Abbreviated Key Title: Sch J Agric Vet Sci ISSN 2348–8883 (Print) | ISSN 2348–1854 (Online) Journal homepage: <u>https://saspublishers.com</u>

Technical and Hydraulic Studies for the Development of a 5HA Site for Irrigation Purposes in the FADAMA2 Valley (Tahoua-Niger)

Yerima Bako Djibo Aboubacar¹*, Alou Sani², Guero Yadji³, Soumana Idrissa Souleymane⁴

¹Department of Vegetals Production and Irrigation, University of Djibo Hamani de Tahoua, Niger

²Regional Directorate of Rural Engineering of Tahoua, Niger

³Soil Dynamics Laboratory, Abdou Moumouni University of Niamey, Niger

⁴Regional Directorate of Rural Engineering of Tahoua, Niger

DOI: https://doi.org/10.36347/sjavs.2025.v12i02.002

| **Received:** 29.12.2024 | **Accepted:** 03.02.2025 | **Published:** 06.02.2025

*Corresponding author: Yerima Bako Djibo Aboubacar

Department of Vegetals Production and Irrigation, University of Djibo Hamani de Tahoua, Niger

Abstract

Original Research Article

This article deals with the technical and hydraulic studies for the development of a 5HA site for irrigation purposes in the FADAMA2 valley, in commune 1 of Tahoua. The objective of this study is to: propose a sustainable development plan for an irrigated area of 5 ha in the said valley in order to improve agricultural productivity and the living conditions of farmers through irrigated production. The methodology adopted consisted of carrying out socio-economic, topographical, hydraulic, hydrological, pedological and environmental studies at this site. The results of the study reveal: (i) the support of the population of Founkoye for this project, (ii) the topographical surveys allowed the determination of the surface area (5 ha), (iii) the determination of the different hydrological parameters, (iv) pedological studies which made it possible to determine the suitability of the soil for irrigated crops. These results contribute to the design and sizing of the development as well as the estimated cost of the work. The summary environmental and social impact study highlighted positive and negative impacts for which mitigation measures are proposed in the environmental and social management plan. The financial analysis is carried out to determine the financial feasibility of this development project.

Keywords: Technical and hydraulic studies, site development; environmental impact; estimated cost, Fadama Valley2. **Copyright © 2025 The Author(s):** This is an open-access article distributed under the terms of the Creative Commons Attribution **4.0 International License (CC BY-NC 4.0)** which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

1. INTRODUCTION

Niger, located in West Africa, characterized by a vast area of 1,267,000 km² and geographical diversity, ranging from the desert areas of the Sahara to the fertile valleys of the south. Agriculture, an essential pillar of the Nigerien economy, occupies a preponderant place in the country's economy (45.2% of GDP in 2010) and employs a large part of the population while contributing to food security. However, the country faces many challenges, particularly on the climatic level, a variable climate, frequent periods of drought and rains poorly distributed in time and space. Added to these are the depletion of rainfed crop lands; for example, the yield of millet in the Tahoua region increased from 582 kg/ha in 2001 to 475 kg/ha in 2014 (RN, 2012). In view of the above, the State has placed emphasis on the development of irrigation to ensure food security in Niger.

This development of irrigation is undoubtedly possible through the strengthening, multiplication and revitalization of the main means of production which are water and land and the development of land for the purposes of agricultural production (BM, 2008). It is with this in mind that this document was envisaged. The aim of this study is to propose a sustainable development plan for a 5ha irrigated perimeter site in the Fadama valley, commune 1 of Tahoua, aiming to improve agricultural productivity and the living conditions of farmers. Therefore, the points will be studied:

- Evaluate the irrigation needs of the crops most suited to the area;
- Develop a detailed development plan integrating irrigation techniques;
- Analyze the hydrological, pedological, environmental and financial characteristics of the valley.

This article will be based on a bibliographic review, field and office work

Citation: Yerima Bako Djibo Aboubacar, Alou Sani, Guero Yadji, Soumana Idrissa Souleymane. Technical and Hydraulic Studies for the Development of a 5HA Site for Irrigation Purposes in the FADAMA2 Valley (Tahoua-Niger). Sch J Agric Vet Sci, 2025 Feb 12(2): 99-108.

2. Presentation of the study area

The urban commune of Tahoua straddles the canton of Kalfou and the canton of Tahoua, both (2) in the department of Tahoua. It is located between 5° 02" and $5^{\circ}23'$ East longitude and 14°45 and 15°01' North latitude. It is some 550 km from Niamey, the capital of Niger.

The overall potential of renewable groundwater resources each year is estimated at 1.2 billion m3 of which only 2% is exploited. The Continental Intercalaire/Hamadian aquifer whose depth of catchment works varies from 100 to 800 m and a specific flow rate of up to 16 m3/h/m. The Fadama study area belongs to the Tahoua 1 commune, as illustrated in Figure 1.

Figure 1: Administrative map of the municipal district of Tahoua 1

3. MATERIAL ET METHODS

3.1. Material

The materials used for the proper conduct of the work of this study consist of:

- ✓ A service vehicle;
- ✓ A camera for taking images in situ;
- ✓ An investigation sheet;
- ✓ A note-taking notebook;
- $\checkmark \quad A \text{ laptop for analyses;}$
- Excel and Word software for data entry, analysis and processing;

- ✓ Two FAO software programs for calculating crop water requirements: climwat and cropwat;
- ✓ Total station with its accessories (tripod, rod and prism) for topographical studies;
- ✓ A USB key for data transfers and a GPS for location.

3.2 Methods

The success and credibility of the results of a study are predicated on the methodology.

© 2025 Scholars Journal of Agriculture and Veterinary Sciences | Published by SAS Publishers, India

100

In this specific case, the methodology adopted consists initially of researching documents and archives at the level of the departmental directorate of rural engineering of Tahoua, then of a socio-economic survey and finally of the technical study of the development.

3.2.1 Data collection

The field investigation is crucial in this study, it allows us to collect information allowing us to make a judicious choice concerning the speculations and dimensioning of the irrigation network, the constraints linked to production, the choice of the means of draining...etc.

During the visit to the site, we were first able to carry out the topographical survey with the GPS to determine the perimeter and surface area. The operation consisted of first determining the points which will constitute the framework of the work. For this purpose, a polygon of four points and an antenna were identified for carrying out the survey. The rectangular coordinates of all the different points were recorded using GPS.

3.2.2 Data processing and analysis

It relates to the processing and analysis of all the different data collected in the field to lead to the technical study.

Indeed, all the data collected will make it possible to carry out technical studies which must provide precise answers on the following aspects;

- Topographic study;
- Soil study;
- Hydrogeological study:
- Agronomic study;
- Socio-economic study;
- Environmental assessment of the development project.

3.2.3 Socio-economic study mission

A general assembly was held at the site level in order to collect the aspirations of the populations on the dynamic situation of the site under study.

Wishes were expressed by the populations questioned to make this valley productive as before in order to limit the massive rural exodus of able-bodied workers.

It was gathered during this study, the need expressed by the producing populations at the site level to be able to benefit equally from all the lands. They also want respect for integrated and concerted management of water and land resources.

4. RESULTS AND DISCUSSION

4.1. Results

4.1.1 Topography study

The topographical work for our case allowed us to appreciate the shape and topographical characteristics, to determine the surface area of the land which provides information on the site and allows us to make judicious use according to the objective to be achieved. The topographical work is subdivided respectively into two (2) stages:

- ٠ Field survey (field work);
- Data processing and plan determination (office work).

4.1.2 Topographic survey in the field

The field work consists of reconnaissance of the site in order to determine the working method, the composition of the topographical team and the materials to be used.

4.1.3 Data processing (office work)

Generally speaking, all the data collected in the field was analyzed and processed in the office with a view to designing and sizing the development.

The data collected in the field is processed on a computer before being transformed for the purpose of developing the plan. The following steps are performed:

- Data entry and calculation of coordinates in • Excel;
- Transformation of data into TXT (Text: Tabulator-separator);
- Development of the plan;
- Dressing and tracing of level curves

4.1.4 Soil study

In the study of land development for agricultural production, the pedological study makes it possible to determine the suitability of the soil for suitable crops. Table 1 provides a summary of this study.

	Table 1: Summary of the soil study at the Fadama 2 site level							
Municipality	Site	Pedological	Dominant soil	Amendment	Nature of the			
		Suitability of the Site	type		amendment			
Municipality of	Founkoye	Excellent	Sol limoneux et sol	No				
Tahoua 1	Fadama 2		argileux					

T 1 1 0

4.1.5 Socio-economic study

We had to speak with the future beneficiaries in order to gather their points of view in relation to the development of the site. Table 2 gives the results of this interview.

© 2025 Scholars Journal of Agriculture and Veterinary Sciences | Published by SAS Publishers, India

101

Yerima Bako Djibo Aboubacar et al, Sch J Agric Vet Sci, Feb, 2025; 12(2): 99-108

Department	Municipal	ity		Distance from site	
Tahoua	Municipal	district of Tahoua	1	1 km from the site	
Site	Land	Motivation of	Contraints	Proposal	Recommendations
	Status	the population		of solutions	
Founkoye	Family	Site operated	• Transformation and	Arrangements and	Regular monitoring and
Fadama 2	(heritage)	for 20 years,	conservation;	training for	maintenance,
		with a	• Marketing	producers on	developing a sense of
		workforce of	problem;	innovative	belonging among the
		11 operators	• Thorn fence on part	practices	entire population

a

4.1.6 Agronomic studies

a.) Calculation of water needs in Fadama 2

Calculations of crop water requirements were made using CLIMWAT and CROPWAT software developed by FAO.

The basic data used are those of the Tahoua meteorological station taken from the FAO database contained in the tables below:

Table 3: F	Reference	Evapot	ranspiration	(FTO)) at Fadama 2

Month	Darkness	Section	Tmoyen	p/100	Coefficients		ET0/month	ET0/day		
					0,03114	0,2396	45,7	813		
January	16,9	31,9	24,4	0,0798	0,999416	1928,08			153,77	5,13
February	18,8	34	26,4	0,0744	1,061696	2019,48			159,52	5,32
March	22,8	39,4	31,1	0,0843	1,208054	2234,27			227,54	7,58
April	27,2	41,2	34,2	0,0842	1,304588	2375,94			260,99	8,70
May	29,3	41,1	35,2	0,0895	1,335728	2421,64			289,50	9,65
June	26,2	37,7	31,95	0,0876	1,234523	2273,12			245,82	8,19
July	24,8	35,1	29,95	0,0901	1,172243	2181,72			230,43	7,68
August	24,9	34,6	29,75	0,0879	1,166015	2172,58			222,67	7,42
September	25,1	37,3	31,2	0,0826	1,211168	2238,84			223,98	7,47
October	24	38,4	31,2	0,0827	1,211168	2238,84			224,25	7,48
November	20,23	36,1	28,165	0,0778	1,116658	2100,14			182,45	6,08
December	17,8	32,9	25,35	0,0789	1,028999	1971,5			160,06	5,34

Reference: Tahoua meteorological station

Four (4) most dominant speculations on the crops practiced and envisaged after the development were retained for the calculations of water requirements with the CLIWAT and CROP WAT software. These are corn, onion, cabbage and potato.

b.) Calculation of the maximum evapotranspiration of the speculations planned for Fadama 2

Table 4 gives the monthly ETM of corn on the Fadama 2 site to be designed using CLIMWAT and CROPWAT software.

Table 4:	Calculations	of monthly	corn ETM	at Fadama 2
I GOIC II	Culculations	or monony	COLUMN TO THE	av i adama

Month	Period	Cycle	Duration of phases (day)	ET0/j	Kc	ETM/p	ETM/month
December	20	Initial	20	5,335	0,30	32,01	76,62
December		Initial		5,335	0,30		
December	11	Growth	35	5,335	0,76	44,60	
January	24	Growth		5,126	0,76	93,49	139,06
January		Growth		5,126	0,76		
January	7	Mi-saison	40	5,126	1,27	45,57	
February	28	Mi-saison		5,317	1,27	189,08	189,08
February		Mi-saison		5,317	1,27		
March	5	Mi-saison		5,317	1,27	33,76	191,52
March	26	Off-season	30	7,585	0,80	157,76	
March		Off-season		7,585	0,80		
March		Off-season		7,585	0,80		
April	4	Off-season		8,70	0,80	27,84	27,84
Total	125		125				624,12
Total ETM	I/ corn cv	cle					

b.1) ETM calculations for onions

Table 5 gives the monthly ETM of corn on the Fadama 2 site to be designed using CLIMWAT and CROPWAT software.

Period	Duration	ET0/day	Kc	ETM	ETM/Oct
1/10 -12/10	11	7,48	0,6	49,368	134,64
12/10-23/10	11	7,48	0,6	49,368	
23/10-31/10	8	7,48	0,6	35,904	
30/10-3/11	2	6,08	0,6	7,296	109,44
2/11-13/11	11	6,08	0,6	40,128	
13/11-24/11	11	6,08	0,6	40,128	
24/11-30/11	6	6,08	0,6	21,888	
30/11-5/12	5	5,34	1,05	28,035	173,817
5/12-16/12	11	5,34	1,05	61,677	
16/12-27/12	11	5,34	1,05	61,677	
27/12-31/12	4	5,34	1,05	22,428	
31/12-7/01	7	5,13	1,05	37,7055	96,957
7/01-18/01	11	5,13	1,05	59,2515	
Total ETM/	onion cycle				514,854

Table 5: ETM calculations for onion cultivation

b.2) Calculation of ETM chou at Fadama 2

Table 6 gives the ETM calculated for cabbage at Fadama 2 using CLIMWAT and CROPWAT software.

Table (b: Calculatio	on of ETM 1	for cab	bage at F	adama 2
Period	Duration	ET0/day	Kc	ETM	ETM/Month
1/02 -9/02	9	5,32	0,5	23,94	86,98
9/02-18/02	9	5,32	0,5	23,94	
18/02-27/02	9	5,32	0,5	23,94	
27/02-31/02	4	7,58	0,5	15,16	
31/02-5/03	5	7,58	0,75	28,425	176,43
5/03-14/03	9	7,58	0,75	51,165	
14/03-23/03	9	7,58	0,75	51,165	
23/03-30/03	7	8,7	0,75	45,675	
30/03-2/04	2	8,7	1,05	18,27	264,915
2/04-11/04	9	8,7	1,05	82,215	
11/04-20/04	9	8,7	1,05	82,215	
20/04-29/04	9	8,7	1,05	82,215	
Total ETM/	Cvcle du cho	Ju			528,325

Table 6: Calculation of ETM for cabbage at Fadama 2

b.3) Calculation of potato ETMs at Fadama 2

Table 7 gives the calculated ETM of cabbage at Fadama 2 using the CLIMWAT and CROPWAT software.

Table 7: ETM calculations for	r potatoes at Fadama 2	

	1401011	Billi calculations for	poraroe			
Month	Phases	Duration of phases	ET0/j	Kc	ETM/p	ETM/Month
December	Initial	25	5,335	0,50	66,69	91,34
December	Initial		5,335	0,50		
December	Growth	30	5,335	0,77	24,65	
January	Growth		5,126	0,77	94,72	135,98
January	Growth		5,126	0,77		
January	Mid- season	45	5,126	1,15	41,26	
February	Mid- season		5,317	1,15	171,22	171,22
February	Mid- season		5,317	1,15		
March	Mid- season		5,317	1,15	61,15	180,61
March	Off- season	30	7,585	0,75	119,46	
March	Off- season		7,585	0,75		
April	Off- season		8,700	0,75	58,72	58,72
Total cycle		130				
	Total ETM/	potato cycle 637,87				

c.) Summary of ETM and monthly water needs

Table 8 gives a summary of ETM and monthly water requirements at the Fadama 2 site using CLIMWAT and CROPWAT software.

Cultures	ETM /cycle	ETM/ peak month	Water requirement per peak month	Water requirement
				L/m ² /day
But	624,121	191,523	191,523	6,178
Onion	514,854	173,817	173,817	5,794
Tomato	412,830	178,089	178,089	5,936
Cabbage	528,325	264,915	264,915	8,831
Potato	637,871	180,61	231,801	5,826

Table 8: Summary of ETM and monthly water needs at the Fadama 2 site

The result of this table shows that the highest ETM/cycle is that of potato (637,871 mm) and the highest ETM of the peak month is that of cabbage ($264,915 \text{ mm/month} = 8,831 \text{ L/m}^2$ /d). The calculations of water requirements were carried out on the basis of the ETM of the peak month of cabbage which is the most unfavorable case to cover the needs of all the plants considered and over all the cultural phases of their vegetative cycle.

d.) Calculation of raw water requirements on the Fadama 2 site

Table 9 gives the calculation of raw water needs on the Fadama 2 site (Founkoye).

Table 9: Calculation of raw water requirements on the Fadama 2 site (Founkoye)

	mined area	ined surface (m ²)	able Area) (m2)	· water irement per m2) day	ork efficiency fornia)	Total water requirement of plants		Autre besoin (5%)	Besoin brut
Site	Deteı (ha)	Retai area	Irrig. (80%	Daily requi	Netw (Cali	l/day	m³/day	m ^{3/} day	m ³ /day
Founkoye Fadama 2	5	50000	40000	8,83	85%	415529,412	415,529	20,776	436,306

By considering the daily water requirements and the efficiency of the network, the gross water requirement is determined: the result obtained is 436.306m3/D.

4.1.7 Determination of water points for irrigation water (boreholes)

Table 10 gives the determination of water points for irrigation water supply for the Fadama 2 site.

Table 10: Determi	nation of	water poin	ts for irrigation w	vater supply for	• the Fadar	na 2 site

ites	tross surface area (Sb) stained (m ²)	et irrigable area (m²) 0% of (Sb)	Gross water requirement (BB) per site		Flow rate mobilized per site to satisfy the irrigation dose	Flow mobilizable by drilling	Number of drilling 15m3/h necessary	Number of drilling retained
Ň	9 2	Z 5	m ³ /j	m ³ /h	m ³ /h	m ³ /h		
Founkoye Fadama 2	50000	45000	467,47	58,43	57,85	15	3,86	4

The choice of the number of boreholes retained is due to the fact that the irrigation will not be continuous over the entire surface area of the sites but according to water towers and that only half of the land will be irrigated per day.

Table 11 gives the Hydraulic, Geological and Hydrogeological report at Fadama 2.

© 2025 Scholars Journal of Agriculture and Veterinary Sciences | Published by SAS Publishers, India

		Table 11: Hydraulic, Geol	ogical and Hydrogeolo	gical Rep	ort at Fada	ıma 2 si	te	
City	of Tahoua							
\mathbf{N}° of order	Department	Municipality	Site	Water sources	Types of tablecloth	Table depth (m)	Static level of the water table (m)	Drawdown level (m)
5	Tahoua	Municipality of Tahoua 1	Founkoye Fadama 2	drilling	phreatic	20	10	

4.1.8 Calculation of the number of water points required for the site

Table 12 gives the determination of water points (boreholes) for the Fadama 2 site.

Table 1	2: Deter	<u>minatior</u>	<u>ı of water</u>	<u>points (bore</u>	holes) for the F	<u>'adama 2</u>	site	
ites	ross surface area 3b) retained (m²)	et irrigable area n2) 90% of (Sb)	Gross water requirement (BB) per site		Flow rate mobilized per site to satisfy the irrigation dose	Flow mobilizable by drilling	Number of drilling 15m3/h necessary	Number of drilling retained
Si	5 S	u) N	m3/j	m3/h	m3/h	m3/h		
Founkoye Fadama 2	50000	45000	467,47	58,43	57,85	15	3,86	4

By setting an objective of 15m3/h flow rate per drilling to be carried out, the number of drillings necessary to irrigate the irrigable areas of the site is calculated.

4.1.9 Sizing of structures and means of drainage Basic data

The basic data used in the design of structures and means of drainage are, among others:

- The area of the perimeter;
- The depth of the water table;
- The depth of the projected drilling;
- The static level;

Table 13 shows the basic data on the sizing of structures and means of drainage.

Table 13: Basic data on the sizing of structures and means of drainage							
SitesareaTable depthDepth of projected drillingStatic level of the water table							
	(ha)	(m)	(m)	(m)			
Founkoye Fadama 2 5 20 25 5							

4.1.10 Determination of the HTM, characteristics of the pumps and solar generator

The total head was calculated by the Manning Strickler formula using the spreadsheet developed by the Ministry of Hydraulics.

$$HMT = Hg\acute{e}o + \Delta H + \frac{\Delta P}{\rho \times g}$$

• Hgeo: level difference between the level of the suction plane (dynamic level) and the discharge level at the water tower level (in m);

• Δ H: pressure losses in the supply pipe (in m);

• ΔP : pressure variation between suction and discharge point;

• ρ: density of water (in kg/m3);

g: acceleration of gravity (in m/s2).

Table 14 gives the HTM, characteristics of the pumps and the solar generator for the Fadama2 site.

Table 14: HTM, characteristics of the pumps and the solar generator for the Fadama2 site

Site	Depth of planned drilling (m)	Calculated HMT (m)	HMT retained	Choice of solar submersible pumps (15m3/b) (CRUNDEOS)	Inner bore diameter	Solar generator (Wc)
Founkoye Fadama 2	25	23.56	25	SP 17-3 MS 402	180	3406

© 2025 Scholars Journal of Agriculture and Veterinary Sciences | Published by SAS Publishers, India

105

After calculating the HMT and depending on the flow rates retained, the choice of pumps was made using the GRUNFOS chart, the result is summarized in the table above

4.1.11 Sizing of the System on the developed site

After determining the boreholes, pumps and solar generators, the development plan is designed on the basis of the topographical plan and taking into account the configuration of the land, in particular its topography and its geometric shape. Then using a spreadsheet the diameters of the pipes are determined.

Remember that two networks are chosen according to their effectiveness depending on the type of culture. The semi-Californian network for market gardening and sprinkler irrigation for forage crops. For the Californian network, each borehole supplies 3 to 4 storage basins from which a distribution ramp carrying watering terminals is connected.

Taking into account the data obtained above, a diameter of $\oint 90$ is adopted for the delivery pipes and $\oint 63$ for the distribution ramps for the Californian network.

For the sprinkler irrigation network, the main pipes are $\phi 63$ and the secondary pipes and booms are $\phi 50$ in diameter.

4.1.12 Financial analysis of the development work on the Fadama 2 site

a.) Investment Summary

Table 15 gives a summary of the investment in development work on the Fadama 2 site.

Department	Municipality	Site	Amount of PPI market gardeners network	Closing amount	Basin Amount	Drilling amount	Total amount for the site
City of	District Municipality	Founkoye	7 651 000	12 651 333	6 812 796	36 290 000	63 405 129
Tahoua	1	Fadama 2					

Table 15: Summary of the investment in development work on the Fadama 2 site

b.) Calculation of financial profitability

Two sites were selected to verify the financial profitability of the project, one for the market gardening sites and another for the forage crops. Dewatering means: Solar submersible pump Irrigation system: semi-California Area exploited: 5 ha

Table 16 gives the calculation of the financial profitability of the development work on the Fadama 2 site.

Table 16: Calcu	ilation of finar	ncial profital	oility of d	evelopmen	nt work	on the Fadar	na 2 site

Tuble 101 Cule	anation of final	icial prolitab	my or acter	spinene worn	on the rada	
Label	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
Produits						
Tomato	-	4 640 000	4 872 000	4 918 400	4 964 800	5 011 200
Patato	-	5 856 000	6 148 800	6 207 360	6 265 920	6 324 480
Onion	-	28 800 000	30 240 000	30 528 000	30 816 000	31 104 000
Total product	-	39 296 000	41 260 800	41 653 760	42 046 720	42 439 680
Charge						
Development cost	53 629 111	-	-	-	-	-
Inputs	-	105 000	105 000	105 000	105 000	105 000
Workforce	-	150 000	150 000	150 000	150 000	150 000
Total Charge	53 629 111	255 000	255 000	255 000	255 000	255 000
Chash Flow	- 53 629 111	39 041 000	41 005 800	41 398 760	41 791 720	42 184 680

Table 17 gives the investment cost and the rate of return for the development work on the Fadama 2 site.

Table 17: Investment cost, rate of return on development work on the Fadama 2 site

Investment cost	53629111
Rate of return	12%
duration of the site development project (year)	5

Table 18 gives the investment cost and the rate of return for the development work on the Fadama 2 site.

Element	Abbreviation	Values	Interpretation
Net Present Value	VAN	93 881 431 CFA	Rentable
Internal rate of return	TRI	70%	Profitable
Profitability Index	IP	2,75	Profitable

Table 18: Investment cost, rate of return on development work on the Fadama 2 site

Table 19 gives a summary of the environmental report of the development work on the Fadama 2 site.

	Table 19: Summary of the environmental report of the development work on the Fadama 2 sit
37:1	a da Tahaya

N° of order	Department	Municipality	Site	Main environmental	Main Social	Mitigation measures	Mitigation measures
				threats	Threats		
5	City of Tahoua	District Municipality 1	Founkoye Fadama 2	No major risk	None	None	None

5. DISCUSSION

The development of a 5 ha area in the Fadama valley, commune of Tahoua, represents an ambitious project aimed at improving agricultural productivity, food security and the living conditions of farmers. This project requires a multidimensional approach that integrates topographical, pedological, hydrological and hydrogeological, environmental and socio-economic considerations.

Therefore, a detailed study of the irrigation infrastructure in place is important to ensure that the new developments are complementary and effective. This is supported by Tappan *et al.*, (2009) and UNDP (2016) who emphasize the need to assess existing irrigation infrastructure before launching a new development project.

The soils of the Fadama valley are mainly heavy soils (loamy and clayey), rich in nutrients but infiltration is very low. Water may sit for a long time or run off leading to flooding or water erosion. During our interview, the beneficiaries wanted the developed site to be protected from water erosion. The work of KANE *et al.*, (2020) and Zin (2020) corroborates our results. Indeed, for developed land with heavy soil, they recommend the use of soil conservation techniques, such as terraces and retaining walls, to limit erosion.

Regarding the socio-economic study, at all stages of the development project, the beneficiaries were involved and claim to be optimistic about the success of this development of the Fadama2 valley. These results are consistent with those by Saidou (2019) and Farrington (1999) who emphasize the importance of the approach that promotes the involvement of communities in decision-making. This method not only makes it possible to better identify the specific needs of producers, but also to increase the ownership of projects by beneficiaries. They emphasize that irrigation systems designed in consultation with end users are more responsive to local conditions. Maiga's studies (2013) focused on the impact of irrigated developments on agricultural yields in the Tahoua region. The results show a significant increase in yields thanks to the introduction of appropriate irrigation techniques. Farms that have benefited from an irrigated area have recorded production gains of up to 50% compared to traditional methods. This confirms our results, in fact according to the financial analysis of our study, the site once developed will increase the income of the beneficiaries, making it possible to reduce poverty and fight against food insecurity in the area.

6. CONCLUSION

The development of irrigation is the tangible solution to fill the significant food deficit during each agricultural season in order to sustainably maintain the food and nutritional security of the populations benefiting from the development of the site.

The general objective of this study is to propose a sustainable development plan for a 5ha irrigated perimeter site in the Fadama valley, urban communel of Tahoua, aimed at improving agricultural productivity and the living conditions of farmers. Thus, preliminary technical studies were carried out, namely: (i) socioeconomic study, (ii) topographic, (iii) pedological and (iv) hydrological. The conduct of these studies allowed the use of many tools and devices both in the field (survey tools, topographical, geotechnical and pedological devices) and in the office (software and other supports).

The results of these studies were conclusive and made it possible to make a positive decision on the technical feasibility of the development. This is how the results from hydrological, topographical and geotechnical studies were decisive for the proposal of a development plan. To do this, the cost of the work was estimated for a total amount of 63,405,129 FCFA. Therefore, the implementation of our development

© 2025 Scholars Journal of Agriculture and Veterinary Sciences | Published by SAS Publishers, India

proposal must absolutely rely on the lessons learned from the bibliographic review, in particular on the importance of community participation and training. By integrating these elements, we have a better chance of ensuring not only the economic viability of irrigation, but also its positive social impact on the FADAMA 2 Valley community.

Authors' Contributions: This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

REFERENCES

- World Bank. (2008). Irrigation development in Niger: diagnosis and strategic options. Irrigation sector review, Agriculture and rural development, AFTAR. Africa region, AFCF2 country department. 150p.
- Farrington, J., Carney, D., Ashley, C., & Turton, C. (1999). Sustainable livelihoods in practice: Early applications of concepts in rural areas. *Natural resource perspectives*, 42(June), 1-5.
- Kane, A., & Sow, M. (2020). Planning and management of irrigated areas in semi-arid zones:

Integrated approach for the Fadama valley. *Journal* of Water Resources and Development, 36(4), 356-370.

- Maiga A. (2013). Impact of irrigated developments on agricultural yields in West Africa
- UNDP (United Nations Development Program). 2016. Assessment of irrigation systems in the Fadama valley and recommendations for sustainable development of irrigated areas. UNDP Niger, Niamey.
- Republic of Niger. (2012). Investment plan 2012-2015. Niamey, High Commission for the 3N initiative, 68p.
- Saidou. A. (August 2010). Rapid participatory diagnosis and action planning for the Galmi irrigated area in Niger.
- Tappan, G., & Diouf, M. (2009). The development of irrigated areas in the Sahel: Strategies and socio-economic impacts. Presses Universitaires de Dakar.
- Zin, A. A. (2020). The challenges of sustainable irrigation in the Fadama valley: Geospatial approach for the development of irrigated areas. Doctoral thesis, Abdou Moumouni University of Niamey.