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Abstract: Large size, light weight and ease of assembly are some of the desirable attributes in design of space structures. 
The compromise between a large size and low weight results in a structure that is very flexible, but it makes the control of 
the structure and its components very difficult. Because these structures are large and flexible, they are very sensitive to 
environmental effects. Further, these structures possess inherently low damping. Therefore, active control schemes are 
needed to quickly bring the structure back to its equilibrium position when it is subjected to a disturbance. The purpose of 
control is to damp out structural vibrations to initial excitations. Linear quadratic regulator (LQR) control method is used 
for control system design in this paper. Though a majority of the work on integrated structure and control design uses a 
linear quadratic regulator (LQR) for controller design, the influence of state and control weighting matrices on controller 
performance is ignored. It is proposed herein that the performance of the control system can be improved by selecting 
optimum values of the cross sectional areas of the members as well as the entries of the state and control weighting matrices 
used in the LQR design. 
Keywords: Linear quadratic regulator (LQR), damping, matrices. 

INTRODUCTION 
Because of the strong interaction between the 

structural design and control system design in active 
vibration control, simultaneous optimal design of both 
systems is necessary. The conventional structural and 
control design approach treats the two designs 
separately. Each design is optimized based on its 
objective function but the combined system is not 
optimal. It is therefore necessary to solve the system in 
such a way that the structure satisfies the requirements of 
weight, control effort and performance. This can be done 
by simultaneous optimization of control and structure. In 
this method either, the structure and control are linked 
through constraints related to control and structure 
design or both the structure and control objective 
functions are combined as a single cost function. In the 
work presented in this paper, the structure and control 
objective functions are linked through constraints related 
to control and structure. 

A significant amount of research has been done 
on developing methods for the simultaneous design of 
structure and control system. Fonseca and Bainum [1] 
proposed two approaches, combined and sequential 

integrated, to solve the simultaneous structural/control 
optimization problem. The combined approach uses a 
cost function that includes both  control and structure 
design considerations whereas the sequential integrated 
approach uses two separate cost functions for control and 
structure, but they are matched through constraints. Both 
approaches yield very similar transient performance in 
terms of response time and control efforts. Khot et al. [2] 
use weight minimization of the structure as objective 
function with constraints on the distribution of the 
eigenvalues and /or damping ratio of the closed loop 
system.   Lee [3] presented a similar approach but 
considered a control objective. For control design, the 
most commonly used method is the linear quadratic 
regulator (LQR). Since the weighting matrices in LQR 
directly affect the optimal control performance, some 
discussions have been done for optimal selection of these 
matrices. Sunar and Rao [4] proposed a methodology for 
selecting the state and input weighting matrices, [Q] and 
[R], when using linear quadratic regulator in the 
integrated design of structures and controls. The optimal 
values of [Q] and [R], result in minimizing the 
performance index and reduced control effort. According 
to the proposed scheme, the performance index is 
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significantly affected by the changes in the diagonal 
entries of [Q] and [R], matrices so the diagonal entries 
of [Q] and [R],  are chosen as design variable to 
minimize the quadratic performance index. Design was 
done using a substructure decomposition scheme (for 
large structures) in order to save the computational cost 
with very little loss in accuracy. Ohta et al [5] have 
presented a method for selecting weighting matrices in 
linear quadratic regulator with some diagonal weights 
that achieve a specified pole location. The proposed 
method used a polynomial as a desirable pole 
specification and the weighting matrices are derived in 
an analytical form. Ochi and Kanai [6] proposed a new 
way of pole placement by finding a weighting matrix 
which gives desired locations of the closed loop poles. 
These poles can then be placed arbitrarily and exactly at 
the desired positions but does not guarantee the positive 
definiteness of weighting matrix. The problem of eigen 
vector assignment is not considered in the paper and the 
proposed method is computationally expensive.  

Choi and Seo [7] presented an LQR design 
method which has the flexibility of exact eigen structure 
assignment with stability-robustness properties. The 
proposed method guarantees that the desired eigen 
values are assigned exactly and the desired eigen vectors 
are assigned in the least-square sense. Ang et al [8] 
presented a weighted energy method for selecting the 
weighting matrices for vibration control of smart 
composite plates. The quadratic function is selected as a 
relative measure of strain, kinetic and input energy and 
their significance is represented through their relative 
weight factors. The effect of the weight factors on the 
active modal damping is predicted by modal control 
method.  

 Mansouri and Khaloozadeh [9] proposed a 
genetic approach for an optimal linear quadratic tracking 
problem. Proper choice of weighting matrices is 
necessary for satisfying the design specification and this 
difficulty is overcome by using genetic algorithm. Li et 
al [10] presented a multi-objective evolution algorithm 
based approach for optimal design of weighting matrices 
in linear quadratic regulator. By establishing the multi-
objective optimization model of LQR, the weighting 
matrices, [Q] and [R], are designed which makes control 
system meet multiple performance indexes 
simultaneously. Ghoreishi et al [11] carried out a 
comparative study of different optimization methods for 
an optimal design of LQR weighting matrices. Closed-
loop pole locations, speed of response and maximum 
level of control effort are combined into an objective 
function and this multiobjective problem is solved by a 
weighted sum method and the results for different 
optimization algorithms are then compared. 

Almost all of the referred papers consider the 
control optimization problem for the optimum selection 

of the weighting matrices. In this paper the combined 
structural and control optimization is considered using 
the structure and control design variables. The overall 
design of an efficient structural-control system is of 
interest to both structural and control engineers. Some 
important aspects of the problem include a minimum 
weight design, minimizing control energy required and 
optimum placement of actuators for fast damping of 
vibrations when the structure is subjected to some 
external disturbance. In this work the effect of changing 
the weighting matrices on structural weight and on a 
controller performance index is studied. The proposed 
methods results in an improved structural weight and 
control system performance. 

PROBLEM FORMULATION 
Controller Design 

Control system design requires a mathematical 
model of the system being controlled. State-space 
models are commonly used for control system design and 
are used herein. The starting point for state-space models 
are the differential equations governing the structural 
dynamics which are converted into state space form for 
control system design.  

The finite element dynamical equations 
governing the motion of a controlled structural system 
are given as: 

Mx Cx Kx Df+ + =                     (1) 
where x is a n x 1 vector of physical coordinates, f  is 
mx1 control vector, [M], [C] and [K] are n x n mass, 
damping and stiffness matrices respectively. [D] is the n 
x m applied force distribution matrix which relates the 
input control force to coordinate system. For forces 
applied by the actuators acting along the members of the 
structure, [D] is calculated using direction cosines of the 
constituent members. 

Using the coordinate transformation x yφ= , 
Eq. (1) can be represented in state space form as: 

     u Au Bf= +                            (2) 

where y is the vector of modal coordinates, 
[[ ],[ ]]Tu y y=  , is 2n x 1  state variable vector, [φ ] is

n x n  modal matrix, [A] is 2n x 2n plant matrix and [B]
is 2n x m input matrix.
The plant matrix [A] and input matrix [B] in Eq. (2) are
given as:

2

0
[ ]

2i i i

I
A

ω ξω
 

=  − − 
              (3) 

0
[ ] TB

Dφ
 

=  
 

    (4) 

where iξ  and ωi  denote the damping factor and natural 
frequency of the ith mode, respectively.  

http://saspublisher.com/sjet/


Arjumand Ali., Sch.  J. Eng. Tech., Jun 2017; 5(6):258-266 

Available online at http://saspublisher.com/sjet/ 260 

A controller for the system governed by Eq. (2) 
is designed using linear quadratic regulator (LQR) 
theory. The optimum control force f is selected to 
minimize the quadratic performance index, PI, which is 
a compromise between minimum control energy and 
minimum error requirements, and is defined as: 

0

( [ ] [ ] )T TPI u Q u f R f dt
∞

= +∫       (5) 

where [Q] is a positive semi definite state weighting 
matrix and [R] is a positive definite control weighting 
matrix. The optimum feedback control law is given as 

[ ]f uκ= −  where [κ ] is the feedback gain matrix 

defined as 1[ ] [ ] [ ] [ ]TR B Pκ −= , and [P] is the solution 
to matrix Riccati equation: 

1[ ] [ ] [ ][ ] [ ] [ ][ ][ ] [ ] [ ] [0]T TA P P A Q P B R B P−+ + − =     (6)  

The minimum value of the quadratic performance 
index is given as: 

* (0)[ ] (0)TPI u P u=       (7) 
where u(0) is the initial state vector. It has been found 
that the expected value of *PI over a set of possible 
initial states u(0) is equivalent to trace of [P]. It has been 
shown [12] that the minimization of the quadratic control 
effort is proportional to trace [P], therefore trace [P] is 
considered as objective function in the present work. 
Substituting [ ]f uκ= − in Eq. (2) yields: 

([ ] [ ][ ]) [ ]clu A B u A uκ= − =       (8) 
The eigenvalues of the closed loop matrix [Acl] are a set 
of complex conjugate pairs given as:  

i i ijλ α β= ±         i=1,2,…n    (9) 

where 1j = − and 2 2
i i iλ α β= + . The closed 

loop damping ratio iξ  associated with iλ  is given as 

   
2 2

i
i

i i

αξ
α β

= −
+

 i=1,2,…n     (10) 

The solution to Eq. (8) for a given initial condition (0)u
, is given as: 

[ ]( ) (0)clA tu t e u=   (11) 
Equation (11) can be used to find the dynamic response 
of the structure when it is subjected to some initial 
disturbance (0)u . The MATLAB function ode45 can be 
used to solve the first order differential equation given in 
Eq. (8). 

SOLUTION PROCEDURE 
The first problem considered herein involves 

solving a simultaneous structural and control design 
problem for minimization of trace[ ]P  by fixing the 

actuators at some specific locations and fixing the [ ]Q  
and [ ]R matrices (see Eq. 5) as identity matrices. Next 
the effect of changing the [ ]Q  and [ ]R  matrices is 
studied. Two cases are considered: (i) the cross-sectional 
areas of members are fixed and [ ]Q  and [ ]R  matrices 
are varied; (ii) the member cross-sectional areas as well 
as entries of [ ]Q  and [ ]R  matrices are varied. The 
optimization procedure is such that an initial design 
variable vector is selected, based on that the mass, 
stiffness and damping matrices are assembled and the 
structural frequencies and mode shapes are calculated. 
Using the structural frequencies and mode shapes, plant 
matrix [A] and input matrix [B] are assembled. [D] 
matrix is then set up based on the location of actuators. 
LQR problem is solved next and optimum gain and 
Riccati matrix solution is found. The objective function 
and all constraints values are calculated. The design 
variables are updated and the solution is repeated until 
no improvement in objective function is possible. 

INFLUENCE OF WEIGHTING MATRICES ON 
OPTIMUM DESIGN 

The effect of changing the weighting matrices is 
presented in this section with actuators fixed at some 
specific locations. Two cases are considered. In the first 
case, the weighting matrices are assumed to be fixed and 
cross-sectional areas are varied to optimize the controller 
performance index. The second case involves varying 
both the cross-sectional areas and weighting matrices to 
optimize the controller performance index. 

Baseline Design — Weighting Matrices fixed 
A design example is presented next for studying 

the effect of using optimum values for weighting 
matrices on the optimum design of structure. Towards 
this end, a baseline design is established first. In this 
design, only member cross-sectional areas are varied to 
optimize the controller performance index, the weighting 
matrices are assumed to be fixed. 

Design Example 
The 12-member ACOSS four structure is shown 

in Fig. 1 [12]. This structure, designed by Draper Labs, 
is the simplest non-planar geometry representing a large 
space structure. All physical and geometric properties of 
the structure are nondimensionalized. The boxed 
numbers (in Fig. 1) represent the nodes while the others 
represent the elements. The edges of the truss consist of 
six elements (1 through 6) of length 10 units each and six 
bipod legs (7 through 12) of 2 2 units each. The nodal 
coordinates of the system are given in Table 1. The 
structure has twelve degrees of freedom, three at each of 
the four free nodes. The Young’s modulus of the 
members is taken as 1.0 and the weight density of the 
material is assumed to be 0.001. The size of [ ]Q  matrix 
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is 2 2n n×  and [ ]R  matrix is m m× and they are 
assumed to be identity matrices where n  denote the 
degrees of freedom and m  denote the number of 

actuators present. The values of n  and m  here are 12 
and 6 respectively. The cross-sectional areas of the 
members are treated as design variables. A total of six 
actuators are present in elements 7 through 12.  

Table 1: Nodal Coordinates of Acoss Four 
Node X Y Z 
1 0 0 10.165 
2 -5 -2.887 2 
3 5 -2.887 2 
4 0 5.7735 2 
5 -6 -1.1547 0 
6 -4 -4.6188 0 
7 4 -4.6188 0 
8 6 -1.1547 0 
9 -2 5.7735 0 
10 2 5.7735 0 

Fig-1: ACOSS FOUR Structure 

The dynamic response of the structure to an 
initial disturbance is also studied by measuring the 
displacement associated with the line of sight (LOS). 
Node 1 represents the antenna feed, and its motion 
measures the deviation from the LOS. The dynamic 
response of the optimum structure is initiated by a unit 
displacement at node 2 in the x-direction at t=0. 

Optimization Problem Formulation 
A minimization of the controller performance 

index (trace[ ]P ) is considered as the objective function 
with the cross-sectional areas of the elements of the 
structure as design variables. Mathematically, the 
optimization formulation is stated as: 

Minimize trace[ ]P  

by varying iA
subject to 

10.16434 0ξ− ≤

11.3374 0β− ≤   (12) 

21.5 0β− ≤
10 2000iA≤ ≤ 1,......12i =  

The optimization problem is solved using the Method of 
Feasible Directions and the solution steps are outlined in 
Fig. 2. 
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Fig-2: Steps in the optimization process 

RESULTS 
The starting values of the cross-sectional areas, 

closed-loop damping ratios, closed-loop eigenvalues and 
square of the natural frequencies are given in Table 2. 
The value of the weight at this starting design is 43.69 

and trace[ ]P  is 1763.2. The LOS error for the transient 
response is given in Fig. 3. The transient response is 
simulated by finding the solution to Eq. (11) for 60 
seconds at 0.05 seconds time intervals. The magnitude of 
LOS error is calculated at each interval.  

Table 2: Nominal Areas, closed loop damping ratio, closed loop eigenvalues and squares of natural frequencies 
Areas Damping Real Part Imag. Part Sq. of natural 

Ratio Frequencies 
1000 0.0548 -0.0734 1.3375 1.79 
1000 0.0655 -0.1088 1.6573 2.75 
100 0.0738 -0.2121 2.8674 8.26 
100 0.0802 -0.2357 2.9302 8.63 
1000 0.084 -0.2837 3.3664 11.4 
1000 0.0864 -0.362 4.1732 17.53 
100 0.0761 -0.3536 4.6332 21.58 
100 0.0723 -0.3421 4.72 22.39 
100 0.0341 -0.2901 8.4986 72.31 
100 0.0298 -0.2742 9.2062 84.83 
100 0.0207 -0.2126 10.2456 105.02 
100 0.0064 -0.0823 12.8504 165.14 
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Fig-3: Transient response of structure at nominal design 

Using the nominal values of the areas as starting 
design for the optimization problem, the optimum values 
of the cross-sectional areas, closed-loop damping ratios 
and closed-loop eigenvalues are given in Table 3. The 
optimum trace [ ]P  is 715 and the weight of the structure 

at this design is 22.9. A 60% reduction in trace [ ]P  and 
48% reduction in weight is obtained at the optimum 
design. The LOS error at the optimum solution is 1.52 
and is shown in Fig. 4. 

Table 3: Optimum Areas, closed loop damping ratio, closed loop eigenvalues and squares of natural frequencies 
Areas Damping Real Part Imag. 

Part 
Square of 
natural 

Ratio frequencies 
430.09 0.1635 -0.2218 1.336 1.79 
424.82 0.0921 -0.0769 1.4926 2.25 
306.03 0.0963 -0.2073 2.5533 6.57 
397.06 0.0878 -0.197 2.8917 8.41 
293.22 0.0655 -0.207 3.7632 14.21 
222.21 0.0662 -0.2852 4.3519 19.02 
122.85 0.0519 -0.2472 5.2807 27.94 
304.48 0.0514 -0.3113 5.6312 31.79 
27.89 0.0451 -0.3465 6.1208 37.56 
50.53 0.0398 -0.2702 7.0125 49.25 
142.49 0.0347 -0.315 8.008 64.17 
120.54 0.0272 -0.2583 8.8766 78.81 

Fig-4: Transient response of structure at optimum design 
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When comparing the nominal and optimum 
designs, it is seen that in the case of nominal design, the 
frequencies associated with modes 3 and 4 and modes 7 
and 8 are close to each other. However, in the case of 
optimum design, the frequencies are spread out and no 
two frequency values are as close as in the nominal 
design case. 

Effect of Changing the Weighting Matrices 
In order to see the effect of changing the 

weighting matrices on the controller performance, the 
same ACOSS four structure (Fig.1) is considered for the 
optimization problem. A minimization of trace[ ]P  is 
considered as the objective function with diagonal 
entries of the state and control weighting matrices, [ ]Q  
and[ ]R , treated as design variables. The design 
constraints imposed on the problem are given by Eq. (12) 
with one additional constraint that all the diagonal terms 
of [ ]Q  and [ ]R  matrices should be greater than or equal 
to 1. The controls toolbox in Matlab is used for solving 
Riccati equation and for finding the control gains used in 
the LQR control method. 

Results 
Two scenarios are considered next for studying 

the effect of varying weighting matrices on the optimum 
controller performance with (i) member cross-sectional 

areas at fixed values and (ii) optimum values determined 
for member cross-sectional areas. 

 Areas fixed at nominal values 
The only problem variables are entries of [ ]Q

and [ ]R  matrices. Two different starting designs are 
considered. When starting value of [ ]Q  and [ ]R are 
taken as [ ]I , where [ ]I  is an identity matrix, the 
minimum trace [ ]P  is found to be 1843.06. The 

optimum values of entries of [ ]Q  matrix are: 1Q =13.5

and 13Q =7.05 All others [ ]Q  values are at the lower

bound which is 1.0. All optimum [ ]R  values converge 
to the lower bound of 1.0. The second starting design 
used the value [ ]Q  =10[ ]I  and [ ]R =[ ]I . In this case, 

the minimum value of trace[ ]P  is 1844.86 and only 1Q
=25.06 and rest of [ ]Q  values are all at 1.0. Also all 
entries of [ ]R  matrix are 1.0 at the optimum solution. 
Some other starting points are also considered and they 
are shown in Table 4 with the corresponding weights, 
trace [ ]P  and LOS error values. It can be seen from 
Table 4, different values for the starting design results in 
different values for the optimum design variables. This 
indicates there are several local optima and the results are 
not globally optimum. 

Table 4: Areas fixed at nominal values 
Starting point 
Q=R=I Q=R=10I Q=10I, 

R=I 
Q* Q* 

R1-3=10, 
R4-6=1 

R1-3=1, 
R4-6=10 

Weight 43.70 43.70 43.70 43.70 43.70 
trace [ ]P  1843.06 1843.60 1844.86 1853.82 1843.97 
LOS 1.055 1.055 1.055 1.052 1.055 
Optimum Q Q1=13.5 Q1=24.39 Q1=25.06 Q1=30.05 Q1=21.98 

Q13=7.05 Q13=2.47 
Q* = Q1-8=1, Q9-16 =10 and Q17-24 =5 

Areas and Q and R Matrices as design variables 
In order to improve upon the results reported in 

the previous section, the optimization problem is solved 
by considering the member cross-sectional areas and the 
diagonal entries of [Q] and [R] as design variables. The 
design variables in this case are 42 (12 cross sectional 
areas, 24 diagonal entries of [Q] and 6 diagonal entries 
of [R]). At the starting design of [Q]=[R]=[I], the 
optimum value of trace [ ]P  is 553.46 with optimum 1Q
=3.21 and 13Q  =3.54, all other Q’s and R’s converge to 
lower bound of 1.0. The weight of the structure at this 
optimum design is 15.2 and the LOS error is 1.88.  

By changing the starting design as [Q]=10[I] 
and [ ]R =[ ]I , optimum value of trace [ ]P =550.06 

with optimum 1Q =7.47 all other Q’s and R’s converge
at 1. The weight of the structure is 15.14 and the LOS 
error is 1.52 and is shown in Fig. 5. Some other starting 
points are also considered and they are shown in Table 5 
with the corresponding weights, trace [P] and LOS error 
values. The optimum values of the cross- sectional areas 
are given in Table 6. It can be seen from the results 
presented herein that a 34% reduction in weight and 23% 
reduction in trace [ ]P  can be achieved by considering 
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the member cross-sectional areas and diagonal entries of 
[ ]Q and [ ]R  matrices as design variables. Therefore in
order to improve the overall performance of structure,

member cross-sectional areas along with entries of [ ]Q  
and [ ]R  matrices should be considered as design 
variables. 

Table 5: Areas and diagonal [Q] and [R] as design variables 
Starting 
point 

Q=R=I Q=R=10I Q=10I, R=I Q* 

R1-3=1,          
R4-6=10 

Weight 15.23 15.13 15.14 15.29 
trace [P] 553.46 550.24 550.06 554.92 

LOS 1.88 1.89 1.52 1.87 
Optimum 
Q 

Q1=3.21 Q1=7.83 Q1=7.47 Q1=1.47 
Q13=3.54 Q13=4.46 

Q* = Q1-8=1, Q9-16 =10 and Q17-24 =5 

Table 6: Optimum cross-sectional areas 
Element Q=R=I Q=R=10I Q=10I, R=I Q* 

R1-3=1,R4-6=10 
1 271.58 310.42 235.8 277.45 
2 209.78 192.14 247.74 211.33 
3 205 208.39 240.68 205.6 
4 217.4 201.48 216.41 216.07 
5 220.88 202.78 217.91 219.72 
6 228.03 232.24 182.6 228.89 
7 66.16 160.95 195.33 67.28 
8 187.68 76.75 84.15 185.8 
9 107.37 50.51 91.89 105.79 
10 96.99 99.4 70.11 96.22 
11 53.09 107.61 122.31 55.04 
12 93.64 90.56 50.17 93.09 

Q* = Q1-8=1, Q9-16 =10 and Q17-24 =5 

Table 7: Weight and trace [P] values for three cases 
[Q] and[R]
design
variables,
Areas fixed

Areas design 
variable, 
[Q]=[R]=[I] 

Area and 
[Q], [R] as 
design 
variables 

Trace 
[P] 

1843 715 550 

Weight 43.69 22.9 15.14 
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Fig-5:  Response when areas and [Q] and [R] are varied 

CONCLUSION 
This paper presents an approach to integrated 

structural and control optimization for selecting optimum 
weighting matrices and cross sectional areas of the 
structure. The overall design of an efficient structural-
control system is of interest to both structural and control 
engineers. For an efficient controller, trace [P] is 
minimized by treating the weighting matrices as design 
variables. The natural frequencies of the controlled 
system and time required to damp out the vibrations are 
specified by putting constraints on closed-loop 
eigenvalues and damping ratios.  From a structural 
viewpoint, the designer wants to minimize the weight of 
the structure by varying the cross-sectional areas of the 
members and ensuring that the stresses in members due 
to applied loads don’t exceed permissible limits. In this 
work the effect of changing the weighting matrices on 
structural weight and on a controller performance index 
is studied. From this work, it is concluded that great 
savings in the control energy as well as structural weight 
is possible by using both the cross sectional areas and 
diagonal entries of weighting matrices as design 
variables.   
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