Introduction: Larynx is one of the most common sites of head and neck carcinoma. HPV positive oropharyngeal squamous cell carcinoma cases are gradually increasing in number. Compared to oral carcinomas, there is a greater diversity of HPV types are associated with laryngeal carcinosmas. Very few studies have addressed the issue of causation regarding HPV and laryngeal carcinoma. The role of HPV in the nasopharyngeal tumours is controversial. HPV positive status is associated with a significant beneficial impact on prognosis.

Materials and method: Total 53 patients from ENT department, having laryngeal or nasopharyngeal masses are included in this prospective study. During operation, part of the tissue is taken in phosphate buffer solution for detection of HPV by PCR and part of tissue is taken in formalin for histopathology.

Result: Out of 35 cases of laryngeal masses, 32 patients (91.4%) are male, 14 patients (40%) are in 6th decade, 22 patients (62.86%) are smoker, 20 patients (57.14%) presented with hoarseness of voice, 8 patients (22.86%) have mass in both vocal cord, 21 patients (60%) have moderately differentiated squamous cell carcinoma, 6 (17.14%) have vocal cord nodule, 2 (5.71%) have fibro-epithelial polyp with dysplasia, 2 (5.71%) have dysplasia, 2 (5.71%) have squamous cell papilloma with koilocytic changes. Remaining 2 patients have cavernous haemangioma and inverted papilloma. Out of 18 cases of nasopharyngeal masses, 14 patients (77.78%) are male, 5 patients (27.78%) are in 2nd decade and 4 patients (22.22%) are in 6th decade, 9 patients (50%) are smoker, 10 patients (55.56%) presented with swelling in cervical region, fever and weight loss, 9 patients (50%) have undifferentiated non-keratinizing nasopharyngeal carcinoma, 6 patients (33.33%) have nasopharyngeal angiofibroma. Remaining 3 patients have keratinizing squamous cell carcinoma and non-Hodgkin lymphoma. But neither HPV–16 nor HPV–18 is found in any laryngeal or nasopharyngeal cases in this study.

Conclusion: Most of the laryngeal masses are diagnosed as moderately differentiated squamous cell carcinoma and most of the nasopharyngeal masses are non-keratinizing nasopharyngeal carcinoma followed by nasopharyngeal angiofibroma. HPV-16, 18 infection may not be a leading cause of laryngeal or nasopharyngeal mass.

Keywords: PCR, HPV-16, 18, laryngeal mass, nasopharyngeal mass.

Corresponding author: Dr. Anjan Kumar Das
may also be associated with an increased risk of LSCC [11].

While nasopharyngeal carcinoma is relatively uncommon worldwide, it is endemic in certain populations including southern China, Southeast, the Middle East, and North Africa. High-risk human papilloma virus, particularly oncogenic HPV subtypes 16, has recently been established as the primary etiologic agent in a subset of head and neck squamous cell carcinomas, the majority of which localize to the oropharynx and exhibit improved prognosis compared to patients with HPV-negative tumors [12, 13]. Given the similarities between the epithelium and lymphoid tissue of the oropharynx and nasopharynx, there has been recent interest in the potential role of HPV in NPC carcinogenesis. Though the clinical significance of HPV infection in NPC remains unclear still now.

Juvenile nasopharyngeal angiofibroma is a very rare disease. Its incidence has been cited to be 0.05% of all head and neck neoplasms as per many study reports [14]. Juvenile nasopharyngeal angiofibroma has witnessed a four-fold increase in the incidence in the current decade as compared to the 1980s. This suggests some evolving host-agent-environmental interaction or probably a novel etiologic agent operating in this part of the world. With rising incidence of HPV-related head and neck squamous cell cancer, it is likely to affect the postnasal space. Hence the possibility of its implication in JNA cannot be ignored [15].

AIMS AND OBJECTIVES

1. To find out the different histological types of laryngeal mass
2. To find out the different histological types of nasopharyngeal mass
3. To study the association of HPV-16, 18 with different histological types of laryngeal and nasopharyngeal mass.

MATERIALS AND METHODS

It is observational prospective hospital based study from January’18 to June’19 in the department of pathology, biochemistry and Otorhinolaryngology. Those patients, having laryngeal or nasopharyngeal mass, admitted to the Otorhinolaryngology department for the biopsy, included in this study. In operation theatre, part of the mass is taken in phosphate buffer solution for conventional PCR and another part is kept in formalin for histopathology. Tissue in phosphate buffer solution is stored in – 20°C.

The primers to be used in the following:

1) HPV-16 –
Forward primer sequence - 5’ATA TAT GTT AGA TTG AGA GAC AAC 3’
Reverse primer sequence - 5’ GTC TAC GTG TGT GCT TTG TAC GCA C3’

2) HPV-18 –
Forward primer sequence – 5’ CCG AGC ACG ACA GGA GAG GCT 3’
Reverse primer sequence – 5’TGC TTT TCT TCC TCT GAG TCG CTT 3’

RESULT ANALYSIS

Out of 35 patients with laryngeal mass, majority of the study population (91.4%) are males.

Inference: Male preponderance is noticed.
Out of 18 patients with nasopharyngeal mass, majority (77.78%) are male and male to female ratio 3.5.

Inference: Male preponderance is noticed.

Graph-2(a): Age distribution of the patients with laryngeal mass

Inference: Majority of patients with laryngeal mass is in 6th decade.

Graph-2(b): Age distribution of patients with nasopharyngeal mass

Inference: Majority of patients with the nasopharyngeal mass is in 2nd decade, followed by 6th decade.
Inference- Majority of the patients with laryngeal mass have positive history of smoking (62.86%).

Graph-3(b): Distribution of sex with history of smoking among patients with laryngeal mass

Inference- 72.7% male smoker patients have moderately differentiated squamous cell carcinoma.

Graph-3(c): Distribution of sex with history of smoking among patients with nasopharyngeal mass

Inference- In the present study, 50% patients with nasopharyngeal mass have positive history of smoking, whereas, another 50% patients have no history of smoking.

Graph-3(d): Distribution of sex with history of smoking among patients with nasopharyngeal mass

Inference- In this study, 66.7% male smoker patients have undifferentiated non-keratinizing squamous cell carcinoma and 44.44% male non-smoker patients have juvenile nasopharyngeal carcinoma.
Graph 4(a): Distribution of symptoms among patients with laryngeal mass

Inference- Majority of patients with laryngeal mass was with the symptoms of hoarseness of voice.

Graph 4(b): Distribution of symptoms among patients with nasopharyngeal mass

Inference- Majority of patients with nasopharyngeal mass was with the symptoms of swelling in cervical region, fever and weight loss.

Graph 5: Distribution of site of mass by fibre optic laryngoscopic findings among patients with laryngeal mass

Inference- Majority of the laryngeal mass are located at vocal cord (22.86%), follow by right vocal cord (20%), left vocal cord (14.29%) and glottis and supraglottis (14.29%).
Graph-6(a): Distribution of histopathological types among patients with laryngeal mass

Inference- Majority of patients with laryngeal mass have moderately differentiated squamous cell carcinoma (60%) followed by vocal cord nodule (17.14%).

Graph-6(b): Distribution of histopathological types among patients with nasopharyngeal mass

Inference- Majority of patients with nasopharyngeal mass has undifferentiated non-keratinizing NPC (50%), followed by juvenile nasopharyngeal angiofibroma (33.33%).
DISCUSSION

35 patients with laryngeal mass and 18 patients with nasopharyngeal mass are included in the study during the period of one and half year and history, clinical examination, histopathological examination and PCR were performed to ascertain the association of HPV-16, 18 with different histopathological types.
In the present study of 35 patients with laryngeal mass, there are 32 (91.4%) males and 3 (8.6%) females and in patients with nasopharyngeal mass, there are 14 (77.78%) males and 4 (22.22%) female among 18 patients. Majority of patients with laryngeal mass (40%) are in the 51 to 60 years and nasopharyngeal mass are 11-20 years (27.78%). A study by Nitin Arora et al. showed that laryngeal cancers were more common in males (93%), than in female (7%) and it is most prevalent in age group of 51 to 60 years (45%) [16] A study conducted by Hannu S et al. with 302 (95%) males and 16 (5%) females showed that the mean age of men at the time of diagnosis was 62.8 years and that of women 60.8 years. Doloi, P.K. et al. [17] showed incidence of vocal cord nodule more in male with a male-to-female ratio 4:1. Xie SH et al. [18]; showed that the overall male to female ratio of the annual age-standardised incidence rates of nasopharyngeal carcinoma ranged 2.2-3.1. The male to female ratio of NPC incidence increased with age until peaking at ages 55-59 years and a decline thereafter [19]. A study by Coutinho-camillo CM et al. in juvenile nasopharyngeal angiofibroma showed that adolescents and young adults between 14 and 25 years are affected, and there is a distinct male predominance [20].

In this present study, 62.86% patient with laryngeal mass has history of smoking. Among them, 72.7% male smoker patients have moderately differentiated squamous cell carcinoma, 9.09% male smokers have dysplasia, 4.55% male smokers have squamous papilloma with koilocytic changes, 4.55% male smoker patients have inverted papilloma 4.55% female smokers have vocal cord nodule, 4.55% male smoker patients have cavernous haemangiomy. But 38.5% non-smoker male also have moderately differentiated squamous cell carcinoma, 15.4% nonsmoker male have fibroepithelial polyp with dysplasia, 7.69% female nonsmoker patients have squamous papilloma with koilocytic changes, 30.8% nonsmoker male and 7.69% female nonsmoker have vocal cord nodule. National Cancer Registry Program enlists laryngeal cancer as one of the tobacco-related cancer. Rao et al. [21] found that bidi and cigarette smoking to be associated with cancer of the larynx[22]. Pyeko Menach et al. showed that 33 (66%) of the experimental group patients had a positive history of current cigarette smoking compared to controls (6%) and among patients who smoked and did not drink alcohol, 4(20%) had glottic cancer (p=0.001) with an OR of 19.75, which was statistically significant [23]. A study by Silvano Gallus et al., based on the largest published dataset on laryngeal cancer in women, confirms that tobacco smoking is the most important risk for women as for men and tobacco appears to have a greater role in women than in men [24]. Drasko Cikojevic et al. showed that the proportion of smokers was lowest in benign lesion group (72.13%) and highest in malignant lesion group (97.14%) and there was a statistically significant difference in the prevalence of smoking habit between patients with laryngeal tumours and those with benign or precancerous laryngeal lesion (p< 0.001)[25].

In the present study, half of the study population with nasopharyngeal mass have a positive history of smoking and another half(50%) have no history of smoking and 66.7% male smoker and 11.11% female smoker and 22.22% male nonsmoker patients have undifferentiated non keratinizing squamous cell carcinoma. 11.11% male nonsmoker has keratinizing squamous cell carcinoma and 22.22% female nonsmoker patient has non-Hodgkin lymphoma and 22.2% male smoker and 44.44% male nonsmoker patients have juvenile nasopharyngeal angiofibroma. A study by M Long et al. showed that significantly increased risk was only found among male smokers (OR 1.36), not among female smokers (OR 1.58) and significantly increased risk also existed in the differentiated (OR 2.34) and the undifferentiated type of NPC (OR 1.15)[26].

Common presenting symptoms in the present study in case of laryngeal mass are hoarsness in 57.14%, followed by hoarsness and dysphagia in 20% patients, hoarsness and respiratory distress in 17.14% patients, only dysphagia in 5.71% patients and in cases of nasopharyngeal angiofibroma, majority of the patients (55.56%) presented with swelling in cervical region, fever with weight loss, whereas, 33.33% patients have epistaxis and 11.11% have swelling in cervical region and epistaxis. In 2016, Reddy DS et al. showed that out of 50 cases of benign lesions of larynx, 34 (68%) were males and female were 16(32%) and all patients were presented with hoarsness of voice[27]. The symptoms of laryngeal cancer depend on the size and location of the tumour. Symptoms are hoarsness or other voice changes, a lump in the neck, a sore throat or feeling that something stuck in the throat, persistent cough, stridor, bad breath, earache (referred), difficulty swallowing [28]. S. Marc Stokes et al. showed that nasopharyngeal angiofibroma presents as a nasal mass or obstruction or with repeated episodes of epistaxis [29]. Swelling of the lymph nodes in the neck is the initial presentation in many patients of nasopharyngeal carcinoma [30].

In this present study, most common site of laryngeal mass detected by fibre optic laryngoscopy is bilateral vocal cord (22.86%), followed by right vocal cord (20%), glottis and supraglottis (14.29%) and left vocal cord (14.29%), right pyriform fossa (11.43%), right pyriform fossa with arytenoids and aryepiglottic fold (11.43%). Most laryngeal cancers originate in the glottis (true vocal cords, anterior and posterior commissures). Supraglottic cancers (epiglottis, arytenoids and aryepiglottic folds, and false cords) are less common, and subglottic tumours are least frequent [31]. Ayotunde James Fasunla et al. showed that
transglottis (91.8%) was the most common anatomic tumor location [32]. Dinesh Kumar Sharma et al. showed that the majority of the benign tumours in the larynx arose from the glottic region (70%) followed by that of supraglottic region (25%) [33].

In this study, nasopharyngeal masses are detected by endoscopic biopsy and CECT Scan of head and neck and all the masses are located at fossa of Rosenmullar.

In this study, among the patients with laryngeal masses, 60% of them have moderately differentiated squamous cell carcinoma, 5.71% patients have dysplasia, 2.86% patients have inverted papilloma, 17.14% patients have vocal cord nodule, 2.86% patients with cavernous haemangioma, 5.71% patients have squamous papilloma with koliocytic changes and another 5.71% patients have fibro epithelial polyp with dysplasia. Similarly, Dinesh Kumar Sharma et al. showed that squamous cell carcinoma was the most common malignant tumour detected in the larynx and in cases of malignant tumours 100% were squamous cell carcinoma [33]. Manish Sharma et al. have showed in their study that 32% patients have vocal cord nodule and 2% have haemangioma [34]. Aniket R. Buche et al. showed that 45% cases have vocal cord nodule and 5% patients have laryngeal papillomatosis among the patients with benign lesions of larynx [35].

In this study, among the patients with nasopharyngeal mass 50% patients have undifferentiated non keratinizing squamous cell carcinoma, 5.55% have keratinizing squamous cell carcinoma, 11.11% patients have non-Hodgkin lymphoma and rest 33.33% patients have juvenile nasopharyngeal angiofibroma. Rudresha Antapura Haleshappa et al. showed that 84% cases had the WHO Type 3 histology while only 16% cases had the WHO Type 2 histology and none of the cases had well-differentiated keratinizing squamous cell carcinoma. Common symptoms at presentation were neck swelling in 80% cases and nasal obstruction and/or epistaxis in 28% cases [36]. In this study, HPV-16, HPV-18 is not detected by endoscopic biopsy and CECT Scan of head and neck and all the masses are located at fossa of Rosenmullar.

In this study, HPV-16 and HPV-33 were the most commonly detected types [38]. In their study, Davids T et al. identified the specimens having dysplasia and then these specimens were underwent further testing via in situ hybridization for low-risk (6/11) or high-risk (16/18) HPV subtypes. They showed that of the 85 subjects identified to have laryngeal papillomatosis, 24 (28%) demonstrated laryngeal dysplasia, among these, the majority of patients (62%) were positive for HPV 6/11, including high grade dysplasia patients. Three (12%) dysplasia specimens were negative for both high- and low-risk HPV subtypes [39]. In their study, Max Robinson et al. detected high-risk HPV by screening all cases for p16 using immunohistochemistry and HPV DNA by PCR using GP5+/6+ primers and then all cases with p16 overexpression or positive for HPV by PCR were then examined by high-risk HPV DNA in situ hybridization and genotype analysis by PCR. Out of 67 cases, 11 cases (16.4%) showed concurrent overexpression of p16 and evidence of high-risk DNA by in-situ hybridization; the majority were HPV 16 positive. Histologically, there were 2 keratinizing squamous cell carcinoma and 9 non-keratinizing carcinomas. None of the HPV positive cases showed any co-infection with EBV [40].

CONCLUSION

Though this study is too small to conclude, conventional PCR may not enough to diagnose HPV-16,18 from tissue and HPV-16, 18 may not be a leading cause of laryngeal or nasopharyngeal mass.

References

© 2020 Scholars Journal of Applied Medical Sciences | Published by SAS Publishers, India 1453

