Research Article

On The Integral Solutions Of The Binary Quadratic Equation \(x^2 = 15y^2 - 11^t \)

M.A. Gopalan \(^1\), S. Vidhyalakshmi \(^2\), A. Kavitha \(^3*\)

\(^1,2,3\) Department of Mathematics, Shrimati Indira Gandhi College, Trichy-2, Tamilnadu, India

*Corresponding author
A. Kavitha
Email: kavitha.balanubas.anian63@yahoo.com

Abstract: The binary quadratic Diophantine equation represented by \(x^2 = 15y^2 - 11^t \), \(t \) odd is analysed for its non-zero distinct integer solutions. Employing the lemma of Brahmagupta, infinitely many integral solutions of the above Pell equation are obtained. The recurrence relations on the solutions are also presented. A few interesting relations among the solutions are given. Further, there exist no integer solutions when \(t \) is even.

Keywords: Binary quadratic, Pell equation., Integer solutions

INTRODUCTION

It is well known that the Pell equation \(x^2 - Dy^2 = \pm 1 \), \((D > 0 \text{ and square free}) \) has always positive integer solutions. When \(N \neq 1 \), the Pell equation \(x^2 - Dy^2 = N \) may not have any positive integer solutions. For example the equations \(x^2 = 3y^2 - 1 \) and \(x^2 = 7y^2 - 4 \) have no positive integer solutions. When \(k \) is a positive integer and \(D \in \{ k^2 \pm 4, k^2 \pm 1 \} \), positive integer solutions of the equations \(x^2 - Dy^2 = \pm 4 \) and \(x^2 - Dy^2 = \pm 1 \) have been investigated by Jones in [4]. The same or similar equations are investigated in [3,6,9,10]. In [1,2,5,7,8,11,12,13] some specific Pell equation and their integer solutions are considered. In [14], the integer solutions of Pell equation \(x^2 - (k^2 + k)y^2 = 2^t \) has been considered. In [15], the Pell equation \(x^2 - (k^2 - k)y^2 = 2^t \) is analyzed for the integer solutions.

This communication concerns with the Pell equation \(x^2 = 15y^2 - 11^t \) and infinitely many positive integer solutions are obtained when \(t \) is odd. The recurrence relations on the solutions are also given. Further, it is observed that, when \(t \) is even there exist no integer solutions of the considered Pell equation.

METHOD OF ANALYSIS:

The Pell equation to be solved is \(x^2 = 15y^2 - 11^t, t = 2m + 1 \) (1)

First, we consider the Pell equation \(x^2 = 15y^2 - 11 \) (2)
whose fundamental solution is \((\tilde{x}_0, \tilde{y}_0) = (2,1)\).

The other solutions of (2) can be derived from the relations
\[
\tilde{x}_n = \frac{f_n}{2}, \quad \tilde{y}_n = \frac{g_n}{2\sqrt{15}}
\]
where
\[
f_n = [(2 + \sqrt{15})^{n+1} + (2 - \sqrt{15})^{n+1}]
\]
\[
g_n = [(2 + \sqrt{15})^{n+1} - (2 - \sqrt{15})^{n+1}]
\]
Now, we consider the general equation

\[x^2 = 15y^2 - 11^{2m+1}, \quad m \geq 1 \]

The initial solution of (3) is

\[X_1 = 13 \cdot 11^{m-1}, \quad Y_1 = 10 \cdot 11^{m-1} \]

Applying the lemma of Brahmagupta between \((X_1, Y_1)\) and the solutions of the classical pell equation \(x^2 = 15y^2 + 1\), the other solutions of (3) can be obtained from the relations

\[
X_{n+2} = 11^{m-1}\left[\frac{13f_n}{2} + \frac{150g_n}{2\sqrt{15}}\right]
\]

\[
Y_{n+2} = 11^{m-1}\left[\frac{10f_n}{2} + \frac{13g_n}{2\sqrt{15}}\right]
\]

The recurrence relations satisfied by the solution of (1) are found to be

\[
X_{n+4} - 8X_{n+3} + X_{n+2} = 0
\]

\[
Y_{n+4} - 8Y_{n+3} + Y_{n+2} = 0
\]

\[
X_1 = \begin{cases} 2 & \text{if } m = 0 \\ 13 \cdot 11^{m-1} & \text{if } m \geq 1 \end{cases}
\]

\[
X_2 = \begin{cases} 19 & \text{if } m = 0 \\ 202 \cdot 11^{m-1} & \text{if } m \geq 1 \end{cases}
\]

and

\[
Y_1 = \begin{cases} 1 & \text{if } m = 0 \\ 10 \cdot 11^{m-1} & \text{if } m \geq 1 \end{cases}
\]

\[
Y_2 = \begin{cases} 4 & \text{if } m = 0 \\ 53 \cdot 11^{m-1} & \text{if } m \geq 1 \end{cases}
\]

A few interesting properties satisfied by the solutions of (1) are exhibited below:

(i) \(Y_{n+3} = X_{n+2} + 4Y_{n+2}\)

(ii) \(X_{n+3} = 4X_{n+2} + 15Y_{n+2}\)

(iii) \(Y_{n+4} = 8X_{n+2} + 31Y_{n+2}\)

(iv) \(X_{n+4} = 31X_{n+2} + 120Y_{n+2}\)

(v) \(Y_{n+4} = X_{n+3} + 4Y_{n+3}\)

(vi) \(X_{n+4} = 4X_{n+3} + 15Y_{n+3}\)

(vii) \(X_{n+4}^2 - X_{n+2}^2 = 240X_{n+3}Y_{n+3}\)

Each of the following triples forms an A.P

(a) \((X_{n+2}, 4X_{n+3}, X_{n+4})\)

(b) \((X_{n+3}, 2Y_{n+3}, Y_{n+2})\)

(c) \((X_{n+2}, 15Y_{n+3}, X_{n+4})\)
1. Define \(r = \frac{X_{n+2} + Y_{n+2}}{2} \) and \(s = \frac{Y_{n+2}}{2} \), where \((X_{n+2},Y_{n+2})\) is any solution of (1). Note that \(r, s \) are integers and \(r > s > 0 \). Treat \(r \) and \(s \) as the generators of the Pythagorean triangle \(T(\alpha,\beta,\gamma) \), where \(\alpha = 2rs, \beta = r^2 - s^2, \gamma = r^2 + s^2 \). Let \(A \) and \(P \) represented its area and perimeter respectively. Then, this Pythagorean triangle \(T \) is such that

\[
(a) 30\beta - \alpha - 29\gamma \equiv 0 \pmod{11^t}
\]

\[
(b) \gamma - 31\alpha + \frac{120A}{P} \equiv 0 \pmod{11^t}
\]

2. Let \(x \) and \(y \) be taken as the sides of a rectangle \(R \) whose length of the diagonal, perimeter and area are denoted by \(L \), \(P \) and \(A \) respectively. Note that

\[
(i) 6[L^2 + 11^t] \text{ is a nasty number}
\]

\[
(ii) P^2 - 8A = 4L^2
\]

CONCLUSION

In this paper, the integer solutions of the Pell equation \(x^2 = 15y^2 - 11^t \) where \(t \) odd are obtained. For the case \(t \) even, we find that there is no integer solution as the negative Pell equation \(x^2 = 15y^2 - 1 \) has no integer solution. To conclude, one may search for integer solutions of other choices of negative Pell equations

2010 Mathematics subject classification: 11D09

REFERENCES:

5. Kaplan P, Williams KS; Pell’s equations \(x^2 - my^2 = -1, -4 \) and continued Fractions, Journal of Number Theory, 1986;23:169-182

7. Lenstra HW; Solving the Pell equation. Notices of the AMS, 2002;49(2):182-192

8. Mathews K; The Diophantine equation \(x^2 - Dy^2 = N, D > 0 \) Expositiones Math, 2000;18:323-331

11. Tekcan A; Pell Equation \(x^2 - Dy^2 = 2 \), Bulletin of Irish Mathematical Society, 2004;54: 73-89

12. Tekcan A, Bizim O, Bayraktar M; Solving the Pell equation using the fundamental element of the field \(Q(\sqrt{\Delta}) \). South East Asian bull of maths, 2006;30:355-366

13. Tekcan A; The Pell equation \(x^2 - Dy^2 = \pm 4 \), Applied Mathematical Sciences, 2007;1(8):363-369

14. Tekcan A; Betul Gezer, Osman Bizim; On the integer solutions of the Pell Equation \(x^2 - dy^2 = 2^t \), World Academy of Science, Engineering and Technology, 2007;1:522-526

15. Tekcan A; The Pell equation \(x^2 - (k^2 - k)y^2 = 2^t \), World Academy of Science, Engineering and Technology, 2008;19:697-701