Scholars Journal of Engineering and Technology (SJET)

Sch. J. Eng. Tech., 2014; 2(4C):632-633 ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com

Research Article

A Method of Finding Solutions to the Cubic equation $x^3+px^2+qx+r=0$

M.A.Gopalan¹, S.Vidhyalakshmi², Shanthi^{3*}

^{1,2,3} Department of Mathematics, Shrimathi Indira Gandhi College, Trichy-2, Tamilnadu, India

*Corresponding author Shanthi Email: shanthivishvaa@gmail.com

Abstract: A method of finding real and complex solutions to the cubic equation $x^3 + px^2 + qx + r = 0$ is illustrated through solving quartic equation. **Keywords:** Cubic equation, real roots, complex roots, quartic equation 2010 Mathematics Subject Classification :11D25

INTRODUCTION:

In mathematics, a cubic function is a function of the form $f(x) = ax^3 + bx^2 + cx + d$, where 'a' is non-zero or in other words, a function defined by a polynomial of degree 3. Setting f(x) = 0 produces a cubic equation of the

form $ax^3 + bx^2 + cx + d = 0$. Usually, the co-efficients a, b, c, d are real numbers. To solve a cubic equation is to find the zero of a cubic function, that is to say, to find a particular value of x for which f(x) = 0. Cubic equations are rich in variety. There are various methods to solve a cubic equation [1-5] namely, Cardano's method, Vieta's substitution, Lagrange's method, Trigonometric(or Hyperbolic)method, factorization and Omarkhayyam's solutions.

It is worth mentioning here that solving the quartic equation requires solving its resolvent cubic equation and thus, solving cubic equation is a necessary part of solving the quartic equation. Thus, we have motivated to search for an elegant method of finding solutions to the cubic equation $ax^3 + bx^2 + cx + d = 0$ through solving quartic equation.

METHOD OF ANALYSIS:

The cubic equations to be solved is

 $x^{3} + p^{2} + qx + r = 0$ (1)
Where p, q, r are non-zero numbers.

Multiplying both sides of (1) by (x + p), $p \neq 0$ we have

$$x^{4} + 2px^{3} + (p^{2} + q)x^{2} + (pq + r)x + pr = 0$$
(2)

Assuming the LHS of equation (2) can be expressed as the product of two quadratic factors in x. (2) is written as

$$(x^{2} + (p + \lambda)x + c)(x^{2} + (p - \lambda)x + d) = 0$$
(3)

Where λ is any non zero number.

Comparing the coefficients of corresponding terms in (2) & (3) we have

$$c + d = \lambda^2 + q \tag{4}$$

$$(p+\lambda)d + (p-\lambda)d = pq + r \tag{5}$$

$$cd = pr \tag{6}$$

Now, $c - d = \pm \sqrt{(c+d)^2 - 4cd}$

$$c - d = \pm \sqrt{\left(\lambda^2 + q\right)^2 - 4pr} \tag{7}$$

From (4) & (7), the values of c & d are given by

$$c = \frac{1}{2} \left[\lambda^{2} + q \pm \sqrt{(\lambda^{2} + q)^{2} - 4pr} \right]$$
(8)
$$d = \frac{1}{2} \left[\lambda^{2} + q \mp \sqrt{(\lambda^{2} + q)^{2} - 4pr} \right]$$
(9)

Choose λ such that the square root of the RHS of (8) & (9) is removed. There are two sets of values for c and d . Select those values of c, d that satisfy the equation (5).

Now, substituting the suitable values of λ, c, d in (3) and solving each of the two quadratic equations, four values for x are obtained. Neglecting the value x = -p, the other values of x represent the solution of (1).

A few examples are presented in the following table.

Table: Solutions of $x^3 + px^2 + qx + r = 0$.						
р	q	r	λ	с	d	solutions
1	-10	8	1	-8	-1	1, 2, -4
6	11	6	1	6	6	-1, -2, -3
2	-13	10	1	-10	-2	1, 2, -5
-7	14	-8	1	8	7	1, 2, 4
-5	-2	24	2	-10	12	-2, 3, 4
1	1	-3	1	3	-1	$1,-1 \pm i\sqrt{2}$
-12	39	-28	1	28	12	1, 4, 7
-6	13	-10	2	5	12	$2, 2\pm i$
7/2	7/2	-1	-1	7/2	1	1/2, 1, 2

REFERENCES

- 1. Uspensky JV; Theory of equations. McGraw Hill Book Company, 1948.
- 2. Burnside WS, Panton AW; The theory of equations, Vol, II Longmans, co, London, 1935
- 3. Brahma N, Vagi BS, Sharma BD; Theory of equations, Kedarnath, Ram Nath, 1965.
- 4. Nickalls RWD; A New Approach to solving the cubic: Cardan's solution revealed. The Mathematical Gazette, 1993;77(480):354-359.
- 5. Zucker IJ; The cubic equation a new book at the irreducible case. Mathematical Gazette, 2008; 92:264-268.