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Abstract: This paper discusses a two-echelon inventory system consisting of one warehouse and two retailers. All 

installations use (R, Q) policy to replenish their stock. The transmission time between any two echelons follows the 

exponential distribution. A mathematical model is formulated to determine the optimal values of R and Q in both 

echelons, so the total cost is minimized. The total cost includes the average inventory cost, the average lost sales cost and 

the average ordering cost. Markov chain is used to model this system. The total cost function obtained is the type of a 

nonlinear integer programming and a genetic algorithm is proposed to solve it. Finally a numerical example is used to 

illustrate the performance of the model. 
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INTRODUCTION 

  Successful inventory management is one of the most important activities in numerous businesses. It can do 

many things for businesses, but above all it increases operational efficiency, improves customer service, and reduces 

inventory costs of supply network. One of the most special aspects of the inventory management that has crucial role in 

supply chain management is distribution of goods in multi-echelon inventory systems. Academicians and practitioners 

are widely using Multi-echelon inventory systems in many industries and communication networks. One of the earliest 

researches on multi-level inventory to manage the repairable spare parts, by Sherbrooke[1] presented METRIC as a 

suitable method to determine the optimal level of inventory in the inventory system. It was a two-level inventory system 

consisting of a central base and several local bases with an Inventory control policy of (S-1, S), continuous review for all 

facilities. Axsäter[2] developed a simple solution procedure for a two-echelon inventory system with one-for-one 

replenishment, constant lead-time, and independent Poisson demand at retailers. He applied an inventory cost function 

and concentrated on evaluating the average costs. Nahmias and Smith [3] presented a two-echelon inventory system with 

a distribution center and a number of retailers. All installations applied order up to S policy. The demand in retailers had 

a negative binomial distribution and a fraction of unsatisfied demands in the retailers were lost. Forsberg [4] considered a 

two-level inventory system with one warehouse and N retailers. In this model retailers were facing different compound 

Poisson demand processes and all facilities applied orders up to S replenishment policies and show how to evaluate 

holding and shortage costs exactly. Forsberg [5] developed his model in a way that all facilities use (R,Q) policy and 

presented the cost of the policy as a weighted average of costs for one-for-one ordering policies. Axsäter [6] developed 

his previous model with two retailers, and calculated the approximate cost for the system. Axsäter and Zhang[7] 

considered a two-level inventory system with a central warehouse and a number of identical retailers. When the sum of 

the retailers inventory positions have been declined to a certain joint reorder point, the retailer with the lowest inventory 

position placed an order. Furthermore, Seo et al., [8] presented an optimal reorder policy to utilize centralized stock 

information for a two-echelon inventory system consisting of one warehouse and multiple retailers that was controlled by 

continues review batch ordering policy. Seifbarghy and Jokar,[9] investigated a two-echelon inventory system consisting 

of a warehouse, many identical retailers with lost sales and independent Poisson demands. They developed an 

approximate cost function to find the optimal reorder points for a given batch size. Haji et al., [10] introduced a new 

ordering policy for inventory control in a two-echelon inventory system consisting of one central warehouse and a 

number of non-identical retailers and showed how the inventory costs can be determined for this system. The warehouse 

was using a modified one-for-one policy and each retailer constantly placed an order for one unit of product to the central 

warehouse in a pre-determined time interval. Pasandideh et al., [11] considered a two-echelon inventory system for non-
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repairable item where the system was consist of one warehouse, many identical retailers and continuous-review (R,Q) 

ordering policy. They tried to find an effective stocking policy for this system by minimizing the total annual inventory 

investment. Seifbarghy et al., [12] presented his model consisting of one central warehouse and a few nonidentical 

retailers controled by a continuous review inventory policy (R,Q).They estimated the cost function of the system utilizing 

a Response Surface Method (RMS) and obtained the optimal reorder points for given batch sizes. moreover, Ghiami et 

al., [13] also modeled a two-echelon supply chain system ,consist of a retailer with limited capacity and one wholesaler 

,and aimed his study at minimizing the total cost of the system. Tai and Ching, [14] considered a Markovian model for 

two-echelon inventory/ return system and aimed at minimizing the total expected operating cost by choosing the 

maximum inventory level at the local warehouse. 

 

In this paper, we consider a two-echelon inventory system consisting of a warehouse and two retailers. Unlike 

most researches that are considering the one for one policy, here we are using (R,Q) policy. Also the modeling is done in 

Markov chain. By using the assumptions and the method of modeling, compared to earlier studies, this paper provides a 

new way of considering the two-echelon inventory system. 

 

PROBLEM FORMULATION 

Consider a two-echelon inventory system consisting of a warehouse and two non-identical retailers. The system 

is assumed to work in the following manner: 

 

At the retailer level, when a customer refers to the retailer, if the amount of on-hand inventory is positive, the 

demand is immediately satisfied, but if the amount of on-hand inventory is zero, the customer demand is lost. We assume 

that the service time and also the transfer time is negligible or zero compared to arrival of two consecutive customers. At 

warehouse level, when the warehouse is facing orders of retailers, if the inventory position is positive, the order is placed 

immediately; otherwise, the order is backordered. Service time to orders of retailers by warehouse is assumed negligible 

or zero. At both echelons, (R,Q)
 
ordering policy continuously monitors the inventory position for each item. It means that 

as soon as the stock level declines to the reorder point R, an order of batch size Q is placed. The pictorial representation 

of the system under study is depicted in Fig-1. 

 

 
Fig-1:Two-echelon inventory system 

 

   In order to define the problem precisely the following assumptions most be made:   

    1.  Process of demand in the retailer i follows a Poisson distribution with the rate of i .  

    2.  Customers demand one unit from one type of product.  

    3.  Lateral transfers between two retailers are not allowed.  

    4.  Batch sizes of all retailers are the same. 
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 According to the inventory review policy (R,Q), if the amount of on-hand inventory at the retail level is less 

than or equal to R, an order replenishment is placed on the warehouse. Similarly, if the inventory position in the 

warehouse is less than or equal to R, order replenishment is placed on the external Supplier with infinite capacity. After 

receiving the orders, all backordered orders are filled according to a FIFO-policy. Transfer time from the warehouse to 

retailer i  has an exponential distribution with mean 1/ , ( =1,2)i i  , and transfer time from an external supplier to 

warehouse also has an exponential distribution with mean 01/  . Similar to what Axsäter and Zhang, [7] and Seifbarghy 

and Jokar[9] proposed in their researches,the reorder point and batch size of the warehouse are assumed to be integer 

multiple of the retailerâ€™s batch size. As per this assumption, orders will not be satisfied partially. In all installations, 

R Q  is assumed; with this assumption, there will be only one on order inventory between each echelon. Thus, the 

maximum inventory position at all installation will be an R Q , and minimum inventory position at the warehouse will 

be ( )iQ  . One of the natural limitations of the real world is a certain capacity of product transportation between 

different echelons. So, the echelons should consider transition capacity as a parameter for optimizing the batch size of the 

order. 

 

The following notations, parameters and variables are used for mathematical formulation of the model: 

 

N   Number of retailers = 1, 2i  

i   Demand rate at retailer i  

i   Retailer i  replenishment rate 

0   Warehouse replenishment rate 

iQ   Batch size at retailer i  

0Q   Batch size at warehouse 

iR   Reorder point at retailer i  

0R   Reorder point at warehouse 

ih   Holding cost per unit per unit time at retailer i  

0h   Holding cost per unit per unit time at warehouse 

il   Opportunity cost of losing a customer at retailer i  

ir   Fixed order cost at retailer i  

0r   Fixed order cost at warehouse 

n   On-hand inventory at the retailer i  

m   Inventory position at warehouse 
   Steady-state probability 

 

  

Let ( )m t  denote the inventory position (inventory on hand minus backlog) at the warehouse at time 0t , 

1( )n t  denote the on hand inventory at the first retailer at time 0t , and 2 ( )n t  denote the on hand inventory at the 

second retailer at time 0t . Now we can define the state of the system as 1 2=( ( ), ( ), ( ), 0)Z m t n t n t t  and the state 

space of Z  as follows:  

 

2

1 2 0 0

=1

={( , , ) : ( ) ,Z i

i

E m n n Q m R Q     

 1 1 1 2 2 20 ,0 }n R Q n R Q       (1) 

 

https://saspublishers.com/journal/sjebm/home


 
DOI : 10.36347/sjebm.2015.v02i06.011 

Available Online: https://saspublishers.com/journal/sjebm/home   651 

 

  
 
 

            According to the mentioned assumptions and state of the system, it is obvious that sojourn times in each state are 

exponentially distributed; hence Z  is a continuous-time Markov chain. Some states of the set zE  are always zero, 

because they may not occur. These impossible states are presented through operators ( iA , iC  and iF ) with values 

equal to zero. Similar to what Saffari et al. [15] and Chiang and Monahan [16] did in their researches the equilibrium 

equations of all states for our model can be presented as follows:  

 

2 2

0 , ,
1 2

=1 =1

[ ] =i i i i m n n

i i

A B C       

 

2

, (1 ) ,
1 1 2 2

=1

i i m n Q n Q

i

D        

 0 , ,
0 1 2

m Q n nE     

 

2

, (1 ),
1 2

=1

i i m n n

i

F        

 

2

, (1 ),
1 2

=1

i i m Q n n
i

i

G         (2) 

 Where   is an operator that distinguishes two retailers. It takes 1 and 0 for the first and the second retailers 

respectively.  
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The left-hand side of equation (2) shows the output rate from the state 1 2( , , )m n n . Inside the bracket, the first term is 

the transition rate at which retailers receive the customer demand; the middle term is the transition rate at which 

replenishment orders are arrived at the warehouse; the last term is the transition rate at which replenishment orders are 

arrived at the retailers. =0iA  where ( =1,2)i , defines the states in which satisfying the customer demand is impossible. 

=1B , defines the states in which the replenishment orders of the warehouse is possible. =0iC  where ( =1,2)i , defines 

the states in which the replenishment orders of the retailers are impossible. 

 

The right-hand side of equation (2) shows the input rate into the state 1 2( , , )m n n , where the first two terms 

present the transition rates caused by receiving the replenishment orders from the retailers and the warehouse, 

respectively. the last two terms present the transition rates due to satisfying demands. =1iD  where ( =1,2)i , indicates 

receiving states of replenishment orders occur in retailers. = 1E , indicates receiving states of replenishment orders 

occur in warehouse. =0iF  where ( =1,2)i , defines the states in which satisfying the customer demand is impossible. 

= 1iG  where ( =1,2)i , indicates the states in which satisfying the customer demand causes a retailer to place an order. 

 

We can find the steady-state probabilities by solving the corresponding balance equations given in equation (2) 

and the normalizing constraint:  

 

0 0 1 1 2 2

= ( ) =0 =0
1 2 1 2

= 1

R Q R Q R Q

m Q Q n n

  

 

    (10) 

 

The steady-state probabilities are determined and will be used in performance measurement of the two-echelon 

inventory system.  

 

EVALUATING THE PERFORMANCE OF THE SYSTEM 

  In this section, we present a cost structure considering three different operational cost factors, the long-run 

average inventory holding cost, the long-run average lost sales cost and the long-run average ordering cost. We will 

specify these cost factors in terms of the steady-state probabilities.  

 

Long-run average inventory holding cost 

  Given the steady-state probabilities, the long-run average inventories in the warehouse and the retailers can be 

modeled, respectively as  
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0 0 1 1 2 2

0 , ,
1 2

=0 =0 =0
1 2

( ) =

R Q R Q R Q

m n n

m n n

E I m

  

    (11) 

 and  

 

0 0 1 1 2 2

, ,
1 2

= ( ) =0 =0
1 2 1 2

( ) =

R Q R Q R Q

i i m n n

m Q Q n n

E I n 

  

 

    (12) 

 Then, the long-run average inventory holding cost, HC , is determined by:  

 

2

=0

= . ( )H i i

i

C h E I  (13) 

 The first and second portion of HC  specifies the inventory holding cost of the warehouse and inventory holding cost of 

retailers, respectively. 

 

Long-run average lost sales cost 

  Stock out in retailers are lost sales. We use the steady-state probabilities obtained in the previous section to 

determine the long-run average lost sales for both retailers: 

 

 

0 0 2 2

1 1 1 1 ,0,
2

= ( ) =0
1 2 2

( )= . ( = 0)= .

R Q R Q

m n

m Q Q n

E LS p n  

 

 

   (14) 

 and  

 

0 0 1 1

2 2 2 2 , ,0
1

= ( ) =0
1 2 1

( )= . ( = 0)= .

R Q R Q

m n

m Q Q n

E LS p n  

 

 

   (15) 

 Then we can specify the total long-run average lost sales cost as:  

 

2

=1

= . ( )LS i i

i

C l E LS  (16) 

Long-run average ordering cost 

  The average number of replenishment orders (ordering) per unit time at both retailers is equal to (Saffari et al., 

2011):  

 ( ) =
i

i

i

E RP
Q


 (17) 

 in which i  is the effective arrival rate that can be calculated through = (1 ( = 0))i i ip n   . 

The average number of replenishment orders per unit time at the warehouse is equal to: 

 

 

2

=1
0

0

. ( = 1)

( ) =
i i i

i

p n R

E RP
Q

 
 (18) 

 

If on hand inventory at retailer i  is 1iR  , then an entry of a customer reduces the on-hand inventory at the 

retailer to iR , and the retailer i  places an order to the warehouse. Thus, the average number of the orders that retailer 

i  sends to the warehouse (average demand from warehouse) will be . ( = 1) /i i i ip n R Q  . So, the long-run average 

ordering cost, RPC , is determined by:  

 

2

=0

= . ( )RP i i

i

C r E RP  (19) 
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Total cost of system 

  We will use the sum of the inventory holding cost and the lost sales cost and ordering cost to evaluate the 

performance of the two-echelon inventory system. Therefore, the total cost is defined as H LS RPC C C  . The 

decision variables are the batch size and reorder point at each level. Therefore, we can view total long-run cost as a 

function of , , ( = 0,1,2)i iR Q i , that is, 

 

0 0 1 1 2 2

0 , ,
1 2

=0 =0 =0
1 2

= .

R Q R Q R Q

m n n

m n n

TC h m

  

    

 

2 0 0 1 1 2 2

, ,
1 2

=1 = ( ) =0 =0
1 2 1 2

.

R Q R Q R Q

i i m n n

i m Q Q n n

h n 

  

 

     

 

0 0 2 2

1 1 ,0,
2

= ( ) =0
1 2 2

. .

R Q R Q

m n

m Q Q n

l  

 

 

    

 

0 0 1 1

2 2 , ,0
1

= ( ) =0
1 2 1

. .

R Q R Q

m n

m Q Q n

l  

 

 

    

 

2

=1
0

0

. ( = 0). ( = 1)
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i i i i

i

p n p n R

r
Q

 




 

 

2

=1

.(1 ( = 0))
. i i

i

i i

p n
r

Q

 
  

  

 :Subjectto  

 0 0. .i i i iQ R Q k Q R L Q    

 , , 0 =1,2i ik L N Q R i   (20) 

 

The objective in this paper is to find the decision variables that minimize this total cost. 

 

SOLUTION PROCEDURE 

 Our proposed model in the previous section is a nonlinear integer programming (NIP) problem; considering the 

nonlinearity and the aim of our model that tries to search the space for the best solutions, we are lead to meta-heuristic 

algorithm. GA has been successfully applied to some inventory control problems, however, the application of GA to 

multi-echelon inventory systems are still rare[11]. In this paper we decided to use GA.  

 

The proposed GA method 

  One of the most important factors for successful implementation of GA is designing a more suitable 

chromosomal structure. In this paper, the chromosomal solution consists of a matrix-vector with one row and five 

columns. The first element is to indicate the batch size of Retailers. Note that the batch size is assumed to be identical for 

both retailers 1 2( = = )rQ Q Q . The second and third elements represent reorder points of both retailers. The fourth and the 

fifth elements, respectively, represent the batch-size and reorder point at the warehouse. Chromosomal structure is 

depicted in Fig- 2 . 

 

 
Fig- 2: Chromosomal structure 

 

First of all, the initial population of solutions is generated randomly.in the next step a fitness function is 

provided to evaluate the chromosomes of each generation. Parents are selected using one of the most popular selection 

methods called roulette-wheel. In this method, the parents are chosen based on the probability distribution of their fitness 
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value. Although better individuals will have a higher selection probability, all individuals in the population will have a 

chance to be selected, and then Reproduction is carried out by using crossover and mutation operators on the selected 

parents to produce new offspring. As an example, the crossover operation is performed as given in Fig-3. 

 

 

 
Fig-3: An illustration of the crossover operation 

 

   To explore new solutions, the mutation operator performs random alterations in chromosome genes by a 

predetermined mutation rate of mP . For the mutation operation of this paper, first a random chromosome whose 

components are between 0 and 1 is created and applied to the selected parent. Then, the parent genes that correspond to 

values less than pm are mutated within the boundaries of their corresponding variable. Fig-4 illustrates a mutation 

operation in which pm is set at 0.2. 

 

 
Fig-4: An illustration of the mutation operation 

 

Parameters 

Parameters in GA consist of a probability of performing crossover called crossover rate indicated by cP  and a 

probability of performing mutation called mutation rate indicated by mP . The number of chromosomes called population 

size, plays the main role in the run time of the algorithm to reach the near-optimal solution. These parameters have a 

crucial role in the performance of GAs.  

 

NUMERICAL ILLUSTRATION 

In this section, we present a numerical example by considering different values of parameters to show how the 

model is working. The basic parameter values are shown in  
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Table 1. The capacities of production transportation for each echelon are 15 and 30 for retailers and warehouse, 

respectively. To demonstrate the performance of the proposed genetic algorithm, we solved an example with two distinct 

methods of the direct search and proposed genetic algorithm. Minimum cost and optimal ordering policy obtained by 

both methods are shown in  Table 2. To solve the model for different values of the batch size and the reorder point, we 

used the MATLAB programming language. 

 

Table 1: Base parameter values 

Row 1

 

2

 

0

 

1

 

2  0h

 

1h

 

2h

 

1l  2l  0r  1r  2r  

1 2 9 4 7 11 4 3 2 25 15 20 5 3 

2 5 13 4 7 11 4 3 2 25 15 20 5 3 

3 5 9 1 7 11 4 3 2 25 15 20 5 3 

4 5 9 4 10 11 4 3 2 25 15 20 5 3 

5 5 9 4 7 7 4 3 2 25 15 20 5 3 

6 5 9 4 7 11 1 3 2 25 15 20 5 3 

7 5 9 4 7 11 4 5 2 25 15 20 5 3 

8 5 9 4 7 11 4 3 1 25 15 20 5 3 

9 5 9 4 7 11 4 3 2 75 15 20 5 3 

10 5 9 4 7 11 4 3 2 25 75 20 5 3 

11 5 9 4 7 11 4 3 2 25 15 150 5 3 

12 5 9 4 7 11 4 3 2 25 15 20 10 3 

13 5 9 4 7 11 4 3 2 25 15 20 5 24 

 

Table 2: Performance GA in compared with direct search 

   DS 

TC 

GA 

TC Row 
0R

 

0Q

 

1R

 

1Q

 

2R

 

2Q

 

0R

 

0Q

 

1R

 

1Q

 

2R

 

2Q

 

1 6 6 1 6 1 6 57.15 5 5 1 5 1 5 57.19 

2 7 7 2 7 2 7 73.85 7 7 2 7 2 7 73.85 

3 18 9 1 9 1 9 93.18 18 9 1 9 1 9 93.18 

4 8 8 1 8 1 8 64.03 7 7 2 7 2 7 64.61 

5 7 7 2 7 2 7 67.21 7 7 2 7 2 7 67.21 

6 7 7 2 7 2 7 48.64 8 8 1 8 1 8 49.28 

7 6 6 1 6 1 6 73.42 6 6 1 6 1 6 73.42 

8 7 7 2 7 2 7 58.77 6 6 2 6 2 6 61.00 

9 7 7 2 7 2 7 68.73 7 7 2 7 2 7 68.73 

10 8 8 3 8 3 8 78.62 8 8 3 8 3 8 78.62 

11 0 0 1 0 1 10 89.43 9 9 2 9 2 9 92.92 

12 7 7 2 7 2 7 67.44 8 8 1 8 1 8 67.55 

13 8 8 1 8 1 8 77.05 7 7 2 7 2 7 78.52 

 = [1 15]rQ  , 0 = [1 30],Q  population size= 50 , cp = 0.8 , mp = 0.15 ,Number of iterations=

40  
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Fig- 5: The changes of the total cost of types of ordering policy with respect to the demand rate 

 

 
Fig-6: The changes of the reorder point and batch size values in retailers with respect to the demand rate 

 

 
Fig-7: The changes of the reorder point and batch size values in warehouse with respect to the demand rate 

 

For more explanation of the result of the problem we used three charts.  
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 shows the changes of the total cost caused by changing the ordering policy and the demand rate in a retailer. 

Fig-6 and Fig-7 illustrate the effect of the changes of the demand rate on the reordering policy for the retailers and the 

warehouse, respectively. 

 

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

  In this research, a new model for a two-echelon inventory system based on inventory policy of (R, Q) was 

developed to determine the optimal values of (R, Q) in both echelons, so that the total cost is minimized. Markov chain 

and genetic algorithm were applied to solve the model. Finally a numerical example was used to illustrate the 

performance of the model while changing the system parameters and also the performance of genetic algorithm in this 

model was presented. Future research can extend the model by considering different assumptions such as allowing lateral 

transfer between retailers, considering more than two retailers, allowing direct submission from the external supplier to 

retailers while warehouse faces stock out, considering multi-commodity and budget limitations. 
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