Abbreviated Key Title: Sch J App Med Sci ISSN 2347-954X (Print) | ISSN 2320-6691 (Online) Journal homepage: https://saspublishers.com/journal/sjams/home

Applied Biochemistry

Drug-Likeness and Pharmacokinetics of a bis-Phenolic Ligand: Evaluations by Computational Methods

Kamel Mokhnache^{*}, Soraya Madoui, Hanane Khither, Noureddine Charef

Laboratory of Applied Biochemistry, University Ferhat Abbas Setif 1, 19000, Algeria

*Corresponding author: Kamel Mokhnache DOI: 10.36347/sjams.2019.v07i01.031

| Received: 12.01.2019 | Accepted: 22.01.2019 | Published: 24.01.2019

Abstract	Original Research Article

Objectives: The aim of the present work was to predict physico-chemical, biological proprieties, bioactivity, oral bioavailability, Drug-Likeness and pharmacokinetics-toxicity (ADMET) of the ligand 2-[(1*E*)-*N*-{2-[(2-{(*Z*)-[1-(2-hydroxyphenyl) ethylidene] amino}ethyl) amino]ethyl}ethanimidoyl]phenol. **Methods:** In silico, physico-chemical, biological proprieties, bioactivity, oral bioavailability and pharmacokinetics-toxicity (ADMET), of the ligand were predicted by online computer software programs such as Molinspiration, Molsoft, ACD/I-Lab, pkCSM and admetSAR. **Results:** Our results indicate that the ligand acts as drug-like with an excellent maximum passive absorption (100%) and with drug likeness score of 0.21, and has a good oral bioavailability with a score of 0.55, which agrees with drug discovery rules: Lipinski (Pfizer), Ghose (Amgen), Veber (GSK), Egan (Pharmacia), and Muegge (Bayer). Results also showed that the enzymatic inhibitory effect of the ligand with predicted value of 0.01. In addition, non-carcinogenicity and non- mutagenicity were predicted. **Conclusion:** The ligand has an excellent bioavailability and enzymatic inhibitory effect, which was the possibility to be a safe oral drug-candidate in the future. **Keywords:** molecular proprieties, bioactivity prediction, Drug-likeness, ADMET, oral bioavailability.

Copyright © 2019: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source are credited.

INTRODUCTION

Schiff bases are very important ligands in medicinal and pharmaceutical fields because of their wide spectrum of biological activities [1]. Several studies showed that the presence of alone pair of electrons in asp [2] hybridized orbital of a nitrogen atom of the azomethine group is of considerable chemical and biological importance [2]. These Schiff bases display activities such as antibacterial, anticonvulsant, anti-inflammatory, anticancer, antihypertensive, anti-fungal, antipyretic, antimicrobial, anti-HIV, cytotoxic activity, hypnotic, and herbicidal [3]. In addition, the interamolecular hydrogen bonding between the hydroxyl (OH) hydrogen and C=N nitrogen of Schiff bases determines the properties of various molecular systems and plays a significant role in many biochemical mechanisms⁴.In recent years; there has been an increasing interest in the design and development of Schiff base derivatives. In this regard, a large number of heterocyclic Schiff bases have been reported with interesting biological activity including fungicidal, antipyretic, bactericidal. antitumor. antitubercular, anticancer, and sterease inhibitory activities⁵.In addition, published reports indicated that Schiff bases of coumarin are well-known for their fluorescent properties and usefulness as laser dyes [6]. On the other hand, Schiff bases derived from aminopyridines are used as spectrofluorimetric analytical reagents [7]. They are also important intermediates in reactions involving interaction of an enzyme with an amino or a carbonyl group of the substrate [8].

Schiff's base derivatives from murrayanine were reported to possess remarkable anti-oxidant activity [9]. Yousif et al. [10] have described the synthesis of tetra Schiff bases; among the synthesized compounds 1, 2, 4, 5-tetra [5-(4-nitrobenzylidene amino)-1, 3, 4-thiadiazole-2-yl] benzenewas found to be the most potent antimicrobial activity. In addition, Salga et al. [11]; synthesized a series of Schiff bases from 1-(2-Ketoiminoethyl)piperazines, the highest inhibitory effect on human acetylcholinesterase is comparable with that of propidium, a known AChE inhibitor. On other hand, Shantharam and coworkers [12], synthesized and characterized a series of benzene-1,3,5-tricarboxylic acid-mediated Schiff base derivatives; these were considered as novel antiglycating agents. In a similar fashion, the synthesis and antibacterial activity of a Schiff base derived from indoline-2, 3-dione and 2-aminobenzoic acid has been described by Salvat and colleagues13who observed a remarkable effect of this compound against Staphylococcus aureus, due to the presence of a hydroxyl and phenyl groups. On the basis of the above discussion and owing to the bioactivity of Schiff bases, we sought to undertake in silico studies such as physicchemical and biological proprieties, bioactivity, oral bioavailability, pharmacokinetics, and toxicity (ADMET) of the Schiff base ligand 2-[(1E)-N-{2-[(2-{(Z)-[1-(2hydroxyphenyl)ethylidene]

amino}ethyl)amino]ethyl} ethanimidoyl]phenol by means of an online computer software programs.

EXPERIMENTAL SECTION

In silico physico-chemical and biological properties evaluation

Molinspiration (www.molinspiration.com), Molsoft (http://molsoft.com/mprop/) and ACD/I-Lab (http://www.acdlabs.com/) software were employed to calculate the physico-chemical properties of the ligand. In addition, Molinspiration and Molsoft software were used to compute the bioactivity and Drug-likeness model score of the ligand. The absorption percentage (% AB) was calculated using the formula [14, 15]:

AB% = 109 - (0.345 x TPSA).

web **SwissADME** [16] tool (http://www.swissadme.ch) was used to predict the physicochemical properties, lipophilicity, water solubility, bioavailability, and medicinal chemistry of ligand. The pharmacokinetic the parameters: Absorption, Distribution, Metabolism, Excretion and the Toxicity (ADMET) of the ligand can be predicted using pkCSM (http://structure.bioc.cam.ac.uk/pkcsm) [17], and admetSAR (http://www.admetexp.org) database.

RESULTS AND DISCUSSIONS

Molecular properties and bio-activity prediction

The computational method used to evaluate the physico-chemical properties, lipophilicity, water solubility, drug-likeness, bioavailability score, and medicinal chemistry of the synthesized ligand revealed that the compound is a hydrophobic and basic drug, with pKa =12.10 and pKb=10.50. Parameters obtained from computations are shown in Tables 1, 2, 3, and4. Lipophilicity of the ligand was investigated by the following denomination according to the tools used for prediction: miLogP, iLogP, Log P,and MolLogP. The miLogP, iLogP,and MolLogP values of the ligand were below 5, (miLogP = 3.44), (MolLogP =2.22), (iLogP= 3.44), (LogP=3.48), which imply that it has good permeability across cell membrane.

The solubility in water is an important parameter for drug absorption, which demonstrates that high log S values correspond to good absorption [18]. In our results, MolLogS = -3.21 which is >-4. For polarity, results indicate that the ligand has a predicted polar surface area TPSA and MolPSA values of 77.21 and 60.96 $Å^2$, respectively; these results confirm one of the five important conditions for aprimary step of drug discovery process where the polar surface area(TPSA or MolPSA) is with optimal values ≤ 120 Å². In addition, the molecular mass of 339. 44g/mol, which is < 500g/mol. Number of violations is 0. The number of hydrogen bond donors (= 3), which is < 5, (The sum of OHs and NHs) and the number of hydrogen bond acceptors=5, which is <10 (The sum of Os and Ns). The absorption percentage AB% = 82.36%, which is an indication of an excellent bioavailability by oral route (>50%) [19].

Kamel Mokhnache et al., Sch J App Med Sci, January, 2019; 7 (1): 167-173

	r.	Fable-1	l : Ph	ysicoch	emical pro	prieties	of th	e ligand using	gSwi	ss ADM	Esoft	ware	e.	
					Phy	sicocher	nical	proprieties						
MW(g/mol)	l) Number Number		ımber	Fraction	Number		Number of	Nu	Number of		Molar		TPSA	
	of h	eavy	of	arom.	Csp3	of		H-bond	H-I	bond	I	Refra	ctivity	(Ų)
	ato	ms	he	eavy		rotatab	le	acceptors	do	nors				
			at	toms		bonds								
339.43	2	5		12	0.30	8		5		3		103	3.76	77.21
						Lipo	phili	city						
$\operatorname{Log} P_{\mathrm{o/w}}$		L	og P	o/w	Log	${\rm g}P_{ m o/w}$		Log P _{o/w}		Log	$P_{\rm o/w}$		Con	sensus
(iLOGP)		(X	LOG	GP3)	(WL	.OGP)		(MLOGP))	(SILIC	OS-I	T)	Lo	g $P_{ m o/w}$
3.44			2.07	7	3	.01		1.68		4.4	47		2	.93
						Water	solu	bility						
Log S (ESC	DL)	-3	.08		Log S (Ali)		-3.32 Log S		Log S	S (SILICOS-		5-	-6.36	
	-									IT)				
Solubility 2.85e-01		l	Solubility		1	.62e-01 mg/ml	Ι;	Sol	lubili	ity	1	.47e-04		
			g/ml ;					4.78e-04 mol/l					mg/	ml ; 4.33e-
		8.40)e-04	1									0	07 mol/l
mol/l														
Class Soluble			Class			Soluble Clas		Class		Poo	rly soluble			
		-				Drug	-like	ness						
Lipinski Ghose		nose		Veber		Egan		Muegge		Bioa	availability			
												Score		
Yes; 0 violation Yes		Yes			Yes		Ye	es		0.55				
					l	Medicina	al Ch	emistry						
PA	INS				Brenk			Lead-likeness				Synthetic accessibility		
0 alert				1 ale	1 alert: imine_1			No; 1 violation: Rotors>7 2.94			4			

Table-2: Physicochemical proprieties of the ligand usingACD/I-Lab software

	Physical proprieties													
Molar		l	Molar Par		Parachor		Index of	Surface		Density	Po	Polarizability		
Refract	ivity (cm	1 ³)	V	olume	(cm^3)		Refraction		Tension		(g/cm^3)		(cm^3)	
(cm ³)		(cm^3)					(dyne/ci	n)						
100.	$00.11 \pm 0.5 \qquad 304.4 \pm 7.0 \qquad 7$		772.5	5 ± 8.0	1.571 ± 0.05		41.4 ± 7.0		1.11 ± 0.1	39.6	$9\pm0.5\ 10^{-24}$			
	Main physico-chemical determinants													
LogP	рКа	pŀ	Ka	Maxim	um	Pe,		Absorptio	Fraction	LogE	B LogP	LogP	Log(PS*fu,	
	(Acid	(Ba	ase	passive		Jejunum		n rateKa)	unboun	В	S	В	brain)	
)))	absorptio	on (%) (pH=6		(pH=6.5),		d in					
						(cm/s	5)		plasma					
3.48	12.10	10.	.50	100		4.88x1	0-4	0.03 3min ⁻¹	0.24	0.05	-2.2	0.68	-3.5	

Table-3: Physicochemical proprieties of the ligand using Molinspiration software

AB (%)	TPSA	n-ROTB	MV	MŴ	miLogP	n-ON	n-OHNH	Lipinski's
	$(Å^2)$		$(Å^3)$	(g/mol)		(acceptors)	(donors)	violations
-	-	-	-	< 500	≤ 5	< 10	< 5	≤ 1
82.36	77.21	8	330.74	339.44	3.44	5	3	0

Table-4: Physicochemical proprieties of the ligand usingMolsoft software

MolPSA	Number of	MV	MW	MolLogP	MolLogS		HBA	HBD	Drug-
$(Å^2)$	stereo	(A^3)	(g/mol)		Log(moles/L)	Log(moles/L)			likeness
	centers				-	-			model score
60.96	0	365.86	339.19	2.22	-3.21	210.90	5	3	0.21

In addition, our results show that the ligand has a drug-like with an excellent maximum passive absorption (100%) and adrug likeness score of 0.21(Figure 2), and has a good oral bioavailability with a bioavailability score of 0.55, from the five different methods: Lipinski [20] (Pfizer), Ghose[21] (Amgen), Veber [22] (GSK), Egan [23] (Pharmacia) and Muegge [24] (Bayer). These results are in good agreement with those obtained in the radar plot "pink area" of the plot which defines the oral drug-like limits for the six conditions (Figure 3):

• Lipophilicity : XLOGP between – 0.7 and + 5.0

Size :MW between 150 and 500 g/mol

• Polarity : TPSA between 20 and 130 A²

- Solubility : not higher than 6
- Saturation: of carbons in the sp³ hybridization not less than 0.25
- Flexibility: no more than 9 rotatable bonds.

On the other hand, and for synthetic accessibility (SA) determination, results indicate "very easy" for the synthesis of the ligand L, with (SA=2.94). Remarkably, one structural alert was predicted from L which explains the possibility of an unstable or toxic agent, chemically reactive or to have poor pharmacokinetic proprieties [25].

Fig-2: Drug-likeness model score of the ligand

Fig-3: Bioavailability radar of the ligand Bio-activity prediction

The bioactivity scores can be interpreted as: active (bioactivity score > 0), moderately active (bioactivity score: -5.0-0.0) and inactive (bioactivity score < -5.0)²⁶.Bioactivity prediction of Land the value obtained is shown in Table5. The bioactivity score of the ligand towards GPCR ligand, ion channel modulator, nuclear receptor ligand and kinase, protease and enzymes inhibitions, indicated that the ligand exhibits active score on enzyme inhibition with bioactivity score of: 0.01, and moderately active towards GPCR ligand, ion channel modulator, nuclear receptor ligand, kinase inhibitor, and protease inhibitor with bioactivity score of: -0.04, -0.04, -0.05, -0.25 and -0.010, respectively. These results reveal that the Schiff base can act as an enzyme inhibitor.

	Tuble et blouentity preulenon of the Senin Sube inguna								
GPCR	Ion channel	Kinase	Nuclear	Protease	Enzyme				
ligand	modulator	inhibitor	receptor ligand	inhibitor	inhibitor				
-0.04	-0.04	-0.25	-0.05	-0.10	0.01				

Pharmacokinetic parameters and toxicity potential

Tow processes resulted from drug and human body interactions: the first is the effect of drug on human body as a result of activation or inhibition of receptors, blocking of pathways, and the second can be exerted by absorption, distribution, metabolism, and excretion [27]. This last process is the important factor in the drug discovery procedure; pharmacokinetics, which can be defined as the study of different processes

such as absorption, distribution, metabolism and excretion (ADME) of a drug.

Pkc SM			admetSAR						
Model Name	Predicted	Unit	Result	Probability/					
	Value			Unit					
		Absorption	•						
Water solubility	-2.784	Numeric(log mol/L)	-	-					
Caco2 permeability	0.882	Numeric(log Papp in 10 ⁻	Caco2+	0.5819					
1 7		6 cm/s							
Intestinal absorption (human)	87.024	Numeric (% Absorbed)	HIA+	0.9698					
Skin Permeability	-2.773	Numeric (log Kp)	_	-					
P-glycoprotein substrate	Yes	Categorical (Yes/No)	Substrate	0.8263					
P-glycoprotein II inhibitor	No	Categorical (Yes/No)	Non-inhibitor	0.6874					
P-glycoprotein I inhibitor	Yes	Categorical (Yes/No)	-	-					
Renal Organic Cation	-	-	Inhibitor	0.5966					
Transporter									
		Distribution	•						
Subcellular localization	-	-	Mitochondria	0.8310					
VDss (human)	1.261	Numeric (log L/kg)	-	-					
Fraction unbound (human)	0.253	Numeric (Fu)	-	-					
BBB permeability	-0.596	Numeric (log BB)	BBB-	0.5966					
CNS permeability	-2.509	Numeric (log PS)	_	-					
· · · · · ·	Metabolism								
CYP2D6 substrate	Yes	Categorical (Yes/No)	Substrate	0.5930					
CYP3A4 substrate	Yes	Categorical (Yes/No)	Non-substrate	0.6197					
CYP1A2 inhibitior	Yes	Categorical (Yes/No)	Non-inhibitor	0.7311					
CYP2C19 inhibitior	No	Categorical (Yes/No)	Non-inhibitor	0.8911					
CYP2D6 inhibitior	Yes	Categorical (Yes/No)	Inhibitor	0.6691					
CYP3A4 inhibitior	No	Categorical (Yes/No)	Non-inhibitor	0.7543					
CYP Inhibitory Promiscuity	-	-	Low CYP Inhibitory	0.9299					
			Promiscuity						
		Excretion							
Total Clearance	0.753	Numeric (log ml/min/kg)	-	-					
Renal OCT2 substrate	Yes	Categorical (Yes/No)	-	-					
		Toxicity							
AMES toxicity	No	Categorical (Yes/No)	Non AMES toxic	0.7051					
Honey Bee Toxicity	-	-	Low HBT	0.7402					
Carcinogens	-	-	Noncarcinogens	0.7491					
hERG II inhibitor	Yes	Categorical (Yes/No)	Inhibitor	0.7710					
hERG I inhibitor	No	Categorical (Yes/No)	-	-					
Hepatotoxicity	Yes	Categorical (Yes/No)	-	-					
Max. tolerated dose (human)	0.119	Numeric (log mg/kg/day)	-	-					
Oral Rat Acute Toxicity	2.547	Numeric (mol/kg)	2.5122	LD50, mol/kg					
(LD50)									
Oral Rat Chronic Toxicity	1.807	Numeric (log	-	-					
(LOAEL)		mg/kg_bw/day)							
Skin Sensitisation	No	Categorical (Yes/No)	-	-					
T. Pyriformis toxicity	0.879	Numeric (log ug/L)	0.6843	pIGC50, µg/L					
Minnow toxicity	1.398	Numeric (log mM)	-	-					
Fish Toxicity	-	-	1.2667	pLC50, mg/L					

Table-6: Prediction of AD	ME and toxicity prop	rieties of Lusing 1	okCSM and admetSAR
Table-0. I realction of AD	and toxicity prop	inclues of L using	

In the early stages of the drug discovery process, and before experimentation, the prediction of different pharmacokinetics parameters such as absorption, distribution, metabolism, excretion and toxicity are some of the most important aspects of drug development and discovery. The first parameter is the absorption, which can be influenced by a number factors such as solubility, membrane partitioning, metabolism, and transporters^{28,29}.In addition, bloodbrain barrier(BBB) penetration, HIA (Human Intestinal

171

Absorption), human colon adenocarcinoma (Caco-2) cell permeability, P-glycoprotein substrate, Pglycoprotein inhibitor, and renal organic cation transporter arethe factors that influence the drug absorption. ADME and toxicity prediction of the ligand are given in Table6. Results show that the Schiff base exhibits an ability to cross the blood-brain barrier (BBB-), with a probability of 0.5966.In addition, an excellent human intestinal absorption of the ligand was predicted, and a moderate ability to penetrate human colon adenocarcinoma (Caco-2+) calculated, with Caco-2 permeability of 0.9401 cm/s; this result confirms the high drug absorption (AB %) predicted by Molinspiration.

CONCLUSIONS

The physico-chemical, biological proprieties, bioactivity, oral bioavailability and pharmacokinetics, toxicity (ADMET) of the ligand could be predicted by online computer software programs. Results revealed that the ligand has an excellent bioavailability and enzymatic inhibitory effect. Our theoretical results indicate the possibility of using the ligand as a safe drug in the future. However, more work involving animal models may be needed to establish the efficacy and safety of this compound.

Acknowledgments

This work was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS), the Thematic Agency for the Research in Health Sciences (ATRSS), and by the University of Jordan.

Abbreviations used

AB: percentage absorption, TPSA: % topological polar surface area, n-ROTB: number of rotatable bonds, MV: molecular volume, MW: molecular weight, miLog P, MolLogP: logarithm of partition coefficient of compound between n-octanol and water, n-ON acceptors: number of hydrogen bond acceptors, n-OHNH donors: number of hydrogen bonds donors, MolPSA: Polar Surface Area, HBA: Number of Hydrogen Bond Acceptors, HBD: number of Hydrogen Bond Donator, MolLogS :water solubility, Pe, Jejunum: Permeability in Human Jejunum scale (pH=6.5), LogPS: Rate of brain penetration, LogPB : Extent of brain penetration, Log(PS*fu, brain): Brain/plasma equilibration rate.

REFERENCES

- 1. Matelaa G, Amana R, Sharmab C, Chaudharyc S. Synthesis, Characterization and Antimicrobial Evaluation of Diorganotin (IV) Complexes of Schiff Base. Indian Journal of Advances in Chemical Science. 2013;1(3):157-63.
- 2. Al-Jeboori FHA, Al-Shimiesawi TAM, AbdOun MA, Abd-ul-Ridha A, Abdulla AY. Synthesis and characterization of amino acid (phenylalanine)

schiff bases and their metal complexes. Journal of Chemical and Pharmaceutical Research. 2014; 6(8):44-53

- Shahabadi N, Kashanian S, Darabi F. DNA binding and DNA cleavage studies of a water soluble cobalt (II) complex containing dinitrogen Schiff base ligand: The effect of metal on the mode of binding. European journal of medicinal chemistry. 2010 Sep 1;45(9):4239-45.
- Szady-Chelmieniecka A, Grech E, Rozwadowski Z, Dziembowska T, Schilf W, Kamienski B. Multinuclear NMR study of the intramolecular hydrogen bond in Schiff–Mannich bases. Journal of Molecular Structure. 2001 May 30;565:125-8.
- Raoa GK, Kaur R, Sanjay Pai PN. Synthesis and biological evaluation of dibenzo [b, f] azepine-5carboxylic acid [1-(substituted-phenyl)ethylidene]-hydrazides. Der Pharm. Chem. 2011;3:323-9.
- Kachkovski OD, Tolmachev OI, Kobryn LO, Bila EE, Ganushchak MI. Absorption spectra and nature of electron transitions in azomethine dyes as 6derivatives of 2H-2-chromenone. Dyes and pigments. 2004 Nov 1;63(2):203-11.
- Cimerman Z, Miljanić S, Galić N. Schiff bases derived from aminopyridines as spectrofluorimetric analytical reagents. Croatica Chemica Acta. 2000 Feb 1;73(1):81-95.
- 8. Lehlinger AL, "Biochemistry", 2nd Ed. Worth Publisher. 1975, 563-564.
- Ruchi S. Shivhare, Debarshi Kar Mahapatra, Rajani R. Nair, Swati N. Deshmukh. Schiff's base derivatives of murrayanine demonstrated enhanced anti-oxidant activity than its parent moiety. Indian Journal of Pharmaceutical Education and Research. 2016;50(4): 598-604.
- Yousif E, Rentschler E, Salih N, Salimon J, Hameed A, Katan M. Synthesis and antimicrobial screening of tetra Schiff bases of 1, 2, 4, 5-tetra (5amino-1, 3, 4-thiadiazole-2-yl) benzene. Journal of Saudi Chemical Society. 2014 Jul 1;18(3):269-75.
- 11. Salga SM, Ali HM, Abdullah MA, Abdelwahab SI, Wai LK, Buckle MJ, Sukumaran SD, Hadi AH. Synthesis, characterization, acetylcholinesterase inhibition, molecular modeling and antioxidant activities of some novel schiff bases derived from 1-(2-ketoiminoethyl) piperazines. Molecules. 2011 Nov 7;16(11):9316-30.
- Rakesh KP, Shantharam CS, SuyogaVardhan DM, Made Gowda NM, Sridhara MB, Gowda DC, Synthesis and antiglycation activity of benzene-1,3,5-tricarboxylic acid mediated new series of Schiff base derivatives. European journal of pharmaceutical and medicine research, 2016;3(3): 362-367
- 13. Salvat A, Antonnacci L, Fortunato RH, Suárez EY, Godoy HM. Screening of some plants from Northern Argentina for their antimicrobial activity. Letters in applied microbiology. 2001 May;32(5):293-7.

- 14. Zhao YH, Abraham MH, Le J, Hersey A, Luscombe CN, Beck G, Sherborne B, Cooper I. Rate-limited steps of human oral absorption and QSAR studies. Pharmaceutical research. 2002 Oct 1;19(10):1446-57.
- 15. Husain A, Ahmad A, Khan SA, Asif M, Bhutani R, Al-Abbasi FA. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi Pharmaceutical Journal. 2016 Jan 1;24(1):104-14.
- Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Scientific reports. 2017 Mar 3;7:42717.
- 17. Pires DE, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of medicinal chemistry. 2015 Apr 22;58(9):4066-72.
- Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews. 1997 Jan 15;23(1-3):3-25.
- Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery.
 A qualitative and quantitative characterization of known drug databases. Journal of combinatorial chemistry. 1999 Jan 12;1(1):55-68.
- Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry. 2002;45(12):2615-23.
- Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. Journal of medicinal chemistry. 2000 Oct 19;43(21):3867-77.
- Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. Journal of medicinal chemistry. 2001 Jun 7;44(12):1841-6.
- 23. Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, Wyatt PG. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem. 2008 Mar 14;3(3):435-44.
- 24. Raghunath M, Singh A, Viswanathan CL. Molecular descriptors and bioactivity scores of 6substituted benzimidazole-2-carbamates as potential anticancer agents. World Journal of Pharmacy and Pharmaceutical Sciences. 2015 Jan 17;4(4):1438-45.
- Wang Y, Xing J, Xu Y, Zhou N, Peng J, Xiong Z, Liu X, Luo X, Luo C, Chen K, Zheng M. In silico ADME/T modelling for rational drug design.

Quarterly reviews of biophysics. 2015 Nov;48(4):488-515.

- Ungell AL. In vitro absorption studies and their relevance to absorption from the GI tract. Drug development and industrial pharmacy. 1997 Jan 1;23(9):879-92.
- 27. Balimane PV, Chong S, Morrison RA. Current methodologies used for evaluation of intestinal permeability and absorption. Journal of pharmacological and toxicological methods. 2000 Jul 1;44(1):301-12.