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Abstract: MMPs hydrolyze components of the extracellular matrix and have been suggested to play an important role in 

the destruction of dentin organic matrix. The acidic environment, resulting from adhesive systems or the biological 

carious process, activates different dentinal MMPs which degrade the unprotected collagen fibrils within the hybrid layer.  

Host-derived MMPs can originate both from saliva and from dentin. However, MMP inhibition by several inhibitors, 

could provide a potential therapeutic way to limit degradation in dentin. This paper reviews the effect of MMPs on dentin 

and employment of various potential MMP inhibitors to pretreat the demineralized dentin interface. 

Keywords: chlorhexidine,  Dentin,  galardin, matrix metalloproteinases (MMPs),   MMP inhibitors 

INTRODUCTION: 

When compared to other restoratives, the 

major drawback of adhesive restoratives is their limited 

durability in vivo, where the most cited reasons of 

failure of adhesive restorations are loss of retention and 

marginal adaptation [1]. Degradation of these bonds 

occurs via the interaction of the components above the 

adhesive interface manifested by occlusal loading, 

thermo-cycling, moisture and PH fluctuation
 
[2]. These 

extrinsic degradation mechanisms of the resin– dentine 

interface that originate in the adhesive above the hybrid 

layers are accompanied by intrinsic degradation 

mechanisms that originate from beneath dentine hybrid 

layers represented by dentinal fluid and intrapulpal 

pressure
 
[3]. Several authors have shown the hydrolytic 

degradation of collagen matrices in aged dentin– resin 

bonds, even in the absence of bacterial enzymes
 
[2, 4]. 

The recent reports of collagen lytic and gelatinolytic 

activities in partially demineralized dentine collagen 

matrices are indirect proofs of the existence of matrix 

metalloproteinases (MMPs) in human dentine
 
[5]. The 

release and activation of these endogenous enzymes 

during dentine bonding are thought to be responsible for 

the in vitro manifestation of thinning and disappearance 

of collagen fibrils from incompletely infiltrated hybrid 

layers in aged, bonded dentine
 

[5], resulting in 

hydrolytic degradation and reduction of bond strengths. 

 

MATRIX METALLOPROTEINASES  

Matrix metalloproteinases represent a family 

of dependent metal ions endopeptidases that are capable 

of degrading all extracellular matrix components, 

including several types of collagen and basement 

membrane components
 
[6, 7]. MMPs are classified into 

six groups based on their structural homology and their 

substrate specificity: collagenases (MMP-1, MMP-8, 

MMP-13, and MMP-18), gelatinases (MMP2 and 

MMP-9), stromelysins (MMP-3, MMP-10, and MMP-

11), transmembrane MMPs (MT-MMPs) (MMP-14, 

MMP-15, MMP-16, MMP-17, MMP-24, and MMP-

25), matrilysins (MMP-7 and MMP-26), and "other" 

(MMP-12, MMP-19, MMP20, MMP-21, MMP-22, 

MMP-23, MMP-27, and MMP-28).  MMPs are metal-

dependent since all members of this family have a zinc 

and a calcium-binding catalytic domain. They are 

secreted as inactive proenzymes (zymogens) and their 

activation occur in the tissue by cleavage of the N-

terminal propeptide domain by other proteinases
 
[8]. 

Presently, twenty-two MMPs have been identified in 

human tissues
 
[9, 10]. They are classified into different 

groups according to similarity in structure, gene 

encoded and substrate affinity
 
[11, 12]. MMP-2 seems 

to have a helicase activity and to cleave fibrillar type I 

collagen
 
[13, 14]. Although stromelysins (MMP-3) and 

membrane-type MMPs do not have helicase activity, 

these enzymes play a crucial role during activation of 

other MMPs, promoting the cleavage of the propeptide 

region, which that maintains enzyme latency6. MMPs 

are a family of zinc-dependent proteolytic enzymes that 

are capable of degrading the dentin organic matrix after 

demineralization
 

[15]. Enzymes with gelatinolytic 

(MMP-2 and MMP-20) activities are present within 
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intact dentinal matrix and in carious dentin
 
[15]. They 

may be inhibited in situ by tissue inhibitors of 

metalloproteinases such as TIMP-1
 
[16], or they may be 

released from mineralized dentin matrix from which 

they can be activated by low pH
 
[15] and may cause 

degradation of the demineralized dentin matrix under 

different physiological and pathological conditions
 
[15]. 

 

The cells of connective tissue—e.g., 

fibroblasts, osteoblasts, and odontoblasts— synthesize 

and secrete MMPs into the ECM. Under normal 

physiological conditions, these MMPs are expressed 

only when needed for tissue remodeling. These 

endopeptidases contain zinc methionine in their active 

site
 
[17]. They cut the extracellular matrix (ECM)/core 

matrisome proteins into various small peptides by 

hydrolyzing inner peptide bonds. Their activity depends 

upon Ca++ ions. MMPs are different from other 

endopeptidases because they do not function in the 

absence of metal ions
 
[18].  

 

Matrix Metalloproteinases in Periodontal Disease  
During inflammatory destruction of 

periodontal attachment apparatus the most important 

component of periodontium lost is the collagen type I. 

A wide range of evidences has indicated that the most 

important pathway is the one which involves matrix 

metalloproteinases (MMPs)
 

[19]. Resident ligament 

cells such as fibroblasts, macrophages, osteoblasts, 

keratinocytes, and endothelial cells are activated in 

response to stimulus, contributing with the synthesis of 

cytokines and MMPs. MMPs are present in both active 

and latent forms in chronically inflamed gingival tissues 

and gingival crevicular fluid. Active collagenase and 

gelatinase are found in the crevicular gingival fluid of 

patients with periodontitis in much larger amounts than 

in control subjects
 
[20]. In contrast, high concentrations 

of the natural tissue inhibitor of MMPs (TIMPs) are 

found in the gingival crevicular fluid of healthy 

gingiva16. The area occupied by collagen fibers in 

gingival tissue specimens with periodontitis is 

significantly decreased, and the presence of MMP-1, 

MMP-2, and MMP9 is increased
 
[21, 22]. 

 

MMPs in Caries  

Dentin contains 18-20% of organic material 

and 11-12% of water, and provides a better substrate for 

degradation Unlike enamel, by either bacteria or host 

proteinases.  In general, collagens can be degraded by 

the human interstitial collagenases, which include 

MMP-1, MMP8, and MMP-13, resulting in the release 

of 3/4- to 1/4-length peptides. These peptides lose the 

triple-helical conformation and can then be further 

degraded by the gelatinases MMP-2 and MMP-9. 

However, the specific cross-links (pyridinolines) 

between the collagen sub-units observed in dentin may 

provide collagen fibrils with extreme resistance to 

degradation
 
[23]. Saliva penetrates the opened dentin 

lesion, and MMPs present in the saliva may have direct 

access to the demineralized dentin. It has been proposed 

that these saliva-derived MMPs could be involved in 

the destruction of the organic matrix
 
[15] the GCF 

appears to be the major source of the MMPs found in 

the saliva. GCF also contains #2macroglobulin, a non-

specific inhibitor of MMP, which—in normal 

situations, where the concentration of MMPs is not 

elevated—would keep the MMPs in an inactive form
24

 

(BirkedalHansen, 1993).  the GCF appears to be the 

major source of the MMPs found in the saliva. GCF 

also contains #2macroglobulin, a non-specific inhibitor 

of MMP, which—in normal situations, where the 

concentration of MMPs is not elevated—would keep 

the MMPs in an inactive form
 
[24]. Saliva has also been 

shown to contain gelatinases
 

[25], which appear to 

originate mainly from the GCF
 

[26]. By in situ 

hybridization (ISH) or by immunohistochemistry, the 

collagenase MMP-1, the gelatinases MMP-2 and MMP-

9, stromelysin-1 (MMP-3), the MMP-2 activator MT1-

MMP, and enamelysin (MMP-20) have all been 

identified in either odontoblasts or in the 

predentin/dentin compartment
 

[27, 28]. TIMPs were 

also detected, but their level was only slightly above 

background [29]. 

 

MMPs in dental Adhesion 
Low pH and heat treatment may also directly 

lead to MMP activation [30]. The change in pH can 

alter the conformation of the propeptide and induce the 

cysteine switch, which represents a critical step in the 

activation process.  Since Nano leakage can occur in the 

absence of frank gaps along resin-dentin interfaces 

created in vivo [31], the results of these studies suggest 

that degradation of incompletely infiltrated zones within 

the hybridized dentin by host-derived matrix 

metalloproteinases within the dentin matrix may 

precede in the absence of bacterial enzymes. In situ 

collagen degradation within incompletely infiltrated 

hybrid layers may also adversely affect the 

remineralization potential of the denuded collagen 

fibrils in vivo [32]. As the popularity of self-etching 

primers and all-in-one adhesives has increased, many 

all-in-one adhesives have been commercialized that 

have pH values of between 1 and 2. These acidic 

monomers may also demineralize dentin, but may not 

be sufficiently acidic to denature MMP activity.  

However, self-etching primers leave collagen fibrils 

partially covered with residual apatite crystals. These 

crystals, and possible chemical interactions of acidic 

monomers with residual dentin substrate, may provide 

more resistance to bond degradation than is possible in 

etch-and-rinse adhesives. In contrast to etchan drinse 

systems, self-conditioning systems usually contain more 

hydrophilic monomers, yielding an increased 

permeability of the hybrid layer for water and leading to 

an enhanced monomer elution
 
[35]. Hence, also for self-

etch systems there is exposed collagen which can be 

degraded hydrolytically by potentially activated MMPs. 

In the literature, inconsistent data exist regarding the 

question whether self-conditioning systems enhance the 

activity of MMPs in dentin (powder) [33].  Dentin over 
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etching results in deeper demineralization and exposure 

of collagen. Hence, the bonding agent used thereafter 

may infiltrate the deep, basal layer of the collagen 

network less efficiently, thus enhancing nano leakage
 

[34]. In this deep, basal layer of collagen that is not 

infiltrated by the bonding agent, existing MMPs are 

activated both by the applied phosphoric acid (pH = 

0.4) and by acidic monomers (pH =2–2.8) contained in 

the bonding agent [35]. However, there is evidence that 

the activity of MMPs is initially decreased by 

phosphoric acid, but they are subsequently reactivated 

by the bonding agent. Consequently, exposed collagen 

is degraded by (re) activated MMPs at the bottom of the 

hybrid layer, which gradually disintegrates due to 

growing and merging nanometer sized porosities [36]. 

Clinically, this degradation results in loss of retention or 

of fillings, secondary caries and hypersensitivity
 
[36]. 

 

CYSTEINE PROTEASES (CATHEPSINS) 

Cysteine cathepsins hydrolytically degrade the 

extracellular matrix, in particular collagen, and, similar 

to MMPs, they seem to be involved in the degradation 

of exposed collagen at the bottom of the hybrid layer
 

[37]. There are approximately 12 members of this 

family, which are distinguished by their structure, 

catalytic mechanism, and which proteins they target. 

Although most cathepsins are lysosomal enzymes that 

become activated in lysosomes by low pH, cathepsin K 

works extracellularly after secretion by osteoclastsin 

bone resorption [38]. This protease represents 98% of 

the total cysteine protease activity [39]. The 

physiologically relevant substrate of osteoclast-

expressed cathepsin K is type I collagen which 

constitutes 95% of the organic bone matrix and 90% of 

the dentin matrix [40]. 

 

INHIBITORS OF PROTEOLYTIC/ 

COLLAGENOLYTIC ACTIVITY 

Chlorhexidine (CHX) 
  It has been added to the phosphoric acid etchant, used 

as an aqueous solution after acid-etching (etch-and-

rinse adhesives) and incorporated into the adhesive 

system (etch-and-rinse or self-etch adhesive). Synthetic 

MMP inhibitors are being investigated as potential 

therapeutic agents in the treatment and/or prevention of 

oral diseases
 

[42]. Chlorhexidine (CHX) has been 

shown to inhibit MMP-2, -8, and -9 activities directly at 

extremely low concentrations (i.e., 0.02% for MMP-8, 

0.002% for MMP-9, and 0.0001% for MMP-2)
 
[41]. 

 

Ethylene diamine tetra acetic Acid (EDTA) 
Used as an aqueous solution of 2% EDTA on 

smear layer covered dentin (self-etch adhesives); or on 

demineralized dentin after acid-etching (etch-and-rinse 

adhesives).  As EDTA is an effective Zn2+ and Ca2+ 

chelator,  it might inhibit MMP activity. Infact, EDTA 

has inhibitory effect against human dentin MMP-2 and 

MMP-9 when applied for 1 to 5 minutes [43, 44]. 

 

Epigallocatechin-3-gallate  

Very little is known about the potential utility 

of green tea polyphenol epigallocatechin-3-gallate 

(EGCG) in resin–dentin bonds. EGCG inhibits the 

activity of MMP-2 and MMP-9 by the degradation of 

the MMP molecule [45]. In dentistry, EGCG may 

inhibit the activity and expression of MMP-9 involved 

in the formation of osteoclasts in periodontal disease 

apart from its inhibitory effect on the growth of 

Streptococcus mutans when added to a bonding 

adhesive [46].  Green tea extract has also been reported 

to reduce dentin erosion-abrasion by inhibiting MMPs 

[47]. 

 

Galardin  

Galardin is a potent and broad-spectrum 

hydroxamate-type synthetic MMP inhibitor designed as 

a molecular mimic of MMP substrates, which allows it 

to enter the active site of MMPs, where it binds the 

critical zinc atom [48]. Galardin is active against 

several MMPs
 
[49]. 

 

Quaternary Ammonium Salts  
One of the advantages of using quaternary 

ammonium methacrylates, such as 12-

methacryloyloxydodecylpyridiniumbromide (MDPB) 

[50-52] is that they can copolymerize with adhesive 

monomers. Clearfil Protect Bond (Kuraray Noritake 

Dental Inc., Osaka, Japan) was the first commercial 

dentin adhesive to incorporate MDPB in its 

composition. Benzalkonium chloride (BAC) is also one 

antimicrobial substance containing a quaternary 

ammonium group in its molecule. This substance has 

been included in an acid phosphoric gel (i.e., ETCH-

37w/BAC and ETCH-10w/BAC, Bisco Inc. 

Schaumburg, IL, USA) for several years. The use of 

these BAC-containing phosphoric acid gels did not 

affect the immediate bond strength to enamel and 

dentin. Recently, the anti-MMPs properties of BAC 

were tested against MMP-2,-8, and-9. The results 

showed potential for this substance to inhibit MMP-2,-

8, and-9 [53]. 

 

Cross-linking Agents 
Cross-linking is considered a potential method 

for improving the stability and resistance of collagen 

degradation within the demineralized dentin matrix [54, 

55]. Chemically induced cross-linking has been tried in 

dentin adhesion since the 1980s by applying 

gluteraldehyde as a component of a priming solution 

[56]. Ultraviolet (UVA)-activated riboflavin has been 

shown to increase bond strength, stabilize the adhesive 

interface, and inhibit dentin MMPs [57]. Riboflavin has 

potential in adhesive dentistry because it is activated 

with a UVA blue light and is easy to apply, besides 

being biocompatible [58]. Proanthocyanidin is the plant 

flavonoid prevalent in pine bark, elm tree, somenuts, 

flowers, and grape seeds [59, 60] being known as a 

potent antioxidant and cross-linking agent with low 

toxicity. 
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Grape seed extract is one of the most used 

sources of proanthocyanidins [61]. In addition to its 

cross-linking effect, proantho cyanidin has also been 

shown to inhibit the synthesis of several MMPs from 

macrophages and inhibit the catalytic activity of MMP-

1 and MMP-9 [62]. Carbodiimides have been used as 

alternative cross-linking agents to gluteraldehyde 

because they do not contain toxic components. 

Carbodiimides can inactivate dentin MMP-9 and other 

dentin proteases with only 1-minute application time 

[63].  

 

CONCLUSION 

For optimal durability of resin-dentin bonds, 

preservation of both resin and substrate components 

(i.e., dentin collagen) should be addressed. Literature 

indicates that the presence of MMPs in the dentin 

matrix is of more than academic interest. We need to 

understand the biochemistry of these enzymes and how 

they may respond to procedures and products used in 

adhesive dentistry. 
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