
Citation: Paarth Sonkiya. Optimising Warehouse Navigation: A Novel Two-Dimensional Grid Model for Robot Path
Planning in Warehouse Logistics. Sch J Eng Tech, 2024 Oct 12(10): 314-323.

314

Scholars Journal of Engineering and Technology

Abbreviated Key Title: Sch J Eng Tech

ISSN 2347-9523 (Print) | ISSN 2321-435X (Online)

Journal homepage: https://saspublishers.com

Optimising Warehouse Navigation: A Novel Two-Dimensional Grid

Model for Robot Path Planning in Warehouse Logistics
Paarth Sonkiya1*

1Student Researcher, Neerja Modi School, Jaipur 302016

DOI: https://doi.org/10.36347/sjet.2024.v12i10.003 | Received: 11.09.2024 | Accepted: 18.10.2024 | Published: 21.10.2024

*Corresponding author: Paarth Sonkiya
Student Researcher, Neerja Modi School, Jaipur 302016

Abstract Review Article

In practical warehouse scenarios, route optimization is an important factor due to its large impact on the cost and time

efficiency of a warehouse. This directly affects the overall productivity of a warehouse. Many algorithms have been

developed to address this issue- the most commonly used in the industry include the A* algorithm and Dijkstra’s

algorithm. While most provide appropriate usage in static ware house environments, many often fall short in dynamic

warehouses, where they are unable to efficiently adapt to changing layouts and obstacles without compromising on time

and cost efficiency. This study proposes a lattice-based two-dimensional algorithm designed to navigate warehouses

while also avoiding obstacles efficiently. Employing this algorithm can result in substantial cost reductions, as it

optimizes travel distances and resource allocation. Moreover, the algorithm enhances the time efficiency significantly

by reducing order fulfillment. This research offers a practical solution to a persistent challenge in modern warehouse

logistics. The effectiveness of the proposed algorithm suggests its potential to revolutionize the industry’s approach to

route optimization.

Keywords: Lattice Paths, Route optimization, Warehouse, AGVs.
Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original

author and source are credited.

1. INTRODUCTION
With the rise of the internet, there has been a

rapid surge in the e-commerce sector. Online shopping

in particular has grown exponentially due to factors like

wider product selection, convenience and better pricing.

This growth has increased the demand for more efficient

and productive warehouse operations to meet the

growing customer expectations for fast and reliable

delivery. With this, new entrepreneurs have entered the

industry, making warehouse logistics a highly

competitive sector. Warehouses face constant pressure to

optimize processes and reduce costs to remain profitable.

Because of this rise in competitiveness, newer problems

came to being. One of the most critical factors affecting

the overall productivity of a warehouse is the storage and

retrieval of goods. Many traditional methods are slow,

inefficient, and prone to a lot of errors. Most modern

warehouses now address these challenges by utilizing

automated guided vehicles (AGVs) to streamline storage

and retrieval operations. The integration of AGVs and

warehouse robots has significantly enhanced

transportation speed and precision. These automated

systems can improve efficiency, reduce labor costs, and

minimize picking errors. Therefore, optimizing path

planning for these automated robots can greatly affect the

operational efficiency of warehouses. However,

navigating warehouse environments optimally remains a

key challenge as they introduce complexities that

traditional pathfinding algorithms struggle to handle.

This can include obstacles- such as unpredictable

inventory placement, forklifts and personnel-

computational efficiency and time taken. Existing

pathfinding algorithms often fall short in these dynamic

environments. This paper proposes a novel two-

dimensional grid model and an optimized algorithm

specifically designed to address these challenges and

enable efficient robot navigation in dynamic warehouses.

Researchers over the past decade have

developed several methodologies to address this

persisting problem. The most popular algorithms used

today include the Dijkstra’s and A* algorithm. Dijkstra’s

algorithm [1] works by transforming the warehouse

layout into a graph. Each aisle intersection becomes a

node, and paths between them become edges with

weights representing travel time or distance. The

algorithm then iteratively explores these connections,

prioritizing unvisited nodes with the lowest total travel

distance from the starting point. This efficiently

determines the shortest path for a robot or picker to reach

Paarth Sonkiya, Sch J Eng Tech, Oct, 2024; 12(10): 314-323

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 315

any destination within the warehouse. The algorithm

guarantees finding the optimal path but can be

computationally expensive for large and complex

warehouses. Additionally, it struggles to adapt to

dynamic changes like moving obstacles [5]. The A*

search algorithm builds upon Dijkstra’s algorithm by

incorporating a heuristic function to prioritize

exploration towards the goal. A heuristic function is an

informed estimate of the cost (distance, time, etc.) to

reach the goal from a particular point in the environment.

These estimates help the algorithms prioritize exploring

more promising paths that are likely to lead to the goal

faster. For example, in a two dimensional grid

representing a warehouse, a common heuristic function

might be the Manhattan distance between a cell and the

goal location [4]. This estimates the minimum number of

horizontal and vertical steps required to reach the goal,

ignoring obstacles. Heuristics play a crucial role in path

selection by directing the search towards more efficient

paths. Algorithms like A* use the total cost (combination

of movement cost and heuristic estimate) to evaluate

neighboring cells and prioritize those with a lower total

cost. This strategy helps them focus their search on

promising areas and avoid exploring irrelevant parts of

the environment. Therefore, this is similar to the method

the proposed algorithm builds up on. This leads to faster

path finding, especially in complex environments.

However, the traditional A* algorithm can still be

computationally expensive for very large warehouses

[3].

There have been many other approaches to this

problem as well. For instance, the research by Yang et

al., [6] introduces the concept of the largest convex

polygon (LCP) to illustrate the shortest path to traverse

all goods locations in an ideal condition. This involves

getting an initial node, establishing a Cartesian

coordinate system, and then adding nodes based on their

positions relative to the initial node. This method could

potentially improve vehicular navigation due to its

shown reduction in time complexity and path length, but

the method does not consider the real-world complexities

which impacts its applicability in practical scenarios. In

their study, Roodbergen et al., [2] propose a branch-and-

bound algorithm adapted from the Travelling Salesman

Problem (TSP) to identify the shortest path within a

parallel aisle warehouse. This approach is specifically

designed for warehouses with crossovers at both the ends

and midpoints of aisles. The authors compare their

algorithm’s performance to established routing heuristics

like S-shape, aisle-by aisle, largest gap, and a combined

method. Additionally, they explore the impact of

warehouse layout on efficiency, demonstrating that

incorporating cross aisles can significantly reduce travel

time during picking operations by offering more direct

routes. However, the paper did not explore the impact of

non-random storage assignment rules on heuristic

performance, which could be crucial in real warehouse

settings.

Most existing algorithms exhibit limitations in

scalability and computational time as warehouse

complex ity increases. Similarly, path planning methods

for warehouse robots often struggle with slow

convergence and neglect downstream impacts. These

challenges highlight the need for advanced AGV

scheduling and path planning algorithms that can adapt

to dynamic environments and scale efficiently.

Therefore, this research focuses on employing lattice

pathfinding algorithms to optimise route planning in

warehouse logistics, with a specific emphasis on

effective obstacle avoidance. The objectives include

developing and optimising a specialised lattice

pathfinding algorithm, evaluating its performance

against traditional methods, and providing practical

recommendations for real-world warehouse navigation

challenges.

2. Problem Description

This research specifically focuses on block

stocking warehouses, also known as pile-type

warehouses. Figure 1 shows a simplified model of the

warehouse. The red squares represent the area that is

occupied by a single block and the blue square shows the

area an AGV can go to for the retrieval of goods.

Paarth Sonkiya, Sch J Eng Tech, Oct, 2024; 12(10): 314-323

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 316

Figure 1: A Simple representation of a block stocking warehouse

For simplicity, a translated version of this

warehouse image is considered in this paper, as shown in

Figure 2. The intersection of the grid lines or nodes

represent each block and the lines represent the path a

robot can take. The advantage of using a simplified

lattice path model allows the easy facilitation of

pathfinding algorithms. This allows the algorithms to

easily explore the grid, evaluating possible movement

options between connected cells, and ultimately identify

the optimal path for the robot to navigate within the

warehouse.

Figure 2: The equivalent simplified model

Paarth Sonkiya, Sch J Eng Tech, Oct, 2024; 12(10): 314-323

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 317

Figure 3 portrays a model of a real-life warehouse.

Figure 3: Model of a realistic block warehouse with Navigation information

This model depicts a more expansive and

complex environment, similar to a modern warehouse,

where there are hundreds of blocks and isles. The figure

visually depicts the path a robot needs to take for the

retrieval of goods within the warehouse environment.

This illustration provides the robot’s navigation process

and the key elements involved.

The green dot indicates the starting point for the

robot’s journey. This can be the robot’s charging station

or a designated starting location within the warehouse.

The blue dots represent the specific locations, or blocks,

within the warehouse that the robot needs to visit to

retrieve goods. These blocks could correspond to

individual storage locations, picking stations, or

designated areas where specific items are stored. The

sequence and order of visiting these blue dots therefore

determine the efficiency of the overall retrieval process.

The red dot signifies the final destination for the robot

after completing its goods retrieval task. This point could

be a designated drop-off location or the robot’s charging

station, depending on the specific workflow. Figure 4

translates this large-scale warehouse model into a

corresponding simplified lattice path model. Similar to

the previous lattice model, this representation abstracts

the physical layout into a two-dimensional grid. This

model incorporates a larger grid size to accommodate the

increased complexity of the real world warehouse.

Translating real-world warehouse layouts into simplified

lattice path models is crucial for pathfinding algorithms

for both simplicity and effectiveness. These algorithms

operate more effectively within the grid structure,

allowing them to determine optimal paths for robots

navigating the actual warehouse environment while

reducing the complexity. The figure also represents

obstacles in the path, where the solid black squares

denote the obstacles through which robots cannot pass.

This scenario emphasises the challenges faced by robots

performing tasks like navigation and path planning

within warehouses.

Paarth Sonkiya, Sch J Eng Tech, Oct, 2024; 12(10): 314-323

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 318

Figure 4: Simplified model of a realistic block warehouse with obstacles

The previous models discussed provide a

foundational understanding of block warehouse layouts.

How ever, real-world warehouses present a more

complex environment filled with various obstacles that

robots must navigate around. These obstacles pose

significant challenges for robot path planning

algorithms. The obstacles can be static or dynamic. Static

obstacles are permanent fixtures within the warehouse

that robots cannot move through, which can include

support pillars or walls, inventory storage racks and

shelves and also designated no-go zones due to

maintenance, safety reasons, or specific operations that

require human intervention. Dynamic obstacles include

elements that can change within the warehouse

environment, creat ing temporary blockages for robots.

This reseacrh does not address actively moving obstacles

but obstacles that may change positions but remain

stationary during run-time. This research proposes a

novel algorithm that addresses these challenges by

modifying the heuristic function while taking effective

obstacle avoidance into consideration.

3. Algorithm Design

This section describes our pathfinding

algorithm designed for robots navigating a grid-based

environment with obstacles. The algorithm modifies the

A* search, a well-known technique for finding optimal

paths in graphs or grids. A* search balances exploration

of the search space with an informed prioritisation of

promising paths. Our specific implementation focuses on

finding the shortest path for a robot visiting multiple

designated points within the warehouse. The problem

can be formulated within the framework of a graph,

where the warehouse layout is represented as a directed

graph G = (V, E, D), comprising vertices V , edges E, and

distances D.

Consider a path path P as P1, P2, ..., Pn as shown

in Figure 5, where each Pi denotes a coordinate on the x-

y plane or the two-dimensional grid.

Vertices in the graph correspond to distinct

locations within the warehouse, such as aisles, racks,

inter sections, and loading docks. Formally, V = {v1, v2,

..., vn}, where n denotes the total number of vertices in

the warehouse layout. Edges represent permissible paths

or connections between vertices, denoting feasible routes

that can be traversed by the warehouse vehicles or

personnel. For any pair of vertices vi, vj in V , if there

exists a direct path from vi to vj , then an edge eij is present

in E. Mathematically, E ⊆ V × V . The variable d

represents the Manhattan distance between two nodes

P1=(x1, y1) and P2=(x2, y2), which is simply given by:

d(P1, P2) = |x2 − x1| + |y2 − y1|

This dentoes the length or cost associated with

traversing an edge in the warehouse graph. For any edge

eij in E, the distance dij signifies the distance or cost to

Paarth Sonkiya, Sch J Eng Tech, Oct, 2024; 12(10): 314-323

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 319

travel from vertex vi to vertex vj . Formally, D = {dij},

Figure 5: Simplified model of a realistic block warehouse with obstacles

Where dij denotes the distance between vertices

vi and vj. Given this graph representation of the

warehouse layout, the optimization problem can be

formally defined as finding the most efficient path or

sequence of vertices to navigate from a designated source

location to a target destination, subject to various

constraints and objectives.

Mathematical Formulation

Let f denote the objective function, which

quantifies the efficiency metric to be optimized. This

metric may vary depending on the specific objectives of

the warehouse management system. The objective

function f can be expressed as a function of the path

traversed through the warehouse graph, represented by a

sequence of vertices, where f: V → R, where R represents

the set of real numbers. The optimization problem may

be subject to various constraints imposed by the

warehouse environment, vehicle characteristics, safety

regulations, and operational requirements. These

constraints may include limitations on vehicle speed,

maximum load capacity, aisle width, aisle congestion,

and restricted access zones. The total cost associated

with traversing a given path P in the warehouse graph

can be expressed as the sum of distances between

consecutive vertices along the path. Mathematically, the

total cost C(P) can be represented as:

C(P) = kX−1 i=1 xi,i+1 · d(vi, vi+1)

Where k represents the number of vertices in the

path P, and di,i+1 denotes the distance between the i-th and

(i+ 1)-th vertices along the path. The variable xi,i+1 is a

binary variable: it takes the value 1 if the edge between

vertices vi and vi+j is included in the graph, representing

that the point is part of the path P; otherwise, it takes the

value 0.

The core principle behind the algorithm lies in

the A* search algorithm, a well-established method for

optimal pathfinding in graphs and grids. In our specific

implementation, the algorithm aims to find the shortest

path for a robot that needs to visit multiple designated

points sequentially. The algorithm maintains a priority

queue (heap) data structure. This queue stores potential

paths, each represented as a tuple containing the total

cost incurred so far (distance travelled by the robot), the

current cell coordinates of the robot, and the path history,

which tracks the sequence of cells visited to reach the

current cell. The algorithm then iteratively explores the

neighbours of the cell with the lowest total cost

according to the priority queue. This prioritisation

ensures that the algorithm focuses on paths that are most

likely to lead to the goal efficiently.

To further guide exploration, the algorithm

employs a heuristic function. This function estimates the

remaining distance from the current cell to the final

destination. In our case, we utilise the Manhattan

distance heuristic. As stated above, it calculates the

absolute difference in x and y coordinates between the

current cell and the final destination, providing a simple

and efficient estimate of the remaining distance. The

estimated distance is then added to the actual cost to

create the total cost for each path. This combined value

guides the prioritisation within the heap, favouring paths

that are geographically closer to the goal. The two key

Paarth Sonkiya, Sch J Eng Tech, Oct, 2024; 12(10): 314-323

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 320

data structures utilised by the algorithm are the priority

queue and the visited set structure. The priority queue

prioritises elements based on a key value. In our

implementation, the key value represents the total cost of

a path, which is the sum of the actual cost traversed so

far and the estimated remaining distance calculated by

the heuristic function. The heap efficiently retrieves the

cell with the lowest total cost for exploration at each step.

This ensures that the algorithm explores promising paths

with potentially lower overall costs first, leading to a

faster discovery of the optimal path. This Visited Set

stores the coordinates of all cells that have already been

explored by the algorithm. Including a cell’s coordinates

in the visited set after it has been explored ensures the

algorithm doesn’t revisit previously explored areas. This

prevents redundant exploration and focuses the search

towards unexplored territories within the warehouse

environment.

The algorithm incorporates obstacle detection

to ensure the robot navigates only on valid paths. Before

considering a neighbouring cell for exploration, the

algorithm checks two conditions - the cell must be within

the defined grid boundaries and the cell’s value in the

grid representation must not be 1, which signifies an

obstacle. By adhering to these conditions, the algorithm

ensures that the robot only explores and utilises valid

paths that are free of obstacles.

Once the robot reaches a designated point, the

algorithm needs to reconstruct the complete path taken

so far. This path reconstruction is done by the

information stored within the priority queue. Each cell in

the queue stores its parent cell in the path, indicating the

cell from which it was explored. By backtracking

through this parent-child relationship stored in the queue,

the algorithm can reconstruct the complete path taken by

the robot from the starting point to the current designated

point. This backtracking process continues for each

designated point the robot needs to visit. The algorithm

finds the next closest unvisited point using the heuristic

function and repeats the exploration process until all

designated points are visited. By accumulating the

reconstructed paths for each point, the algorithm obtains

the final complete path for the entire robot navigation

task. Figure 6 below shows a simplified flowchart

indicating the basic principles of the algorithm.

Figure 6: A basic understanding of the key principles of the algorithm

Paarth Sonkiya, Sch J Eng Tech, Oct, 2024; 12(10): 314-323

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 321

4. Comparative Analysis

This section presents a comparative analysis of

our proposed algorithm with Dijkstra’s algorithm, a

popular pathfinding algorithm widely used today. Our

aim is to evaluate the strengths and weaknesses of each

approach in the context of robot pathfinding within

warehouse environments with obstacles. This

comparison will discuss the suitability of our algorithm

for practical applications in warehouse navigation tasks.

4.1 Time Complexity

This section analyses the time complexity of the

proposed algorithm and Dijkstra’s algorithm. Time com

plexity refers to the amount of time an algorithm takes to

execute as the size of the input grows. In the context of

robot pathfinding within a warehouse environment, the

main factors affecting the input size are - the number of

grid cells (V), the number of obstacles and the number of

designated points (P).

4.1.1 Proposed Algorithm

The time complexity is analysed by taking the

average and the worst case scenarios into consideration.

Average Case In the average case scenario,

where the heuristic function provides a good estimate of

the remaining distance, the time complexity of the

proposed algorithm is expected to be:

O((logb) ∗ V)

Where log b represents the repeated operations

on the priority queue (heap) used for exploration, b

represents the branching factor, which is the average

number of neighbours a cell has in the grid. The

logarithmic term reflects the efficient retrieval and

update operations within the heap data structure and V

represents the total number of grid cells.

Worst Case In the worst case scenario, where

the heuristic function provides poor estimates, the time

complexity of the algorithm can approach:

O(W ∗ logb ∗ V)

Here, W represents a factor dependent on the

specific grid layout, obstacle distribution, and the

starting and goal locations. This factor accounts for the

additional exploration required due to the heuristic’s inef

ficiency in the worst case. However, the logarithmic term

(log b) due to the heap operations and the linear term (V)

representing the total number of cells are likely to

dominate the complexity even in the worst case.

4.1.2 Dijkstra’s Algorithm

Dijkstra’s algorithm has a time complexity of:

O(V + E ∗ logV)

Where, E Represents the total number of edges

in the grid. In a warehouse environment, this translates

to the number of valid connections between

neighbouring cells.

5. RESULTS

(a) The Time Complexity analysis of the proposed algorithm

and Diksarta’a algorithm

(b) The Time Complexity analysis shown on a line

graph

Figure 7: Average Case Time Complexity Comparison

In the average case, the proposed algorithm

outperforms Dijkstra’s algorithm as shown in Figures 7

a. and b. due to the logarithmic term (log b) in its

complexity. This logarithmic term stems from the

efficient use of a priority queue (heap) data structure for

exploration. The heap operations, like inserting and

retrieving elements, take logarithmic time with respect to

the number of elements in the heap. In the context of our

algorithm, the number of elements in the heap

corresponds to the number of promising paths being

explored. As the warehouse environment (grid size)

grows, the number of paths to explore increases.

However, due to the logarithmic nature of heap

operations, the time spent managing the exploration

queue scales proportionally less significantly compared

to Dijkstra’s algorithm.

Paarth Sonkiya, Sch J Eng Tech, Oct, 2024; 12(10): 314-323

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 322

Dijkstra’s algorithm, on the other hand, has a

time complexity that includes a term linear in the number

of grid cells (V) and edges (E). As the warehouse

environment becomes larger, the number of cells and

edges increases proportionally. This translates to a more

significant growth in the execution time for Dijkstra’s

algorithm compared to the proposed algorithm in the

average case. Therefore, the logarithmic term in the

proposed algorithm’s complexity signifies that the

exploration process scales more efficiently with the size

of the warehouse grid compared to Dijkstra’s algorithm.

This efficiency advantage becomes more pronounced for

larger warehouses, making the algorithm a more suitable

choice in such scenarios.

While both algorithms can theoretically exhibit

exponential dependence in the worst case, there are many

potential advantages for the proposed algorithm in

handling complex warehouse environments. Dijkstra’s

algorithm’s dependence on the total number of grid cells

(V) and edges (E) can lead to significant exploration

overhead, especially in scenarios with dense obstacles or

unfavourable start and goal locations. In such cases, the

exhaustive exploration strategy of Dijkstra’s algorithm

might struggle to efficiently navigate the environment.

On the other hand, our algorithm’s complexity

includes a logarithmic term (log b) that stems from the

efficient management of the exploration queue using a

heap data structure. This logarithmic term helps to

mitigate the impact of a growing number of potential

paths on the processing time. Additionally, the proposed

algorithm’s inherent prioritisation mechanism, guided by

the heuristic function restricts the exploration to a more

focused search space around promising paths. This focus

can significantly reduce the number of irrelevant paths

explored compared to Dijkstra’s exhaustive approach,

potentially preventing the worst-case complexity from

becoming extremely slow in complex warehouse

environments. The results of the above can be seen in

Figures 8 a. and b. below.

(a) The Time Complexity analysis of the pro posed

algorithm and Diksarta’a algorithm

(b) The Time Complexity analysis shown on a bar graph

Figure 8: Worst Case Time Complexity Comparison

Overall, by considering both average and worst-

case scenarios, this comparative analysis highlights the

potential of the proposed algorithm for efficient robot

pathfinding in warehouse environments. The logarithmic

term in its complexity signifies efficient exploration

management using a priority queue. This structure allows

our algorithm to scale more efficiently as the warehouse

size increases, making it a preferable choice for real-

world scenarios. While there might be a slight trade-off

for very small warehouses, the overall analysis suggests

that our proposed algorithm offers a significant time

complexity advantage for larger and more realistic

warehouse environments. The algorithm was developed

with Python 3.12 and all simulations were done with

MATLAB R2024a.

6. CONCLUSION
In this research, a critical aspect of our analysis

was the time complexity of the proposed algorithm.

Optimizing warehouse operations requires efficient

navigation with the ability for robots to complete tasks in

a timely manner. By comparing the time complexity of

our algorithm to Dijkstra’s algorithm, we were able to

demonstrate the efficiency gains achieved by our

method, particularly in scenarios with larger warehouse

layouts. This efficiency translates to faster retrieval and

storage times, ultimately contributing to increased

warehouse throughput. While this research focused on

time complexity, future work can explore the energy

efficiency of the proposed algorithm. Investigating the

relationship between pathfinding strategies and robot

energy consumption could pave the way for even more

optimized warehouse operations that minimize energy

use without compromising efficiency. Morevover, We

highlighted the limitations of traditional pathfinding

algorithms in these warhouse settings, particularly not

taking obstacle avoidance into consideration and having

higher time complexity. Further research can explore the

Paarth Sonkiya, Sch J Eng Tech, Oct, 2024; 12(10): 314-323

© 2024 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India 323

integration of machine learning techniques to

continuously learn and improve the algorithm’s

performance in dynamic environments. Additionally, in

vestigating methods for collaborative path planning

between multiple robots operating within the warehouse

could further optimize overall throughput and efficiency.

By addressing the challenges of dynamic warehouse

navigation, this research contributes to the development

of more efficient and reliable automated systems for

modern warehouses. This will play a vital role in

supporting the ever-growing demands of the e-commerce

sector and ensuring the smooth flow of goods within the

supply chain.

REFERENCES
1. Liu, X., Cao, J., Yang, Y., & Jiang, S. (2018). CPS-

Based Smart Warehouse for Industry 4.0: A Survey

of the Underlying Technologies. Computers, 7(1),

13.

2. Roodbergen, K. J., & De Koster, R. (2001). Routing

methods for warehouses with multiple cross aisles.

International Journal of Production Research,

39(9), 1865-1883.

3. Sanei, O., Nasiri, V., Marjani, M. R., & Moattar

Husseini, S. M. (2011). A heuristic algorithm for the

warehouse space assignment problem considering

operational constraints: with application in a case

study. Proceedings of the 2011 International

Conference on Industrial Engineering and

Operations Management, Kuala Lumpur, Malaysia,

January 22-24, 2011.

4. Shen, X., Yi, H., & Wang, J. (2021). Optimization

of picking in the warehouse. Journal of Physics:

Conference Series, 1861.

5. Sun, Y., Fang, M., & Su, Y. (2021). AGV Path

Planning and Obstacle Avoidance Using Dijkstra’s

Algorithm. Journal of Physics: Conference Series,

1746.

6. Yang, B., Li, W., Wang, J., Yang, J., Wang, T., &

Liu, X. (2020). A Novel Path Planning Algorithm

for Warehouse Robots Based on a Two-

Dimensional Grid Model. IEEE Access, 8, 80347-

80357.

7. Liu, R. (2022). Research on Optimization of the

AGV Shortest‐Path Model and Obstacle Avoidance

Planning in Dynamic Environments. Mathematical

Problems in Engineering, 2022(1), 2239342.

doi.org/10.1155/2022/2239342.

8. Shetty, N., Sah, B., & Chung, S. H. (2020). Route

optimization for warehouse order picking operations

via vehicle routing and simulation. SN Applied

Sciences, 2, 1-18. doi.org/10.1007/s42452- 020-

2076-x.

9. Tai, R., Wang, J., & Chen, W. (2019). A prioritized

planning algorithm of trajectory coordination based

on time windows for multiple AGVs with delay

disturbance. Assembly Automation, 39(5), 753-768.

doi.org/10.1108/AA-03-2019-0054.

10. Chen, J., Zhang, X., Peng, X., Xu, D., & Peng, J.

(2022). Efficient routing for multi-AGV based on

optimized Ant-agent. Computers & Industrial

Engineering, 167, 108042.

doi.org/10.1016/j.cie.2022.108042

11. Zhou, Y., & Huang, N. (2022). Airport AGV path

optimization model based on ant colony algorithm

to optimize Dijkstra algorithm in urban

systems. Sustainable Computing: Informatics and

Systems, 35, 100716.

doi.org/10.1016/j.suscom.2022.100716.

12. Meysami, A., Cuillière, J. C., François, V., &

Kelouwani, S. (2022). Investigating the impact of

triangle and quadrangle mesh representations on

AGV path planning for various indoor

environments: With or without

inflation. Robotics, 11(2), 50.

doi.org/10.3390/robotics11020050.

