fair</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Poor</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Regarding the modified Macnab criteria of the study patients, 18(90%) was found excellent in final follow up and only 2(10.0%) found good. According to radiological variables of the of the study patients, pre-operatively, mean slip angle was found 15.1±1.2 degree, total lumbar angle 21.0±3.0 degree and mean measurement of slip 31.4%±2.3%. Six months after surgery, mean slip angle 7.6±1.1 degree, total lumbar angle 21.0±3.0 degree and mean measurement of slip was 12.7%±1.0%. There was significant increase in disc space height and foraminal height post-operatively (p value < 0.05). Fusion rate was 100% according to Hackenberg criteria.

DISCUSSION

In present study, out of 20 patients, 3(15.0%) was 30-34 years old, 4(20.0%) was 35-39 years old, 2(10.0%) was 40-44 years old, 6(30.0%) was 45-49 years old and 5(25.0%) was above 50 years. The mean age was 43.8±9.7 years and the lowest and highest ages were 30 and 65 years respectively. Male was found in 5(25.0%) cases and female was found in 15(75.0%) cases. Reported in a related study mean age 59.4±12.3 years and male 37.5% male and 62.5% female [19]. The concept of lumbar spinal instability has received an increased attention from the clinicians and researchers as a potential cause of chronic low back pain, which has been commonly associated with spondylolisthesis [20]. Restoration of the segmental stability by adequate neural decompression, fusion, and stabilization helps to improve clinical symptoms and achieve normal spinal anatomy. Failure of restoration can result in inadequate clinical improvement potentially leading to poor long term results Panjabi [21]. Significant clinical improvement was observed in posterior lumbar interbody fusion techniques in different spinal disorders including spondylolisthesis and found to be superior due to proper neural decompression, structural restoration, and segmental stabilization that ultimately lead to improved pain, disability, and functional capability [22]. In literatures, evaluation of PLIF in spondylolisthesis spine had been done. Both showed highly significant improvement of pain and disability status [8, 23]. The traditional posterior lumbar fusion has demonstrated acceptable rates of fusion, it requires an extensive incision to retract the posterior muscles and expose the transverse processes adequately. By achieving interbody fusion, a PLIF may be performed without the need for a posterolateral fusion, thereby reducing the amount of muscle retraction without sacrificing the goals of the traditional procedure. By reducing retraction, immediate postoperative pain control has been easier to achieve [24]. In this series improvement of pain status measured by Visual Analog Score (VAS) is, back pain improvement from (07.9±0.46 to 02.25±0.55) and leg pain improvement from (06.6±0.51 to 01.3±0.47), p value of both of which is <0.05 which is statistically significant. In initial series [22], the improvement of VAS score of back pain was (07.18 ± 01.09 to 01.84 ± 0.91) and leg pain improvement was (06.88 ± 01.21 to 01.34 ± 0.97) both
of which is comparable to this study. In this series improvement of disability measured by Oswetry Disability Index (ODI %) is (58.2±01.6) to 18.2± 4.4) after 6 months of follow-up, here also p value is<0.05 which is statistically significant. In the study [25], it was showed that, in 54 patient series Oswetry Disability Index (ODI %) was 60.00 ± 01.21 pre-operatively and 17.09± 0.97 after 6 months of follow-up, which is comparable to this study [25]. According to excellent outcome had been observed around 70% cases in PLIF by using Macnab criteria, which was also comparable to this study where excellent outcome is 90% and 10% is good [26]. The overall satisfactory clinical outcome was not measured by the same criteria in different literatures but even then, the overall outcome had also been similar [27]. Interbody cages are used to restore the disc height, foraminal height and stabilize the affected segment [28]. These parameters have significant correlation regarding structural restoration and maintenance of stability [29]. From this study a significant increase of disc and foraminal height as well as neurological improvement. This study revealed a significant (P < 0.05) rise of mean disc height from 07.6±1.1 to 12.2±1.7mm. The mean foraminal height (MFH) increase was recorded from 13.0±0.8 to 14.7±0.93mm, which was also significant (P < 0.05). In [27], of mean disc height (MDH) raised from 07.76 ± 02.77 to 12.24 ± 01.89 mm and mean foraminal height (MFH) increase was recorded from 13.30 ± 1.55 to 17.50 ± 01.87 mm in their 26 patient series, which is comparable to this study. The increased foraminal height effectively decompresses the nerve roots [29] and restores lumbar lordosis which ultimately maintains the lumbar sagittal profile. Restoration of local and regional lordosis ultimately achieves clinical and biomechanical stability [30, 11] recommended to place the graft anterior to the cage and [28], recommended to apply compression using the graft and cage as a fulcrum to achieve the desiredlordosis. Interbody fusion with cage has been well accepted for its superior fusion results [33]. In our study, the PI in the spondylolisthesis group was higher than that in the normal group (69.6° and 47.5°, respectively, p<0.01), the SS in the spondylolisthesis group was higher than in the normal group (53.3° and 40.5°, respectively, p<0.01) and the PT in the spondylolisthesis group was higher than in the normal group (16.6° and 11.6°, respectively, p<0.01). These results were in accord with the other reported results [31], conclusion that the SS of the spondylolisthesis group was higher than that of the normal group was supported by our results. The pelvic incidence was suggested by [32], to be an anatomical parameter that is correlated with such positional parameters as the sacral slope and pelvic tilt. Therefore, as the PI is increased, the PT and SS will be increased. Among 72 study subjects, 20 male and 52 female and the age ranges from 15 to 68 years with the mean age being 44.38 years were included in the study. Thirty (41.66%) patients had ishmic spondylolisthesis, 26 (36.12%) had congenital spondylolisthesis, and 16 (22.22%) cases had degenerative spondylolisthesis. There were 38(52.77%) cases of grade I, 14 (19.44%) cases of grade II and 20 (27.77%) cases of grade III according to the grading criteria of Meyerding. According to the evaluation criteria used by Stauffer and Coventry, 59 patients (81.94%) got good results, eight patients (11.11%) belonged to the fair group and five cases (6.94%) had the poor results. This study showed that PLIF is one of the effective and reliable techniques for the management of spondylolisthesis. Shown when interbody fusion procedures used in conjunction with a rigid posterior instrumentation system, significantly increasing the initial stiffness of the fused segment above all other constructs [36]. Autografts had been the gold standard for achieving fusion. Placement of autografts anteriorly and impacted before the introduction of cage in all the cases of PLIF with a theoretical background of anterior column load transmission (80%) and enhancement of fusion [33]. The biomechanical concept of “fusion stability” is assessed postoperatively to determine the achievement of stability of fusion area and biomechanically stable spine is achieved only when solid fusion is achieved [34]. Development of pseudarthrosis is one of the most common (range, 05-45%) complications of interbody fusion. In this study, we have achieved 100% fusion rate by using Hackenberg criteria which is comparable to [35] where Pseud arthrosis was present in two (2.60%) patients in their series. In terms of complications, 10% of the patients developed minor complications in current series. 1% reported implant failure rate like screw breakage, screw back up, screw loosening and rod slippage in his large multicentre studies and [36] reported the implant failure in his series of 5%. The implant failure was four (5.55%) [8]. The wound infection rate in this study was 2 cases (10%), which was superficial and treated with regular dressing and intravenous antibiotics. 6.6% of infection in his study on PLIF group and reported wound complications rate was 0.6% to 5%, which was comparable with our result [19, 20, 36]. The criteria used to analyse the overall outcome was proposed by Macnab criteria which is based on relief of back and leg pain, return of employment, restriction of physical activities and use of analgesics for lumbar spine fusion. In this series 18 patients (90%) got excellent results, 2 (10.0%) belonged to the good results. Stauffer got 81% good results with satisfactory clinical outcome which is comparable with our results. Similar study done [37] reported 80% excellent results with satisfactory clinical outcome [38], reported 80% excellent results. To conclude, Posterior Lumbar Interbody Fusion (PLIF) method is effective in relieving symptoms, achieving stability and fusion and lesser complication rates in surgical management of spondylolisthesis.

CONCLUSION

From the above study result, we can say that PLIF is a cost effective, reasonably easy procedure for the management of spondylolisthesis by enhancing
neurological recovery reduction of pain and make the patients able to return to work comfortably.

REFERENCES
26. Audat Z, Moutasem O, Yousef K, Mohammad B. Comparison of clinical and radiological results of posterolateral fusion, posterior lumbar interbody fusion, and radiological results of posterolateral fusion, posterior lumbar interbody fusion.

