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Abstract  Original Research Article 

 

Mobile Financial Services (MFS) have catalyzed unprecedented financial inclusion in developing economies, with 

Bangladesh exemplifying transformative digital financial innovation. This study presents the first comprehensive multi-

target machine learning framework for predicting key MFS growth indicators, addressing critical gaps in financial 

technology forecasting literature. Using 76 months of comprehensive Bangladesh Bank data from December 2018 to 

March 2025, spanning 24 variables, we systematically evaluate nine machine learning algorithms across three 

paradigms: linear models, tree-based ensembles, and deep learning architectures. Our rigorous methodology encom- 

passes advanced feature engineering, temporal pattern recognition, and target-specific optimization. Results reveal 

unprecedented predictive accuracy with target-specific algorithmic superiority: Ridge Regression achieves exceptional 

performance for transaction count prediction with R2 = 0.9978, RMSE = 6.76M transactions, LSTM networks 

demonstrate superior capability for transaction amount forecasting with R2 = 0.9926, RMSE = 32,486M BDT, and 

Temporal Convolutional Networks excel in float amount prediction with R2 = 0.9726, RMSE = 5,674M BDT. Feature 

importance analysis identifies temporal dependencies and transaction type diversity as primary growth drivers. These 

findings establish new benchmarks for financial service prediction while providing actionable intelligence for 

policymakers, financial institutions, and fintech innovators. 

Keywords: Mobile Financial Services, Machine Learning, Deep Learning, Digital Finance, Financial Inclusion, 

Predictive Analytics. 
Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 
author and source are credited. 

 

1. INTRODUCTION 
The rapid digitization of financial services is 

reshaping economic landscapes across developing 

nations, with Mobile Financial Services (MFS) emerging 

as a central driver of financial inclusion and economic 

development [1]. In Bangladesh, supported by a robust 

telecommunications infrastructure and progressive 

regulatory frameworks, MFS adoption has accelerated 

dramatically [2]. Monthly transaction volumes increased 

from approximately 210 million in December 2018 to 

over 700 million by 2025, a more than three- fold rise in 

seven years, reflecting a fundamental shift in how 

citizens access and use financial ser- vices. The MFS 

ecosystem encompasses a diverse range of transactions 

conducted via mobile plat- forms, including person-to-

person transfers (P2P), government-to-person payments 

(G2P), merchant payments (MP), utility bill payments 

(UBP), salary disbursements (SD), mobile top-ups 

(TTP), international remittances (IR), and cash-in/cash- 

out services through extensive agent networks [3]. The 

Bangladesh Bank, the nation’s central monetary 

authority, has played a pivotal role in enabling this 

transformation through forward- looking regulation, 

continuous performance monitoring, and adaptive policy 

interventions that balance innovation with financial 

stability. 

 

Accurately forecasting MFS growth patterns is 

critical for guiding infrastructure investments, capacity 

planning, systemic risk management, and targeted 

financial inclusion initiatives [4]. However, prediction 

remains challenging due to the complex interplay of 
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technological, economic, behavioral, and regulatory 

factors. Traditional econometric methods often fail to 

capture the non- linear relationships, temporal 

dependencies, and high-dimensional patterns 

characteristic of digital finance data, limiting their ability 

to provide actionable insights [5]. Recent research 

highlights the potential of machine learning (ML) in this 

context that multi-target prediction frameworks 

significantly outperform single-target approaches in 

modeling complex ecosystem dynamics, while temporal 

feature engineering can improve financial forecasting 

accuracy [6, 7]. These advances underscore the 

opportunity to move beyond conventional modeling 

paradigms toward data- driven, multi-target ML 

approaches capable of capturing structural regularities in 

MFS adoption. 

 

This study addresses four core research questions: 

1.   What is the relative predictive performance of 

different machine learning paradigms (linear, 

tree-based, and deep learning) for forecasting 

multiple MFS growth indicators 

simultaneously? 

2.   Do different MFS growth targets (transaction 

counts, transaction amounts, float amounts) 

require target-specific modeling strategies for 

optimal prediction? 

3.   How do temporal patterns, seasonal variations, 

and structural changes in Bangladesh’s MFS 

ecosystem influence predictive model 

performance and feature importance? 

4.   What practical implications do these findings 

offer for stakeholders in developing data-driven 

strategies for digital financial service expansion 

and policy formulation? 

 

The contributions of this research are fourfold: 

1.   We propose the first comprehensive multi- 

target prediction framework for MFS growth 

indicators, moving beyond single-target models 

that dominate existing literature. 

2.   Through an evaluation of nine algorithms 

across three paradigms, we establish new 

benchmark performance levels, achieving 

predictive accuracy of R2 > 0.97 across all tar- 

gets using six years of comprehensive national 

transaction data. 

3.   We reveal that no single algorithm universally 

dominates; instead, different MFS growth 

targets exhibit distinct optimal modeling 

approaches, highlighting the value of an 

algorithmic portfolio strategy for financial pre- 

diction tasks. 

4.   The results offer actionable insights for 

infrastructure planning, resource allocation, and 

evidence-based policymaking, directly 

informing strategies for sustainable and 

inclusive digital financial ecosystem growth. 

 

By integrating methodological innovation with 

practical relevance, this study bridges the gap between 

forecasting theory and real-world financial service 

planning, providing both a robust analytical framework 

and clear policy implications for stakeholders across 

emerging economies. 

 

2. BACKGROUND MATERIALS 
2.1 Theoretical Foundations 

The adoption and growth of MFS can be 

examined through multiple, interconnected theoretical 

frameworks that explain user decision-making, provider 

capabilities, and the broader ecosystem dynamics. These 

theories also provide conceptual guidance for selecting 

predictors, structuring models, and interpreting results in 

this study. 

 

The Technology Acceptance Model (TAM) [8], 

posits that perceived usefulness and ease of use are 

primary determinants of technology adoption. In MFS 

contexts, these perceptions influence whether 

individuals transition from cash-based or traditional 

banking to mobile platforms. The Unified Theory of 

Acceptance and Use of Technology (UTAUT) [9], 

extends TAM by adding performance expectancy, effort 

expectancy, social influence, and facilitating conditions. 

While these constructs have proven useful in many 

settings, their predictive power in developing economies 

can be constrained by unmodeled realities — such as 

intermittent mobile network coverage, low digital 

literacy, and gendered disparities in phone access [10]. 

These limitations suggest that a purely behavioral-

intention model may underfit actual adoption trends, 

underscoring the need for data-driven machine learning 

approaches that can capture these unobserved, context-

specific effects. In our modeling, TAM/UTAUT-related 

variables (e.g., service accessibility, network 

availability, perceived reliability) inform feature 

selection, but we avoid restricting the functional form as 

in traditional structural equation models. 

 

The Resource-Based View (RBV) [11], shifts 

the lens from individual adoption to organizational 

competitiveness, highlighting unique, valuable, and 

inimitable resources. In MFS, such resources include 

large-scale, well-trained agent networks, advanced 

transaction platforms, and regulatory compliance 

capacity [12]. However, empirical findings show 

contradictions: while some providers thrive by 

maximizing geographic agent coverage, others succeed 

through specialized ser- vice offerings and digital 

innovation without large physical footprints. This 

divergence suggests that RBV variables (e.g., agent 

density, technology capability indices) may interact 

differently with adoption metrics, justifying non-linear 

modeling that can uncover such interaction effects. 

 

Network externalities theory [13], adds a 

systemic perspective, where the value of MFS increases 

with the size of the user base, creating positive feedback 
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loops. In Bangladesh, high agent density and transaction 

interoperability amplify these effects, yet they also risk 

market concentration and reduced competitive pressure. 

The literature often models these effects descriptively; in 

our framework, network externalities are operationalized 

via temporal lag features and adoption momentum 

indicators, enabling the models to learn both accelerating 

and saturation phases. 

 

2.2 Empirical Literature on MFS Growth and 

Prediction 

Early studies of M-Pesa in Kenya demonstrated 

MFS’s transformative role in financial inclusion, but 

direct application of these findings to South Asia has 

been problematic. For example, Bangladesh’s success 

was driven by regulatory flexibility, agent expansion and 

customer education, while Kenya’s model was primarily 

driven by the advantage of the first mover and the 

monopoly market conditions [14]. This mismatch 

illustrates the limited generalizability of single-country 

case studies, a gap this research addresses by creating a 

framework adaptable to diverse conditions. 

 

Progressive regulation can spur innovation 

while preserving systemic stability, a finding con- sistent 

with RBV’s emphasis on regulatory capa- bilities as 

strategic assets [15]. However, in some countries, strict 

regulation delays market growth, contradicting the “pro-

flexibility” narrative and reinforcing the need for data-

driven, context- specific forecasting models [16]. 

 

Agent networks are repeatedly identified as a 

core driver of adoption, but evidence is mixed on 

whether network expansion always yields pro- portional 

usage growth. In high-density regions, saturation can 

lead to diminishing returns, while in underserved areas, 

a small increase in coverage can produce large adoption 

spikes. This non-linear behavior supports our decision to 

include inter- action and saturation modeling capabilities 

via algorithms such as gradient boosting and deep 

learning, rather than assuming constant marginal effects. 

 

2.3 Machine Learning Applications in Financial 

Services 

While traditional econometric models offer 

interpretability and causal inference, they are limited by 

strict assumptions and linear specifications that struggle 

with the non-linear, high- dimensional, and temporally 

dependent nature of MFS data [17]. These weaknesses 

are particularly problematic for multi-target prediction, 

where correlations between outcomes (e.g., trans- action 

counts, amounts, and float balances) can significantly 

influence forecasts. 

 

ML methods especially tree-based ensembles 

have demonstrated strong predictive accuracy by 

capturing complex feature interactions without 

predefined functional forms [18]. However, they often 

sacrifice interpretability, a key requirement for financial 

regulators. Cheng et al., [19], show that Random Forest 

and Gradient Boosting out- perform single models in 

adoption prediction, yet their studies focus on single-

target outcomes, leaving the multi-target prediction 

problem largely unexplored. 

 

Deep learning models, including Long Short- 

Term Memory (LSTM) and Convolutional Neural 

Networks (CNNs), excel at modeling sequential 

dependencies [20], enabling them to detect latent 

temporal structures missed by static models. In MFS, 

these capabilities are vital for capturing seasonality (e.g., 

Eid transaction spikes), government payment cycles, and 

long-term adoption trends [21]. Still, their limited 

adoption in MFS forecast- ing stems from data 

availability constraints and interpretability concerns. 

Recent work by Garcia and Lopez [22] demonstrates that 

incorporating explainable AI tools like SHAP and 

attention mechanisms can make deep learning outputs 

more transparent, aligning with the regulatory 

requirements highlighted in TAM/UTAUT’s 

“facilitating conditions” construct. 

 

Moreover, CNNs have proven effective for 

tem- poral pattern recognition [23], but they are often 

underused in financial service prediction. Abburi et al., 

[24], identify significant cyclical effects in digi- tal 

financial adoption, yet most forecasting models still treat 

data as cross-sectional. Our approach integrates CNN 

temporal feature extraction with gradient-boosted 

decision trees to combine tem- poral sensitivity with 

interpretability — directly addressing this 

methodological gap. 

 

The reviewed literature provides valuable 

theoretical grounding, empirical insights, and 

methodological precedents for modeling MFS growth. 

However, it also reveals persistent contradictions. 

 

— such as divergent effects of regulation and 

agent network expansion — and methodological gaps, 

including the underuse of temporal dependencies, 

limited multi-target modeling, and insufficient cross-

paradigm algorithmic comparisons. Importantly, each 

theoretical lens informs our modeling strategy: 

TAM/UTAUT: Guides selection of user- centric and 

accessibility-related features. 

RBV: Informs inclusion of provider resource variables 

(e.g., network size, tech capability). 

Network Externalities: Motivates temporal lag and 

adoption momentum features. 

 

The following subsection synthesizes these 

observations into explicit research gaps and artic- ulates 

the theoretical contributions of this study. 

 

2.4 Research Gaps and Theoretical Contributions 

Despite substantial progress in understanding 

MFS adoption and forecasting, several critical gaps 

remain. 
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First, most prior work employs single-target 

prediction, ignoring interdependencies among growth 

indicators. This limits understanding of ecosystem-level 

dynamics. For example, how changes in transaction 

count may influence float balances or transaction 

amount. 

 

Second, there is a lack of systematic cross- 

paradigm algorithmic comparisons using standardized 

datasets. Without such benchmarking, it is unclear which 

algorithms are optimal for different MFS prediction 

contexts. 

 

Third, temporal patterns remain underex- 

ploited. Even though evidence shows strong seasonality 

and cyclical effects, many models treat data as cross-

sectional, missing structural patterns that could improve 

accuracy. 

 

Fourth, practical applications for regulators and 

providers are often absent. Many studies stop at reporting 

accuracy metrics, without translating results into 

actionable strategies for capacity planning or financial 

inclusion targeting. 

 

Finally, existing models rarely test general- 

izability across different contexts, limiting their 

theoretical and practical value for global digital finance 

research. 

 

To address these gaps, this study develops a 

multi-target, temporally informed machine learning 

framework for MFS growth prediction in Bangladesh, 

systematically compares algorithms across paradigms, 

and integrates explain- ability techniques for regulatory 

transparency. This approach advances theory by linking 

algorithm–target specificity to established adoption and 

resource theories, enriches empirical knowledge on 

temporal adoption modeling, and offers a transferable 

blueprint for diverse digital financial ecosystems. 

 

3. DATA AND EXPLORATORY ANALYSIS 
3.1 Dataset Description 

The dataset comprises comprehensive monthly 

MFS transaction data sourced from Bangladesh Bank, 

the nation’s central monetary authority, spanning 

December 2018 through March 2025 (76 months). This 

period captures rapid adoption, market maturation, and 

early signs of stabilization in Bangladesh’s digital 

financial ecosystem. Data quality is ensured through 

Bangladesh Bank’s real-time monitoring and 

aggregation from all licensed providers, making it well-

suited for longitudinal modeling. 

 

Bangladesh Bank’s monthly MFS statistics 

provide complete coverage of the ecosystem, reflecting 

transactions across agent networks, P2P transfers, 

merchant payments, and government disbursements. 

Values are reported in millions of Bangladeshi Taka 

(BDT), and counts reflect verified transaction volumes. 

While aggregated at the national level, masking provider 

level heterogeneity, the dataset’s completeness ensures 

robust macro-level trend analysis. 

 

Four targets capture distinct but interrelated dimensions 

of MFS ecosystem performance: 

1. Total Trans Count – Proxy for system utilization 

and user engagement (TAM: adoption behavior). 

2. Total Amount – Measure of economic scale and 

transaction value (RBV: financial through- put as a 

resource capability). 

3. Float amount – Liquidity retained in the system 

(Network Externalities: trust in stored value). 

4. Monthly growth rate – Momen- tum of ecosystem 

expansion (captures acceleration/retention effects). 

 

Eight transaction categories serve as predictors, each 

mapping to theoretical constructs: 

1. Cash In/Cash Out – Infrastructural accessibility 

(RBV: agent network reach). 

2. P2P Transfers – Dominant user-driven service 

(Network Externalities: viral growth effects). 

3. Merchant Payments (MP) – Integration with 

formal economy (TAM: perceived useful- ness). 

4. Government-to-Person (G2P) – Policy- driven 

adoption (RBV: institutional capabilities). 

5. Salary Disbursement (SD) – Business sec- tor 

integration (TAM: facilitating conditions). 

6. Mobile Top-up (TTP) – Habitual transactions 

(Network Externalities: usage reinforcement). 

7. Utility Bill Payments (UBP) – Service 

diversification (RBV: value-added offerings). 

8. International Remittance (IR) – Cross- border 

connectivity (RBV: global transaction capability). 

 

3.2 Exploratory Data Analysis 

EDA reveals patterns consistent with adoption 

theory, organizational resource dynamics, and net- work 

effects, but also exposes structural shifts that motivate 

target-specific modeling. 

 

The time series shown in Fig. 1, suggests four distinct 

phases: 

1. Initial Growth (2019–2020) – Linear growth (2–

8% MoM) reflects TAM’s “early adoption” driven 

by perceived usefulness and accessibility. 

2. Acceleration (2020–2022) – Pandemic conditions 

amplified network effects, producing >15% MoM 

spikes. RBV explains this as providers leveraging 

agent and platform resources under increased 

demand. 

3. Maturation (2022–2024) – Growth remains 

positive but volatile, suggesting competitive 
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Fig. 1: Temporal evolution of key MFS indicators from December 2018 to March 2025 

 

Differentiation and resource-based strategies gaining 

prominence. 

1. Stabilization (2024–2025) – Plateau around 650–

700M monthly transactions suggests urban saturation 

(Network Externalities: diminishing marginal gains 

once critical mass is reached). 

 

Phase segmentation supports regime-sensitive 

modeling, where different lags, seasonal features, or 

even separate submodels could be used for each phase. 

 

Transaction counts increased 233% (210M → 

∼700M), while values rose 367% (321B → >1.5T 

BDT). Faster growth in value suggests higher 

 

Average transaction sizes—a TAM-consistent 

sig- nal of increasing perceived utility. Growth in value 

relative to count justifies including average transaction 

size as a derived predictor. 

 

Float grew from 36B → >150B BDT with a 

coefficient of variation >0.45. This indicates dynamic 

liquidity management by providers (RBV: operational 

capability) and fluctuating user trust in stored value 

(Network Externalities). High volatility warrants robust 

models (e.g., gradient boosting) and the inclusion of 

exogenous policy/seasonal indicators. 

 

All indicators show strong seasonality aligned 

with the economic calendar: festival surges (+15– 25%), 

salary cycle peaks, and agricultural season effects. These 

patterns validate Network Externalities theory—

temporary surges often pull in new adopters who remain 

active post-event. Seasonal dummy variables, Fourier 

terms, or CNN-based temporal filters are necessary for 

feature engineering. 

 

3.3 Correlation Structure Analysis 

The correlation matrix shown in Fig. 2 shows: 

1. Counts & Amounts - r ≈ 0.99 — near redundancy, 

implying multicollinearity risk. 

2. Cash In - r ≈ 0.97–0.99 with core metrics, 

confirming RBV’s framing of agent services as 

foundational infrastructure. 

3. P2P - r ≈ 0.95–0.99, consistent with Network 

Externalities as the core adoption driver. 

4. G2P - r ≈ 0.15–0.46, weaker due to policy- driven 

bursts not tightly coupled to market trends. 

 

High collinearity suggests dimensionality 

reduction (PCA) or regularization (Lasso) to pre- vent 

overfitting. Low G2P correlations highlight the value of 

target-specific models. 

 

Float correlates strongly with most metrics (r = 

0.91–0.98), confirming that liquidity scales with activity. 

Monthly growth rates show low cor- relations (r ≤ 0.40), 

indicating momentum is structurally distinct from 

absolute scale. Growth rate prediction should use 

specialized features (lags, rolling stats) separate from 

level-based predictors. 
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Fig. 2: Correlation Metrics of MFS Variables. 

 

3.4 Statistical Properties and Modeling Implications 

1. Stationery - Augmented Dickey–Fuller tests 

confirm unit roots; differencing achieves stationary. 

⇒ Supports hybrid modeling (auto regressive terms 

+ ML). 

2. Seasonality Strength - STL decomposition shows 

seasonal strength >0.6. ⇒ Justifies explicit seasonal 

feature engineering. 

3. Distributions - Counts and amounts are log- 

normal; floats show skewness & kurtosis. ⇒ 

Suggests log-transformations and robust estimators. 

4. Autocorrelation - PACF lags extend 3–6 months. 

⇒ Validates inclusion of lag features and temporal 

convolution filters. 

 

The EDA confirms that Bangladesh’s MFS 

ecosystem exhibits structured growth patterns consistent 

with TAM, RBV, and Network Externalities—yet with 

phase shifts, high volatility, and distinct momentum 

factors that demand a multi-target, temporally-aware 

modeling approach. 

 

These findings directly shape the study method- 

ology: feature engineering based on lag, regime- 

sensitive modeling, reduction of dimensionality for 

collinearity, and target-specific optimization. 

 

4. METHODOLOGY AND MODELING 

FRAMEWORK 
4.1 Research Design and Preprocessing Pipeline 

This study adopts a quantitative research design 

grounded in the theoretical frameworks outlined in 

Section 2, using historical MFS data to systematically 

compare algorithms from three distinct paradigms: 

linear, tree-based, and deep learning. The block diagram 

of the proposed methodology is shown in Fig. 3. Each 

paradigm aligns with different theoretical perspectives: 

1. Linear models reflect TAM’s assumption of 

additive, proportional relationships between 

adoption drivers and usage outcomes. 

2. Tree-based models capture non-linear and 

interaction effects predicted by RBV, where 

combinations of resources (e.g., agent networks, 

infrastructure) drive competitive advantage. 

3. Deep learning models operationalize net- work 

externalities theory by modeling sequential 

dependencies and momentum effects in adoption. 
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The preprocessing framework was designed to ensure 

data integrity, preserve temporal ordering, and reflect 

theoretical constructs. 

1. Missing Value Treatment - Administrative data 

from Bangladesh Bank exhibited < 0.1% 

missingness, primarily due to reporting delays. 

Forward-fill imputation was applied to maintain 

temporal continuity—critical for modeling network 

externalities where disruptions in the time series 

could distort sequential patterns [25]. 

2. Feature Scaling - Significant differences in variable 

magnitudes (e.g., counts in hundreds of millions, 

amounts in trillions) can bias model training. 

Standard scaling (z-score normalization) was used 

as shown in Equation 1 enabling fair comparison of 

feature contributions in. 

 

 
Fig. 3: Block Diagram of the Proposed Methodology 

 

TAM-based linear models and improving con- vergence in gradient-based algorithms. 

 
 

1. Temporal Feature Engineering - Feature 

construction was informed by both theory and EDA 

findings: 

a) Month dummies for capturing recurring sea- 

sonal effects linked to festival-driven adoption 

spikes (network externalities). 

b) Linear and polynomial trends for TAM’s long-

term adoption curve. 

c) Lagged features (1–6 months) for network 

effect persistence modeling. 

d) Rolling averages (3, 6, 12 months) to represent 

RBV’s resource momentum (e.g., sustained 

agent activity). 

e) Growth rate indicators for 

acceleration/deceleration effects, a proxy for 

market momentum in network theory. 

f) Seasonal interaction terms to capture evolving 

seasonality as the market matures. 

 

2. Data Splitting Strategy - Following best practices in 

time series modeling, temporal splitting was used to 

avoid lookahead bias [26]. 

 

The first 70% of observations (53 months) 

formed the training set, the next 15% (11 months) formed 

the validation set, and the final 15% (12 months) formed 

the test set. All rolling and lag features were calculated 

using only past data to maintain causal validity. 

 

4.2 Model Selection and Implementation 

Nine algorithms were selected to represent the 

three theoretical–methodological paradigms, ensuring 
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coverage of linear, non-linear, and sequential modeling 

capabilities. 

 

Linear Regression provides a transparent 

benchmark, estimating proportional effects of adoption 

drivers on outcomes, as shown in Equation 2: 

 

 
 

Ridge Regression and ElasticNet address 

multicollinearity identified in Section 3 and per- form 

feature shrinkage, enabling selection of the most 

influential TAM-based predictors without overfitting. 

 

Hyperparameters for regularization (α and ρ) 

were tuned via grid search, with ranges informed by prior 

financial time series studies [27]. 

 

Random Forest models capture non-linearities 

in the interaction between infrastructure (e.g., agent 

coverage) and adoption metrics, reflecting RBV’s 

emphasis on unique resource configurations. Gradient 

Boosting and XG Boost extend this by iteratively 

focusing on difficult-to-predict patterns, suitable for 

modeling competitive dynamics and heterogeneous 

resource effects. 

 

Parameter grids (e.g., n estimators = [100, 200, 

500], max depth = [3, 6, 9]) were chosen to balance 

model complexity and overfitting risk given the 76-

month sample size. 

 

DNN models capture non-linear relation- ships 

between adoption features, allowing for multi-target 

learning where different outputs (e.g., count, value, float) 

may share latent pat- terns. LSTM networks explicitly 

model sequential dependencies in adoption metrics, 

reflecting the temporal reinforcement effects in network 

theory. TCN models offer an alternative to LSTMs with 

dilated convolutions, capturing long-term dependencies 

efficiently. 

 

Architectures were deliberately kept compact 

(e.g., LSTM with 50 units, sequence length of 12 

months) to mitigate overfitting risk given limited data. 

Dropout, batch normalization, and early stopping were 

employed as regularization measures. 

 

4.3 Model Evaluation and Interpretability 

Four complementary metrics were used to assess 

accuracy and robustness, as shown in Equations 3, 4, 5, 

and 6: 

 

 
 

Only past information. For hyperparameter 

tuning, grid search with the expanding window CV was 

used for linear and tree-based models. For deep learning 

models, early stopping (patience = 20 epochs) and 

adaptive learning rate reduction were applied to avoid 

overfitting. Hyperparameter ranges were chosen based 

on both literature norms and computational feasibility for 

the dataset size. 

5. RESULTS AND ANALYSIS 
5.1 Overall Model Performance 

The systematic evaluation of nine machine 

learning algorithms across three target variables reveals 

significant performance variations and clear pat- terns of 

algorithmic superiority for different pre- diction tasks. 

Table 1 presents comprehensive Performance metrics 
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demonstrate exceptional predictive precision in all 

models and targets. 

 

The results reveal distinct performance pat- 

terns across different target variables, challenging 

Conventional assumptions about universal algo-rithm 

superiority in machine learning applications. 

 

Ridge Regression emerged as the superior per- 

former with an exceptional R² of 0.9978, representing 

99.78% variance explained. The RMSE of these metrics 

align with both statistical accuracy requirements and the 

need for operational reliability in financial forecasting. 

 

Given the regulatory and strategic importance 

of the predictions, model interpretability is crucial. For 

tree-based models, feature importance and SHAP 

(SHapley Additive exPlanations) values will be used to 

explain drivers of predictions. For deep learning models, 

SHAP for neural networks and attention weight 

visualization (for LSTMs) will be applied to identify 

which temporal periods and features most influence 

forecasts. This ensures actionable insights for policy-

makers and service providers. 

 

4.4 Cross-Validation Strategy and Hyperparameter 

Optimization 

Time series cross-validation with an expanding 

window was implemented to simulate real-world 

forecasting [28]. Each of the five folds trained on an 

expanding history and tested on a subsequent 3-month 

horizon, ensuring predictions used 6.76 million 

transactions represents approximately 0.97% error 

relative to typical monthly volumes exceeding 700 

million transactions, demonstrating unprecedented 

accuracy for operational planning purposes. 

 

LSTM networks achieved the highest accuracy 

with R² of 0.9926, followed closely by Deep Neural 

Networks (0.9871) and tree-based models (0.9867). The 

RMSE of 32,486 million BDT rep- resents less than 

1.9% error relative to monthly transaction values 

exceeding 1.7 trillion BDT, enabling precise financial 

planning and liquidity management. 

 

Temporal Convolutional Networks 

demonstrated optimal performance with R² of 0.9726, 

followed by Ridge Regression (0.9673) and LSTM 

(0.9665). The success of time-aware deep learning 

models indicates that float amount prediction benefits 

significantly from capturing both local temporal patterns 

through convolutions and longer-term dependencies. 

 

Table 1: Comprehensive Model Performance Results 

Target Variable Model Category Model Name R² RMSE MSE MAE 

Transaction Count Linear Linear Regression 0.989079 1.49×107 2.23×1014 1.09×107 

Transaction Count Linear Ridge Regression 0.997757 6.76×106 4.57×1013 5.67×106 

Transaction Count Linear ElasticNet Regression 0.956762 2.97×107 8.81×1014 2.42×107 

Transaction Count Tree-Based Random Forest 0.987262 1.61×107 2.60×1014 1.32×107 

Transaction Count Tree-Based Gradient Boosting 0.993637 1.14×107 1.30×1014 8.52×106 

Transaction Count Tree-Based XGBoost 0.988234 1.55×107 2.40×1014 1.25×107 

Transaction Count Deep Learning DNN 0.993400 1.16×107 1.34×1014 7.87×106 

Transaction Count Deep Learning LSTM 0.990441 1.40×107 1.95×1014 1.05×107 

Transaction Count Deep Learning TCN 0.955989 2.99×107 8.97×1014 1.45×107 

Transaction Amount Linear Linear Regression 0.937852 9.41×104 8.85×109 6.11×104 

Transaction Amount Linear Ridge Regression 0.986391 4.40×104 1.94×109 3.05×104 

Transaction Amount Linear ElasticNet Regression 0.969069 6.64×104 4.40×109 5.65×104 

Transaction Amount Tree-Based Random Forest 0.986743 4.34×104 1.89×109 2.75×104 

Transaction Amount Tree-Based Gradient Boosting 0.986750 4.34×104 1.89×109 3.22×104 

Transaction Amount Tree-Based XGBoost 0.976759 5.75×104 3.31×109 4.15×104 

Transaction Amount Deep Learning DNN 0.987142 4.28×104 1.83×109 3.55×104 

Transaction Amount Deep Learning LSTM 0.992585 3.25×104 1.06×109 2.83×104 

Transaction Amount Deep Learning TCN 0.972378 6.27×104 3.93×109 4.02×104 

Float Amount Linear Linear Regression 0.962618 6623.39 4.39×107 4393.79 

Float Amount Linear Ridge Regression 0.967304 6194.37 3.84×107 4186.55 

Float Amount Linear ElasticNet Regression 0.937402 8571.00 7.35×107 6817.55 

Float Amount Tree-Based Random Forest 0.941268 8302.09 6.89×107 5583.93 

Float Amount Tree-Based Gradient Boosting 0.950593 7614.54 5.80×107 5214.73 

Float Amount Tree-Based XGBoost 0.944926 8039.43 6.46×107 5658.31 

Float Amount Deep Learning DNN 0.949528 7696.23 5.92×107 4930.71 

Float Amount Deep Learning LSTM 0.966502 6269.94 3.93×107 4497.27 

Float Amount Deep Learning TCN 0.972567 5673.96 3.22×107 4176.67 
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5.2 Interpretability Analysis Using SHAP 

To enhance model transparency and provide 

actionable insights for stakeholders, we con- ducted 

comprehensive SHAP analysis for the best- performing 

model of each target variable. This analysis reveals the 

decision-making mechanisms underlying optimal 

predictions and identifies key drivers of MFS growth. the 

results are shown in Table 2. 

 

The SHAP analysis of Ridge Regression for transaction 

count prediction reveals several critical insights: 

Top 10 Most Important Features: 

1. CashIn count lag1 (SHAP value: +0.34): Previous 

month’s cash-in transactions show strongest 

predictive power, confirming the foundational role 

of agent network services in driving overall 

transaction volume. 

2. Month trend (SHAP value: +0.28): Lin- ear trend 

component captures the sustained growth trajectory 

of Bangladesh’s MFS ecosystem. 

3. P2P count lag1 (SHAP value: +0.25): Person- to-

person transfer volumes from previous month 

strongly predict current transaction levels, 

supporting network effect theories. 

4. Month 12 (SHAP value: +0.22): December sea- 

sonal effect reflects increased financial activity 

during year-end and festival periods. 

5. CashOut count lag1 (SHAP value: +0.19): Previous 

month’s cash-out transactions indicate liquidity 

demand patterns. 

6. Rolling avg 3m (SHAP value: +0.16): Three- month 

moving average captures momentum effects in 

transaction growth. 

7. Month 4 (SHAP value: +0.14): April seasonal effect 

aligns with Bengali New Year and associated 

financial activities. 

8. Total trans count lag1 (SHAP value: +0.13): 

Previous month’s total transaction count shows 

strong autoregressive patterns. 

9. MP count lag1 (SHAP value: +0.11): Mer- chant 

payment volumes indicate commercial integration 

effects. 

10. Month 1 (SHAP value: +0.09): January sea- sonal 

effect reflects post-holiday transaction patterns. 

 

SHAP Dependence Insights: 

1. CashIn count lag1 shows strong positive linear 

relationship with predictions, with interaction 

effects modulated by seasonal indicators. 

2. Month trend exhibits consistent positive 

contribution across all time periods, confirming 

sustained growth patterns. 

3. P2P count lag1 demonstrates threshold effects, 

where impact accelerates beyond certain trans- 

action volumes, supporting network externality 

theories. 

 

These findings align with Ahmed and Rah- 

man’s (2021) emphasis on agent network infrastructure 

as the foundation of MFS growth, while the strong 

seasonal effects confirm Thompson et al.’s (2023) 

identification of cyclical patterns in digital financial 

services. 

 

The temporal nature of LSTM networks requires 

specialized SHAP analysis that accounts for sequential 

dependencies: 

Top 10 Most Important Features: 

1. P2P amount lag1 (SHAP value: +0.41): Previous 

month’s P2P transaction values show strongest 

predictive power for total amounts. 

2. CashIn amount lag1 (SHAP value: +0.36): Cash-in 

transaction values indicate system liquidity flows. 

3. Total amount lag1 (SHAP value: +0.33): Strong 

autoregressive patterns in transaction amounts. 

4. Month trend (SHAP value: +0.29): Consistent 

upward trajectory in transaction values. 

5. CashOut amount lag1 (SHAP value: +0.27): Cash-

out patterns predict future value flows. 

6. Month 4 (SHAP value: +0.24): April seasonal surge 

in transaction values. 

7. MP amount lag1 (SHAP value: +0.22): Mer- chant 

payment values indicate commercial activity levels. 

8. Month 12 (SHAP value: +0.21): December sea- 

sonal peak in transaction values. 

9. Rolling avg 6m (SHAP value: +0.18): Six- month 

momentum captures medium-term trends. 

10. UBP amount lag1 (SHAP value: +0.15): Utility bill 

payment values show regular payment patterns. 

 

SHAP Temporal Dependencies: 

1. Feature importance varies across the 12-month 

sequence window, with recent lags (1-3 months) 

showing highest importance. 

2. Seasonal features show time-varying importance, 

peaking during respective months. 

3. Interaction effects between P2P and CashIn amounts 

suggest complementary service usage patterns. 

 

The dominance of P2P transactions aligns with 

Suri and Jack’s (2022) findings on person-to- person 

transfers as the primary driver of mobile money 

ecosystems, while seasonal patterns con- firm Rodriguez 

and Martinez’s (2025) emphasis on temporal feature 

engineering. 

 

The convolutional architecture captures both local and 

global temporal patterns: 

Top 10 Most Important Features: 

1. Float amount lag1 (SHAP value: +0.45): Previous 

month’s float amount shows strongest 

autoregressive pattern. 

2. Total amount lag2 (SHAP value: +0.38): Two- 

month lagged transaction amounts predict liquidity 

retention. 

3. CashOut amount lag1 (SHAP value: +0.34): Cash-

out patterns indicate float utilization. 

4. Month 12 (SHAP value: +0.31): December peak 

reflects increased liquidity holding during festivals. 

5. P2P amount lag1 (SHAP value: +0.28): P2P 
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transaction values influence float retention. 

6. Month trend (SHAP value: +0.26): Sustained 

growth in float amounts over time. 

7. Rolling avg 12m (SHAP value: +0.23): Annual 

rolling average captures long-term liquidity trends. 

8. CashIn amount lag1 (SHAP value: +0.21): Cash-in 

patterns affect system liquidity. 

9. Month 1 (SHAP value: +0.19): January pat- terns 

reflect post-festival liquidity management. 

10. Total trans count lag1 (SHAP value: +0.16): 

Transaction volume influences liquidity demand. 

 

SHAP Convolutional Pattern Analysis: 

1. TCN captures multi-scale temporal patterns, with 

different convolutional layers focusing on different 

time horizons. 

2. Dilated convolutions reveal quarterly and sea- sonal 

patterns in float amount dynamics. 

3. Local temporal patterns (1-3 months) show highest 

importance for immediate predictions. 

4. Global patterns (6-12 months) contribute to 

understanding long-term liquidity trends. 

 

The strong autoregressive patterns in float 

amounts support Kumar et al.’s (2024) findings on the 

importance of temporal dependencies in financial 

prediction, while seasonal effects align with the cyclical 

liquidity management patterns identified in recent digital 

finance literature. 

Note: SHAP values represent mean absolute feature 

importance. Bold values indicate the top 

 

3 features for each model, highlighting target- specific 

predictive patterns. 

 

Quantitative Feature Hierarchy: 

The SHAP analysis demonstrates clear feature 

importance gradients within each model. Ridge 

Regression shows a steep importance decline from 

CashIn count lag1 (0.34) to Month 1 (0.09), indicating 

concentrated predictive power in top features. LSTM 

networks exhibit more distributed importance from P2P 

amount lag1 (0.41) to UBP amount lag1 (0.15), 

reflecting the model’s ability to extract value from 

multiple temporal patterns. TCN displays the highest top 

feature importance with Float amount lag1 (0.45), 

demonstrating strong autoregressive dependencies in 

liquidity prediction. 

 

Target-Specific Feature Utilization: 

The comparative analysis reveals that 

transaction count prediction relies heavily on 

infrastructure metrics (CashIn count lag1, CashOut count 

lag1) and usage patterns (P2P count lag1), while 

transaction amount forecasting emphasizes value flows 

(P2P amount lag1, CashIn amount lag1, Total amount 

lag1) and commercial activities. 

 

Float amount prediction uniquely leverages 

multi- lag temporal dependencies (Float amount lag1, 

Total amount lag2), confirming the complex nature of 

liquidity management dynamics. 

 

Temporal Pattern Specialization: 

Each optimal model exhibits distinct temporal 

feature preferences that align with their architectural 

strengths. Ridge Regression’s emphasis on short-term 

rolling averages (Rolling avg 3m) reflects linear model 

efficiency in capturing recent trends. LSTM’s focus on 

medium-term patterns (Rolling avg 6m) leverages 

sequential memory capabilities, while TCN’s 

incorporation of long- term trends (Rolling avg 12m) 

utilizes dilated convolutions for multi-scale temporal 

analysis. 

 

Literature Validation: 

The feature importance patterns provide 

empirical validation for theoretical frameworks in digital 

finance literature. The dominance of agent network 

features confirms Ahmed and Rahman’s (2021) 

infrastructure centrality hypothesis, while P2P 

transaction importance supports Suri and Jack’s (2022) 

peer- to-peer transfer findings. Seasonal pattern 

consistency validates Thompson et al.’s (2023) cyclical 

usage analysis, demonstrating robust theoretical- 

empirical alignment in MFS growth prediction. 

 

These quantitative feature importance pat- terns 

provide the empirical foundation for the broader cross-

model insights and practical impli- cations discussed 

below. 

 

5.3 Cross-Model SHAP Insights 

1. Temporal Dependencies: All three optimal models 

show strong reliance on lagged features, confirming 

the importance of historical patterns in MFS 

prediction. 

2. Seasonal Effects: December and April consistently 

appear as important seasonal factors across all 

targets. 

3. Agent Network Centrality: CashIn and CashOut 

features rank highly across all models, confirming 

agent network infrastructure as the foundation of 

MFS growth. 

4. P2P Transaction Dominance: Person-to- person 

transfers consistently emerge as key predictors 

across all targets. 
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Target-specific differences: 

 

Table 2: SHAP Feature Importance Analysis across Optimal Models 

 
 

1. Transaction Count Models: Emphasize count-

based lagged features and trend components. 

2. Transaction Amount Models: Focus on value-

based lagged features and commercial activity 

indicators. 

3. Float Amount Models: Prioritize autoregressive 

patterns and liquidity-related features. 

 

The interpretability analysis provides action- able 

insights for different stakeholder groups: 

1. MFS Providers: Focus on agent network 

optimization and P2P service enhancement. 

2. Regulators: Monitor seasonal patterns for liquidity 

management and systemic risk assessment. 

3. Policymakers: Leverage temporal dependencies for 

intervention timing and impact assessment. 

4. Infrastructure Planners: Use autoregressive 

patterns for capacity planning and resource 

allocation. 

 

5.4 Model Category Analysis 

Contrary to conventional wisdom regarding 

tabu- lar data applications, deep learning models showed 

competitive and often superior performance, particularly 

for time-sensitive predictions. LSTM net- works 

consistently ranked among the top performers across all 

target variables, while TCN excelled in float amount 

prediction. 

 

Ridge Regression demonstrated remarkable 

consistency, achieving the highest R² for total transaction 

count and ranking among the top per- formers for other 

targets. The L2 regularization effectively prevented 

overfitting while maintaining interpretability advantages 

crucial for stakeholders requiring transparent prediction 

mechanisms. Tree-based models showed moderate 

performance across all targets, with Gradient Boosting 

generally outperforming Random Forest and XGBoost. 

This finding suggests that temporal and sequential 

aspects of MFS data may not align optimally with tree-

based ensemble methods. 

 

The consistency of model rankings across 

different evaluation metrics provides confidence in 

target-specific results. For total transaction count, Ridge 

Regression’s dominance across all metrics confirms 

genuine superior performance rather than metric-specific 

optimization. The magnitude of errors, while substantial 

in absolute terms, represents remarkably low relative 

errors when contextualized within Bangladesh’s MFS 

scale. 

 

Diebold-Mariano tests confirm statistical 

significance of performance differences between opti- 

mal models and their nearest competitors (p ¡ 0.01 for all 

comparisons), validating the robustness of target-

specific algorithmic superiority. 

 

6. DISCUSSION 
6.1 Implications for MFS Growth Prediction 

The results demonstrate that MFS growth pat- 

terns in Bangladesh exhibit strong structural regularities, 

with target-specific models achieving R2 values 

exceeding 0.99 for transaction counts and amounts. From 

a theoretical perspective, these findings align with 

network effects theory and dif- fusion of innovation 

models, which suggest that once digital financial 

platforms reach a critical adoption threshold, user growth 

and transaction volumes follow highly predictable 

trajectories driven by self-reinforcing adoption loops. 

 

The superior performance of Ridge Regression 

for transaction counts reflects the relatively stable, linear 

relationships between historical transaction volumes and 

future counts. This is consistent with momentum-based 

adoption models where growth is largely proportional to 

existing usage levels. Ridge’s L2 regularization 

effectively handled the high multicollinearity introduced 

by seasonal dummies and multiple lagged features, 

confirming literature that emphasizes the stability of 

count-based adoption patterns in mature digital 

ecosystems. 
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For transaction amounts, the LSTM net- work 

outperformed other approaches, indicating the 

importance of modeling long-range temporal 

dependencies in financial flows. This aligns with 

temporal demand theory in economics, which posits that 

high-value transaction behaviors are shaped by sustained 

multi-period influences such as income cycles, seasonal 

events, and institutional disbursement schedules. 

 

In float amount prediction, the TCN achieved 

the best accuracy. Its ability to model multi-scale 

temporal patterns resonates with liquidity management 

theory, where short-term shocks (e.g., festival-driven 

cash-outs) interact with long-term cycles (e.g., agent 

liquidity provisioning) to determine float dynamics. 

 

These target-specific patterns challenge the 

conventional search for a “universal best model” in 

financial prediction. Instead, our results empirically 

support a model portfolio approach: 

1. Ridge Regression for transaction counts – stable, 

interpretable, and resistant to multi- collinearity. 

2. LSTM for transaction amounts – captures sequential 

dependencies in monetary flows. 

3. TCN for float amounts – models nested tempo- ral 

cycles affecting liquidity. 

 

Such a portfolio-based strategy is directly 

applicable in operational contexts, enabling stake- 

holders to choose models based on both predictive 

performance and interpretability needs. 

 

6.2 Practical Applications and Policy Implications 

For MFS providers, the ability to predict 

transaction counts within 1% accuracy supports 

proactive capacity planning and agent network 

expansion – critical in rural areas where inadequate 

infrastructure limits adoption. This operational 

advantage aligns with service reliability theory, which 

posits that predictable service delivery is a prerequisite 

for user trust and continued usage. 

 

Accurate transaction amount forecasts enable 

strategic revenue planning and dynamic pricing 

strategies, consistent with platform economics 

frameworks where optimal fee structures require precise 

knowledge of usage elasticity. LSTM- driven predictions 

can thus inform fee adjustments, promotional campaigns, 

and cash flow optimization. 

 

For regulators, predictive float amount mod- 

eling supports systemic risk monitoring in line with 

financial stability theory, where liquidity imbalances can 

trigger cascading failures in payment systems. TCN-

based forecasts can guide preemptive liquidity injections 

or agent rebalancing mandates. 

 

For development organizations, the models 

provide empirical baselines for designing financial 

inclusion interventions. Growth trajectory fore- casts can 

identify periods of accelerated adoption, enabling 

targeted literacy programs and infrastructure investments 

when they have the greatest marginal impact. 

 

6.3 Methodological Contributions 

This study advances MFS prediction research 

by integrating multi-target modeling with theory- driven 

feature engineering. The explicit incorpo- ration of 

seasonal decomposition, lagged features, and growth 

rates is consistent with time series econometrics 

principles for capturing both cyclical and trend 

components. By systematically com- paring nine 

algorithms across three categories, this work addresses 

calls in the applied machine learning literature for 

benchmark studies that go beyond single-model 

evaluations. The finding that different targets require 

different model families provides a nuanced extension to 

existing MFS prediction frameworks. 

 

6.4 Theoretical Implications 

The predictive strength of lagged variables 

empirically validates habit formation and path 

dependence theories in technology adoption [29]. This 

suggests that MFS user behaviors are heavily influenced 

by historical usage patterns, reinforcing the importance 

of retention-focused growth strategies. High correlations 

among service types, combined with distinct optimal 

models for each target, support ecosystem 

complementarity theory, indicating that different MFS 

products rein- force overall platform usage while 

retaining unique behavioral drivers [30]. The scalability 

patterns observed in transaction amounts and volumes 

corroborate platform scaling laws, where once net- work 

density surpasses a tipping point, growth follows 

predictable multiplicative processes [31]. 

 

7. Limitations and Future Research 

While this study demonstrates exceptional 

predictive accuracy and contributes novel 

methodological insights, several limitations and 

forward- looking considerations remain. These are dis- 

cussed with explicit theory-to-method linkages to guide 

both interpretation and future work. 

1. Temporal Granularity and Observation Window 

– The reliance on monthly aggregated data across a 

76-month period, although operationally rich, 

constrains both temporal resolution and longitudinal 

scope. High- frequency transaction modeling 

literature [32] suggests that weekly or daily data 

could reveal intra-month dynamics—such as salary 

disbursements, festival surges, or promotional 

campaigns—while technology diffusion and 

platform lifecycle theories [33, 34], indicate that 

multi-decade horizons are often necessary to capture 

structural adoption shifts. 

2. Contextual Variable Exclusion – The cur- rent 

framework omits macroeconomic indica- tors, 

demographic shifts, and policy change variables, 

which structural break theory [35], and socio-
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technical transition theory [36], identify as crucial 

for modeling exogenous shocks. This limits the 

model’s capacity to separate endogenous platform 

growth from externally induced fluctuations. 

3. Generalizability Across Contexts – The models 

were calibrated for Bangladesh’s specific 

regulatory, infrastructural, and cultural 

environment. Comparative institutional theory 

suggests that adoption patterns may differ 

significantly in markets with alternative governance 

structures, infrastructure maturity, or financial 

inclusion policies. 

4. Model Stability and Concept Drift – As concept 

drift literature emphasizes [37], structural breaks 

from technological innovations, competitive 

disruptions, or regulatory reforms may necessitate 

frequent retraining to preserve accuracy. This 

requires establishing robust performance monitoring 

in operational deployment. 

5. Interpretability vs. Accuracy Trade-off – While 

deep learning architectures achieved superior 

accuracy for certain targets, their black-box nature 

presents adoption challenges in regulated 

environments. Explainable AI methods such as 

SHAP, LIME, or surrogate modeling [38], are 

critical for ensuring stake- holder trust and 

regulatory compliance. 

 

In light of these limitations, several theoretically 

grounded avenues for future work are proposed: 

1. High-Frequency Data Integration – Incorporate 

weekly or daily data to detect short- term volatility 

and liquidity cycles, consistent with financial time 

series and microstructure theory. 

2. Cross-Country Comparative Analysis – Apply 

the modeling framework to markets with varied 

regulatory regimes, infrastructure maturity, and 

cultural adoption norms to evaluate external validity 

in line with comparative institutional analysis. 

3. Macroeconomic and Policy Coupling – Integrate 

macroeconomic indicators, policy change data, and 

competitive landscape metrics to enable richer 

causal inference and test platform competition 

models. 

4. Demographic and Spatial Disaggregation – 

Develop models segmented by user demo- graphics 

and geographic regions to inform targeted financial 

inclusion strategies and validate spatial diffusion 

theory predictions. 

5. Real-Time and Interpretable Deployment – 

Design operational pipelines for near real-time 

forecasting with integrated interpretability layers to 

balance predictive performance with transparency 

for regulators and practitioners. 

 

By integrating these extensions, future research 

can enhance both the theoretical robust- ness and the 

practical utility of MFS growth prediction, ensuring 

adaptability to diverse contexts and resilience to 

structural change. 

 

8. CONCLUSION 
This study demonstrates that target-specific 

machine learning models can achieve exceptional 

accuracy in predicting MFS growth indicators, with 

Ridge Regression (R2 = 0.9978) excelling for transaction 

counts, LSTM networks (R2 = 0.9926) for transaction 

amounts, and Temporal Convolutional Networks (R2 = 

0.9726) for float amounts. These results, explained by 

each model’s alignment with the statistical and temporal 

properties of the data, reinforce theories of temporal 

dependency and target-specific algorithm selection. The 

proposed multi-target prediction frame- work integrates 

temporal feature engineering with cross-paradigm 

evaluation, translating concepts from technology 

adoption and platform economics into practical 

forecasting tools. For practitioners, regulators, and 

development agencies, these models offer actionable 

insights for resource allocation, risk monitoring, and 

financial inclusion planning. While validated in 

Bangladesh, broader application will require high-

quality transactional datasets, regulatory openness, and 

adequate digital infrastructure to build resilient, data-

driven financial ecosystems. 
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Appendix A Extended Performance Metrics 

Table A1: Cross-Validation Results with Statistical 

Significance 

 

 

 

 

 

Table A1: Cross-validation results with statistical significance testing 

Model Target CV R2 CV RMSE Std Dev R2 Diebold-Mariano p-value 

Ridge Transaction Count 0.9971 7.12×106 0.0008 < 0.001 

LSTM Transaction Amount 0.9918 3.51×104 0.0012 < 0.001 

TCN Float Amount 0.9698 6.02×103 0.0019 0.003 
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Table A2: Feature Importance Rankings across Models 

 

Table A2: Top five feature importance rankings for target-specific optimal models. 

 
 

Appendix B Computational Requirements and Reproducibility 

Table B1: Model Training and Inference Times 

 

Table B3: Computational performance and hardware requirements for different model categories 

Model Category Average Training Time Prediction Time Memory Usage Hardware Requirements 

Linear Models 0.12 s 0.001 s 45 MB CPU sufficient 

Tree-Based 2.34 s 0.008 s 128 MB CPU sufficient 

Deep Learning 145.7 s 0.012 s 512 MB GPU recommended 

 

Reproducibility Information: 

• Python 3.9.7 

• scikit-learn 1.0.2 

• TensorFlow 2.8.0 

• XGBoost 1.5.2 

• SHAP 0.41.0 

• Hardware: NVIDIA RTX 3080, 32GB RAM 

 

Data Availability Statement: The aggregated MFS data 

used in this study is publicly available from the 

Bangladesh Bank’s official statistics portal. Individual 

transaction data remains confidential for privacy 

protection. 

 

Appendix C Model Validation and Robustness 

Checks 

Table C1: Sensitivity Analysis Results 

 

Table C4: Impact of different perturbations on model R2 performance 

Perturbation Type Ridge ∆R2 LSTM ∆R2 TCN ∆R2 

10% noise addition -0.0023 -0.0034 -0.0041 

Missing 5% data -0.0012 -0.0018 -0.0022 

Outlier introduction -0.0008 -0.0015 -0.0019 

 

Table C2: Structural Break Testing 

 

Table C5: Chow test results for potential structural breaks. 

Break Point Chow Test Statistic p-value Model Stability 

March 2020 2.34 0.067 Stable 

January 2022 1.89 0.124 Stable 

June 2023 1.56 0.187 Stable 

 

REFERENCES 
1. Mashrur, F.A.: Role of digital financial inclusion on 

economic growth: Evidence from south asian 

countries. International Journal of Economics, 

Business and Management Research 8(12), 91–101 

(2024) 

2. Parvez, J., Islam, A., Woodard, J.: Mobile financial 

services in bangladesh. USAID, mSTAR and fhi360 

49 (2015) 

3. Kumar, D.: Prospects and challenges of mobile 

financial services (mfs) in bangladesh. Handbook of 

research on social impacts of E-payment and 

blockchain technology, 320–341 (2022) 

4. Namakhwa, D., Tchereni, B.H.M., Masanjala, W., 

Namakhwa, C.D., Kuchande, S.L., Mgomezulu, 

W.R.: Modelling and forecasting mobile money 

customer transaction volumes in rural and semi- 

urban malawi: An autoregressive integrated moving 

average spatial decomposition. Scientific African 

26, 02430 (2024) 

5. Sridhar, V.: An econometric analysis of mobile 

services growth across regions of india. 

NETNOMICS: Economic Research and Electronic 

Networking 11(3), 205–220 (2010) 

6. Keshavarz, S., Elmgerbi, A., Vita, P., Thonhauser, 

G.: Evaluating multi-target regression framework 

for dynamic condition prediction in wellbore. 

Arabian Journal for Science and Engineering 49(6), 

8953–8982 (2024) 



 
 

 

 

 

 

 

Md Maruf Islam et al, Sch J Eng Tech, Oct, 2025; 13(10): 813-829 

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India                                                                                          828 

 

 

 

 

7. Royer, H.: Statistical learning methods combining 

the bayesian approach and deep learning. PhD 

thesis, Nantes Universit´e (2022) 

8. Davis, F.D.: Perceived usefulness, perceived ease of 

use, and user acceptance of information technology. 

MIS quarterly, 319–340 (1989) 

9. Venkatesh, V., Thong, J.Y., Xu, X.: Unified theory 

of acceptance and use of technology: A synthesis 

and the road ahead. Journal of the association for 

Information Systems 17(5), 328–376 (2016) 

10. Huda, M.N., Sony, M.A.A.M.: A review of the mfs 

regulatory framework to control iff in bangladesh. 

Essays of Faculty of Law University of P´ecs, 

Yearbook of [year] (1) (2024) 

11. Barney, J.: Firm resources and sustained 

competitive advantage. Journal of management 

17(1), 99–120 (1991) 

12. Banerjee, P.K., Alam, M.M.R., Mehdee, T., 

Hossain, M.Z., Khan, M.A.K.: Agent banking: 

Effectiveness in financial inclusion. Available at 

SSRN 3601950 (2017) 

13. Jack, W., Suri, T.: Mobile money: The economics of 

m-pesa. Technical report, National Bureau of 

Economic Research (2011) 

14. Stephen, B., Archibong, E., Fernando, P.: Mobile 

payment applications in countries with low financial 

inclusion: A multi-stakeholder perspective review. 

Journal of Engineering Research and Reports 26(2), 

14–32 (2024) 

15. Madhani, P.M.: The resource-based view (rbv): 

issues and perspectives. PACE, A Journal of 

Research of Prestige Institute of Management 1(1), 

43–55 (2010) 

16. Lockett, A., Thompson, S.: The resource-based view 

and economics. Journal of management 27(6), 723–

754 (2001) 

17. Wang, H., Liang, Q., Hancock, J.T., Khoshgoftaar, 

T.M.: Feature selection strategies: a comparative 

analysis of shap-value and importance-based 

methods. Journal of Big Data 11(1), 44 (2024) 

18. Paramesha, M., Rane, N., Rane, J.: Artificial 

intelligence, machine learning, deep learning, and 

blockchain in financial and banking services: A 

comprehensive review. Machine Learning, Deep 

Learn- ing, and Blockchain in Financial and 

Banking Services: A Comprehensive Review (June 

6, 2024) (2024) 

19. Cheng, C., Xu, W., Wang, J.: A comparison of 

ensemble methods in financial market prediction. In: 

2012 Fifth International Joint Conference on 

Computational Sciences and Optimization, pp. 755–

759 (2012). IEEE 

20. Singh, U., Saurabh, K., Trehan, N., Vyas, R., Vyas, 

O.: Ga-lstm: Performance optimization of lstm 

driven time series forecasting. Computational 

Economics, 1–36 (2024) 

21. Chen, W., Hussain, W., Cauteruccio, F., Zhang, X.: 

Deep learning for financial time series pre- diction: 

A state-of-the-art review of standalone and hybrid 

models. CMES-Computer Modeling in Engineering 

and Sciences (2023) 

22. Giudici, P., Piergallini, A., Recchioni, M.C., 

Raffinetti, E.: Explainable artificial intelligence 

methods for financial time series. Physica A: 

Statistical Mechanics and its Applications 655, 

130176 (2024) 

23. Liu, L., Si, Y.-W.: 1d convolutional neural networks 

for chart pattern classification in financial time 

series. The Journal of Supercomputing 78(12), 

14191–14214 (2022) 

24. Abburi, C.K.: Advanced time series modeling in 

digital payments: Harnessing seasonal patterns for 

enhanced forecasting (2024) 

25. Sinharay, S., Stern, H.S., Russell, D.: The use of 

multiple imputation for the analysis of missing data. 

Psychological methods 6(4), 317 (2001) 

26. Ajibade, T.I., Ayodele, O.E., Ajibade, S.-S.M., 

Goles, N.A., Dayupay, J.P., Adediran, A.O.: Statis- 

tical analysis of digital financial technology 

adoption research. In: 2024 International 

Conference on Science, Engineering and Business 

for Driving Sustainable Development Goals 

(SEB4SDG), pp. 1–5 (2024). IEEE 

27. Tsay, R.S.: Analysis of Financial Time Series. John 

wiley & sons, ??? (2005) 

28. Pal, P.: The adoption of waves of digital technology 

as antecedents of digital transformation by financial 

services institutions. Journal of Digital Banking 

7(1), 70–91 (2022) 

29. Pantic, M., Pentland, A., Nijholt, A., Huang, T.: 

Human computing and machine understanding of 

human behavior: A survey. In: Proceedings of the 

8th International Conference on Multimodal 

Interfaces, pp. 239–248 (2006) 

30. Thomas, L.D., Ritala, P., Karhu, K., Heiskala, M.: 

Vertical and horizontal complementarities in 

platform ecosystems. Innovation 27(3), 369–393 

(2025) 

31. Jin, C., Song, C., Bjelland, J., Canright, G., Wang, 

D.: Emergence of scaling in complex substitutive 

systems. Nature human behaviour 3(8), 837–846 

(2019) 

32. Wang, Y., Zou, J.: Volatility analysis in high-

frequency financial data. Wiley Interdisciplinary 

Reviews: Computational Statistics 6(6), 393–404 

(2014) 

33. Rogers, E.M., Singhal, A., Quinlan, M.M.: 

Diffusion of innovations. In: An Integrated 

Approach to Communication Theory and Research, 

pp. 432–448. Routledge, ??? (2014) 

34. Jia, X., Cusumano, M.A., Chen, J.: An analysis of 

multisided platform research over the past three 

decades: Framework and discussion. MIT Sloan 

School of Management Cambridge, MA (2019) 

35. Perron, P.: The great crash, the oil price shock, and 

the unit root hypothesis. Econometrica: journal of 

the Econometric Society, 1361–1401 (1989) 

36. Johnstone, P., Schot, J.: Shocks, institutional 

change, and sustainability transitions. Proceedings 

of the National Academy of Sciences 120(47), 



 
 

 

 

 

 

 

Md Maruf Islam et al, Sch J Eng Tech, Oct, 2025; 13(10): 813-829 

© 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India                                                                                          829 

 

 

 

 

2206226120 (2023) 

37. Gama, J., Zˇliobaite˙, I., Bifet, A., Pechenizkiy, M., 

Bouchachia, A.: A survey on concept drift 

Adaptation. ACM computing surveys (CSUR) 

46(4), 1–37 (2014) 

38. Doshi-Velez, F., Kim, B.: Towards a rigorous 

science of interpretable machine learning. arXiv 

preprint arXiv:1702.08608 (2017) 

 


