Original Research Article

Scholars Journal of Dental Sciences Abbreviated Key Title: Sch J Dent Sci

Abbreviated Key Title: Sch J Dent Sci ISSN 2394-4951 (Print) | ISSN 2394-496X (Online) Journal homepage: <u>https://saspublishers.com/journal/sjds/home</u>

TAG Implants- Dimensional Tolerances & Accuracy Gap in Implants/Abutments Internal Hexagon Connection

Daniel Baruc^{1*}, Hila Cohen², Erez Yakuti³, Tsachie Clay⁴

¹R&D Director - T.A.G Medical Products Corporation, Dental Division, Gaaton, Israel

²Eng. - T.A.G Medical Products Corporation, Dental Division, Gaaton, Israel

³T.A.G Medical Products Corporation, Gaaton, Israel

⁴CTO - T.A.G Medical Products Corporation, Dental Division, Gaaton, Israel

DOI: 10.36347/sjds.2019.v06i08.003

| **Received:** 14.08.2019 | **Accepted:** 23.08.2019 | **Published:** 30.08.2019

*Corresponding author: Daniel Baruc

Abstract

Passive and precise fit in the implant/ abutment connection is an important and primordial parameter for the longevity of implant-supported prostheses. This paper presents a long follow up of tight tolerances on dental implants and abutments tolerances in order to guarantee the repeatability of the parts measurement and their perfect adjustment. The aim of this study is to: 1) Measure the implant and abutment hexagonal dimensions. 2) Measure the rotational misfit between implant and abutments. 3) Verify the stability of the dimensions during a long run production. The quality of the connection between an implant and an abutment is depending of the surface finish of the six facets sides, the circumscribed circle dimension and their tolerances. The follow up indicate that with high level of quality control you can assure in long-term a high accuracy of all the components that is one of the parameters that induce to a significantly better long-term stability in the clinical application.

Keywords: TAG Implants, Dimensional, Implants/Abutments, Internal Hexagon Connection.

Copyright © 2019: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source are credited.

INTRODUCTION

The clinical application of implants and prosthetic components obtained by different manufacturing processes lacks of technological foundation: the dimensional tolerance of individual parts and their assembly accuracy have not any standardization [1]. The rotational misfit (RM) of the hexagonal connection is critical in single-tooth implant restorations, but no standard control procedures are available for its evaluation [9]. No standardization in the tolerances of the implant/abutment interface has been established [6, 8]. For reliable proper functioning of mechanical parts, it is necessary that the dimensions, shape and mutual position of the surfaces of their different parts are met with some precision [1]. With the common production processes, it is not possible to measure the geometrical properties data with absolute precision. The actual areas of the produced parts therefore differ from ideal surfaces prescribed in drawings.

Deviations of actual surfaces are divided into four groups to enable assessment, prescription and control the degree of precision allowed during production:

- Deviations of dimensions
- Deviations of the form

- Deviations of the position
- Deviations of the roughness of the surface

The choice of a suitable fit is important particularly in terms of measuring instruments, gauges and tools used in production. Micro-gap between implant and abutment can produce biological and mechanical problems. The marginal fit and size of micro gap at the implant /abutment interface value will influence the level of bacterial leakage [2,5]. A large micro-gap at the implant-abutment interface has been reported to result in adverse effects such as periimplantitis and/or fatigue failures [7]. Mechanicals failures included screw loosening, wear and abutment rotation or fracture [3]. The capacity of repeatability in the production requires a high level of quality control especially when we need close tolerances. Surface quality and machining tolerance are dependent of machine precision [4], milling parameters, cutting fluid (coolant) and tools characteristics.

PURPOSE

The purpose of this work is to measure the tolerances of the interface between internal hexagon implants with corresponding abutments from the

production and compare with identical measurements from the virtual model to obtain threshold values. These values may be a valuable tool for evaluating increasing misfit caused by fabrication, processing, and wear.

MATERIALS AND METHODS

100 implants and 100 abutments with internalhexagon connections from TAG Dental production were studied. All the components from the internal hexagon have been measured digitally (COM-Germany Model ATOS Core 45). Measurements from the production were compared with identical dimensions from the virtual model to obtain threshold values. The six hexagon facets of the 100 implants have been measured 2 by 2 to check the accuracy of the broch and the repeatability of the hexagon.Twice the apothem was measured on each hexagon through an optical measuring microscope. The data were processed to obtain the micro gap μ between the 2 hexagons. The circumscribed circle of the hexagon was measured as parameter that influenced the rotational misfit.

The RM (rotational misfit) was then calculated using the apothems of the external and the internal hexagon. Gap between implant/abutment were measured with a coordinate measuring machine (COM-Germany Model ATOS Core 45). The measured tolerances ranged from 0 to 15 microns. Machining tolerances between implant components should be included in future studies of accuracy, because it is an inherent characteristic of the component itself.

COM- Acceptance/Reverification Test According to VDI/VDE 2634, Part 3

Parameter	Maximum deviation	Limit
Probing error (size)	-0.0029 mm	0.0060 mm
Sphere spacing error	0.0015 mm	0.0040 mm
Length measurement error	0.0004 mm	0.0100 mm

Virtual Model

Cross section of an implant / abutment assembled at the hexagonal connection

© 2019 Scholars Journal of Dental Sciences | Published by SAS Publishers, India

Data

Imp	lant inte	ernal He	ĸ. [mm]		Abutment [mm]		
IA1-330	-33013-9 LOT 14M01)1]			
Element	Hex1	Hex 2	Hex 3	Hex	Sample #	Hex	P/N & LOT
NT	2.44	2.44	2.44	AVG	NT	aimension	
Nominal	2.44	2.44	2.44	2.44	Nominal	2.42	
MIN 101	-0.01	-0.01	-0.01	-0.01	MIN 101	-0.005	-
MAX 101	0.005	0.005	0.005	0.005	MAX 101	0.01	DE1 0077 0 15K02
sample 1	2.446	2.439	2.449	2.445	sample 1	2.419	PF1-0077-9 15K03
sample 2	2.444	2.430	2.449	2.445	sample 2	2.419	W013000/4/0/
sample 3	2.440	2.441	2.447	2.445	sample 3	2.410	_
sample 4	2.447	2.442	2.442	2.444	sample 4	2.417	_
sample 5	2.430	2.445	2.430	2.439	sample 5	2.42	_
sample 6	2.435	2.440	2.430	2.439	sample 6	2.419	_
sample /	2.436	2.443	2.433	2.437	sample /	2.418	_
sample 8	2.439	2.428	2.448	2.438	sample 8	2.415	_
sample 9	2.445	2.438	2.451	2.445	sample 9	2.418	_
sample 10	2.445	2.451	2.435	2.444	sample 10	2.42	DE1 0072 0 15K04
sample 11	2.448	2.445	2.445	2.446	sample 11	2.417	PF1-00/3-9 15K04
sample 12	2.432	2.446	2.43	2.436	sample 12	2.419	W015000/4/59
sample 13	2.446	2.445	2.442	2.444	sample 13	2.421	_
sample 14	2.438	2.433	2.445	2.439	sample 14	2.42	_
sample 15	2.44	2.453	2.43	2.441	sample 15	2.415	_
sample 16	2.432	2.435	2.442	2.436	sample 16	2.42	
sample 17	2.441	2.444	2.431	2.439	sample 17	2.423	
sample 18	2.435	2.442	2.435	2.437	sample 18	2.42	_
sample 19	2.437	2.433	2.445	2.438	sample 19	2.421	_
sample 20	2.437	2.43	2.449	2.439	sample 20	2.419	
sample 21	2.431	2.443	2.431	2.435	sample 21	2.416	PF1-0081-9 15E06
sample 22	2.443	2.439	2.45	2.444	sample 22	2.416	WO1500238168
sample 23	2.448	2.444	2.445	2.446	sample 23	2.418	_
sample 24	2.448	2.444	2.445	2.446	sample 24	2.423	_
sample 25	2.444	2.449	2.438	2.444	sample 25	2.415	_
sample 26	2.437	2.435	2.446	2.439	sample 26	2.422	_
sample 27	2.444	2.449	2.434	2.442	sample 27	2.42	_
sample 28	2.444	2.449	2.445	2.446	sample 28	2.425	_
sample 29	2.445	2.449	2.438	2.444	sample 29	2.424	_
sample 30	2.434	2.43	2.442	2.435	sample 30	2.424	
sample 31	2.436	2.435	2.45	2.44	sample 31	2.415	PF1-0069-9 15E06
sample 32	2.441	2.438	2.448	2.442	sample 32	2.418	WO1500238163
sample 33	2.435	2.436	2.438	2.436	sample 33	2.417	_
sample 34	2.443	2.437	2.448	2.443	sample 34	2.419	_
sample 35	2.441	2.446	2.437	2.441	sample 35	2.418	4
sample 36	2.444	2.44	2.451	2.445	sample 36	2.418	4
sample 37	2.442	2.439	2.443	2.441	sample 37	2.418	4
sample 38	2.445	2.445	2.445	2.445	sample 38	2.417	_
sample 39	2.435	2.444	2.434	2.438	sample 39	2.419	4
sample 40	2.439	2.434	2.443	2.439	sample 40	2.419	
sample 41	2.44	2.436	2.448	2.441	sample 41	2.417	PF1-0069-9 15E04
sample 42	2.443	2.436	2.449	2.443	sample 42	2.415	w01500238162
sample 43	2.453	2.449	2.446	2.449	sample 43	2.417	4
sample 44	2.433	2.441	2.431	2.435	sample 44	2.417	4
sample 45	2.434	2.432	2.444	2.437	sample 45	2.415	4
sample 46	2.445	2.449	2.433	2.442	sample 46	2.415	4
sample 47	2.443	2.435	2.448	2.442	sample 47	2.415	4
sample 48	2.442	2.441	2.45	2.444	sample 48	2.419	4
sample 49	2.445	2.453	2.436	2.445	sample 49	2.415	4
sample 50	2.45	2.447	2.445	2.447	sample 50	2.416	

© 2019 Scholars Journal of Dental Sciences | Published by SAS Publishers, India

sample 51	2 4 4 4	2 4 3 9	2 451	2 4 4 5	sample 51	2 4 1 9	PF1-00	77-9 15K01
sample 51	2.444	2.435	2.431	2.445	sample 57	2.419	WO1	500074765
sample 52	2.440	2.443	2.441 2 446	2.443	sample 52	2.415		500071705
sample 54	2.43	2.447	2.440	2.440	sample 54	2.410		
sample 55	2.44	2.443	2.447	2.447	sample 55	2.410		
sample 55	2.44	2.447	2.431	2.439	sample 55	2.419		
sample 50	2.438	2.435	2.442	2.436	sample 50	2.419	-	
sample 57	2.437	2.455	2.440	2.44	sample 57	2.417	-	
sample 58	2.428	2.435	2.428	2.43	sample 58	2.418	-	
sample 39	2.443	2.437	2.434	2.445	sample 39	2.42	-	
sample 60	2.449	2.447	2.445	2.440	sample 60	2.42	DE1 00	72 0 151205
sample 61	2.437	2.435	2.45	2.441	sample 61	2.418	PFI-00	1/3-9 15K05
sample 62	2.44	2.436	2.446	2.441	sample 62	2.417	wor	500074760
sample 63	2.439	2.437	2.45	2.442	sample 63	2.422	-	
sample 64	2.439	2.437	2.45	2.442	sample 64	2.422	-	
sample 65	2.437	2.445	2.431	2.438	sample 65	2.419	-	
sample 66	2.441	2.434	2.445	2.44	sample 66	2.419		
sample 67	2.438	2.436	2.447	2.44	sample 67	2.422		
sample 68	2.435	2.437	2.44	2.437	sample 68	2.422		
sample 69	2.429	2.433	2.433	2.432	sample 69	2.422	-	
sample 70	2.43	2.433	2.438	2.434	sample 70	2.422		
sample 71	2.451	2.452	2.439	2.447	sample 71	2.417	PF1-00	073-9 15K03
sample 72	2.435	2.432	2.45	2.439	sample 72	2.419	WO1	500074758
sample 73	2.436	2.443	2.434	2.438	sample 73	2.421		
sample 74	2.436	2.443	2.434	2.438	sample 74	2.418		
sample 75	2.445	2.441	2.451	2.446	sample 75	2.42		
sample 76	2.45	2.453	2.439	2.447	sample 76	2.422		
sample 77	2.444	2.435	2.448	2.442	sample 77	2.419		
sample 78	2.445	2.439	2.451	2.445	sample 78	2.422		
sample 79	2.438	2.446	2.437	2.44	sample 79	2.422		
sample 80	2.445	2.449	2.438	2.444	sample 80	2.418		
sample 81	2.442	2.454	2.436	2.444	sample 81	2.423	PF1-00)81-9 15E04
sample 82	2.447	2.447	2.443	2.446	sample 82	2.423	WO1	500238166
sample 83	2.445	2.451	2.438	2.445	sample 83	2.421		
sample 84	2.455	2.448	2.445	2.449	sample 84	2.42		
sample 85	2.436	2.436	2.448	2.44	sample 85	2.422		
sample 86	2.443	2.45	2.437	2.443	sample 86	2.422		
sample 87	2.432	2.437	2.438	2.436	sample 87	2.42		
sample 88	2.444	2.44	2.454	2.446	sample 88	2.417		
sample 89	2.434	2.439	2.439	2.437	sample 89	2.423		
sample 90	2.436	2.431	2.445	2.437	sample 90	2.418		
sample 91	2.442	2.443	2.434	2.44	sample 91	2.415	PF1-00	081-9 15E05
sample 92	2.437	2.447	2.436	2.44	sample 92	2.417	WO1	500238167
sample 93	2.452	2.447	2.445	2.448	sample 93	2.417	1	
sample 94	2.446	2.436	2.452	2.445	sample 94	2.417		
sample 95	2.443	2.447	2.436	2.442	sample 95	2.42	1	
sample 96	2.445	2.449	2.436	2.443	sample 96	2.419	1	
sample 97	2.448	2.447	2.444	2.446	sample 97	2.418	1	
sample 98	2.449	2.442	2.445	2.445	sample 98	2.415	1	
sample 99	2.445	2.452	2.429	2.442	sample 99	2.415	1	
sample 100	2.445	2.436	2.453	2.445	sample 100	2.415	1	
MAX samp	e			2.449	<u> </u>	Average	2.419	
MIN sample	<u>.</u>			2.43	1			1
AVERAGE	samnle			2.442				
	Sumple							

RESULTS

Worse case tolerance is indicated as

- Max implant tolerance and min abutment tolerance
- min circumscribed circle of the abutment hexagon

From the drawing

- Max tolerance = 30μ (on Diameter)
- Max gap 15 microns
- Rotational misfits is 1.54°

Results measurement

- Max tolerance = 23μ (on Diameter)
- Max gap 12 microns
- Rotational misfits is 1.17°

Verification by random samples of the final stock compare to others well knows companies show the accuracy of our connection.

	Implant/a	butment fitting	- TAG - MIS	- Zimmer
IMPLA	NT measure	ment (mm)	ABUTMEN	T measurement (mm)
Company	sample	Hex Average	sample	Hex Average
TAG	1	2.445	1	2.42
	2	2.444	2	2.419
	1	2.443	1	2.42
MIS	2	2.444	2	2.41
	1	2.442	1	2.41
Zimmer	2	2.445	2	2.43

CONCLUSION

Within the limits of this study, consistencies of the hexagons were found for all implants and abutments tested. When the theoretically gap is Max 15μ and rotational misfit of 1.54° we find that when measuring the components the Max tolerance is 12μ m and rotational misfit of 1.17° . Comparing the theoretical with the measuring tolerances shows the high quality of TAG products in their accuracy due to machine precision, milling parameters, tools characteristics and the high quality control. This confirms the repeatability of the production process. The quality of the TAG production is able to stand to those tolerances.

REFERENCES

- 1. Ma T, Nicholls JI, Rubenstein JE. Tolerance measurements of various implant components. International Journal of Oral & Maxillofacial Implants. 1997 May 1;12(3).
- 2. Tripodi D, Marzo G, Continenza MA, Piattelli A, Iaculli F, D'Ercole S, Bernardi S, Mummolo S. Microleakage of bacteria in different implantabutment assemblies: An in vitro study.
- 3. Cibirka RM, Nelson SK, Lang BR, Rueggeberg FA. Examination of the implant—abutment interface after fatigue testing. The Journal of prosthetic dentistry. 2001 Mar 1;85(3):268-75.
- 4. Fauroux MA, Anxionnat C, Biens C, Mechali M, Romieu O, Torres JH. Comparison of leakage at the implant to abutment connection in several

implants types using a gas flow method. Revue de stomatologie, de chirurgie maxillo-faciale et de chirurgie orale. 2014 Apr;115(2):74-8..

- Gil FJ, Herrero-Climent M, Lázaro P, Rios JV. Implant–abutment connections: influence of the design on the microgap and their fatigue and fracture behavior of dental implants. Journal of Materials Science: Materials in Medicine. 2014 Jul 1;25(7):1825-30.
- Kano SC, Binon PP, Curtis DA. A classification system to measure the implant-abutment microgap. International Journal of Oral & Maxillofacial Implants. 2007 Nov 1;22(6).
- Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded nonsubmerged implants in the canine mandible. Journal of periodontology. 2001 Oct 1:72(10):1372-83.
- Kano SC, Binon PP, Curtis DA. A classification system to measure the implant-abutment microgap. International Journal of Oral & Maxillofacial Implants. 2007 Nov 1;22(6).
- Garine WN, Funkenbusch PD, Ercoli C, Wodenscheck J, Murphy WC. Measurement of the rotational misfit and implant-abutment gap of allceramic abutments. International Journal of Oral & Maxillofacial Implants. 2007 Nov 1;22(6).