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Abstract Original Research Article

Mobile Financial Services (MFS) have catalyzed unprecedented financial inclusion in developing economies, with
Bangladesh exemplifying transformative digital financial innovation. This study presents the first comprehensive multi-
target machine learning framework for predicting key MFS growth indicators, addressing critical gaps in financial
technology forecasting literature. Using 76 months of comprehensive Bangladesh Bank data from December 2018 to
March 2025, spanning 24 variables, we systematically evaluate nine machine learning algorithms across three
paradigms: linear models, tree-based ensembles, and deep learning architectures. Our rigorous methodology encom-
passes advanced feature engineering, temporal pattern recognition, and target-specific optimization. Results reveal
unprecedented predictive accuracy with target-specific algorithmic superiority: Ridge Regression achieves exceptional
performance for transaction count prediction with R?* = 0.9978, RMSE = 6.76M transactions, LSTM networks
demonstrate superior capability for transaction amount forecasting with R* = 0.9926, RMSE = 32,486M BDT, and
Temporal Convolutional Networks excel in float amount prediction with R? = 0.9726, RMSE = 5,674M BDT. Feature
importance analysis identifies temporal dependencies and transaction type diversity as primary growth drivers. These
findings establish new benchmarks for financial service prediction while providing actionable intelligence for
policymakers, financial institutions, and fintech innovators.

Keywords: Mobile Financial Services, Machine Learning, Deep Learning, Digital Finance, Financial Inclusion,
Predictive Analytics.
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1. INTRODUCTION (G2P), merchant payments (MP), utility bill payments
The rapid digitization of financial services is (UBP), salary disbursements (SD), mobile top-ups
reshaping economic landscapes across developing (TTP), international remittances (IR), and cash-in/cash-
nations, with Mobile Financial Services (MFS) emerging out services through extensive agent networks [3]. The
as a central driver of financial inclusion and economic Bangladesh Bank, the nation’s central monetary
development [1]. In Bangladesh, supported by a robust authority, has played a pivotal role in enabling this
telecommunications infrastructure and progressive transformation through forward- looking regulation,
regulatory frameworks, MFS adoption has accelerated continuous performance monitoring, and adaptive policy
dramatically [2]. Monthly transaction volumes increased interventions that balance innovation with financial
from approximately 210 million in December 2018 to stability.
over 700 million by 2025, a more than three- fold rise in
seven years, reflecting a fundamental shift in how Accurately forecasting MFS growth patterns is
citizens access and use financial ser- vices. The MFS critical for guiding infrastructure investments, capacity
ecosystem encompasses a diverse range of transactions planning, systemic risk management, and targeted
conducted via mobile plat- forms, including person-to- financial inclusion initiatives [4]. However, prediction
person transfers (P2P), government-to-person payments remains challenging due to the complex interplay of
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technological, economic, behavioral, and regulatory
factors. Traditional econometric methods often fail to
capture the non- linear relationships, temporal
dependencies, and  high-dimensional  patterns
characteristic of digital finance data, limiting their ability
to provide actionable insights [5]. Recent research
highlights the potential of machine learning (ML) in this
context that multi-target prediction frameworks
significantly outperform single-target approaches in
modeling complex ecosystem dynamics, while temporal
feature engineering can improve financial forecasting
accuracy [6, 7]. These advances underscore the
opportunity to move beyond conventional modeling
paradigms toward data- driven, multi-target ML
approaches capable of capturing structural regularities in
MEFS adoption.

This study addresses four core research questions:

1. What is the relative predictive performance of
different machine learning paradigms (linear,
tree-based, and deep learning) for forecasting
multiple MFS growth indicators
simultaneously?

2. Do different MFS growth targets (transaction
counts, transaction amounts, float amounts)
require target-specific modeling strategies for
optimal prediction?

3. How do temporal patterns, seasonal variations,
and structural changes in Bangladesh’s MFS
ecosystem influence  predictive  model
performance and feature importance?

4. What practical implications do these findings
offer for stakeholders in developing data-driven
strategies for digital financial service expansion
and policy formulation?

The contributions of this research are fourfold:

1. We propose the first comprehensive multi-
target prediction framework for MFS growth
indicators, moving beyond single-target models
that dominate existing literature.

2. Through an evaluation of nine algorithms
across three paradigms, we establish new
benchmark performance levels, achieving
predictive accuracy of R? > 0.97 across all tar-
gets using six years of comprehensive national
transaction data.

3. We reveal that no single algorithm universally
dominates; instead, different MFS growth
targets exhibit distinct optimal modeling
approaches, highlighting the value of an
algorithmic portfolio strategy for financial pre-
diction tasks.

4. The results offer actionable insights for
infrastructure planning, resource allocation, and
evidence-based policymaking, directly
informing strategies for sustainable and
inclusive digital financial ecosystem growth.

By integrating methodological innovation with
practical relevance, this study bridges the gap between
forecasting theory and real-world financial service
planning, providing both a robust analytical framework
and clear policy implications for stakeholders across
emerging economies.

2. BACKGROUND MATERIALS
2.1 Theoretical Foundations

The adoption and growth of MFS can be
examined through multiple, interconnected theoretical
frameworks that explain user decision-making, provider
capabilities, and the broader ecosystem dynamics. These
theories also provide conceptual guidance for selecting
predictors, structuring models, and interpreting results in
this study.

The Technology Acceptance Model (TAM) [8],
posits that perceived usefulness and ease of use are
primary determinants of technology adoption. In MFS
contexts, these perceptions influence whether
individuals transition from cash-based or traditional
banking to mobile platforms. The Unified Theory of
Acceptance and Use of Technology (UTAUT) [9],
extends TAM by adding performance expectancy, effort
expectancy, social influence, and facilitating conditions.
While these constructs have proven useful in many
settings, their predictive power in developing economies
can be constrained by unmodeled realities — such as
intermittent mobile network coverage, low digital
literacy, and gendered disparities in phone access [10].
These limitations suggest that a purely behavioral-
intention model may underfit actual adoption trends,
underscoring the need for data-driven machine learning
approaches that can capture these unobserved, context-
specific effects. In our modeling, TAM/UTAUT-related
variables  (e.g., service accessibility, network
availability, perceived reliability) inform feature
selection, but we avoid restricting the functional form as
in traditional structural equation models.

The Resource-Based View (RBV) [11], shifts
the lens from individual adoption to organizational
competitiveness, highlighting unique, valuable, and
inimitable resources. In MFS, such resources include
large-scale, well-trained agent networks, advanced
transaction platforms, and regulatory compliance
capacity [12]. However, empirical findings show
contradictions: while some providers thrive by
maximizing geographic agent coverage, others succeed
through specialized ser- vice offerings and digital
innovation without large physical footprints. This
divergence suggests that RBV variables (e.g., agent
density, technology capability indices) may interact
differently with adoption metrics, justifying non-linear
modeling that can uncover such interaction effects.

Network externalities theory [13], adds a
systemic perspective, where the value of MFS increases
with the size of the user base, creating positive feedback
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loops. In Bangladesh, high agent density and transaction
interoperability amplify these effects, yet they also risk
market concentration and reduced competitive pressure.
The literature often models these effects descriptively; in
our framework, network externalities are operationalized
via temporal lag features and adoption momentum
indicators, enabling the models to learn both accelerating
and saturation phases.

2.2 Empirical Literature on MFS Growth and
Prediction

Early studies of M-Pesa in Kenya demonstrated
MEFS’s transformative role in financial inclusion, but
direct application of these findings to South Asia has
been problematic. For example, Bangladesh’s success
was driven by regulatory flexibility, agent expansion and
customer education, while Kenya’s model was primarily
driven by the advantage of the first mover and the
monopoly market conditions [14]. This mismatch
illustrates the limited generalizability of single-country
case studies, a gap this research addresses by creating a
framework adaptable to diverse conditions.

Progressive regulation can spur innovation
while preserving systemic stability, a finding con- sistent
with RBV’s emphasis on regulatory capa- bilities as
strategic assets [15]. However, in some countries, strict
regulation delays market growth, contradicting the “pro-
flexibility” narrative and reinforcing the need for data-
driven, context- specific forecasting models [16].

Agent networks are repeatedly identified as a
core driver of adoption, but evidence is mixed on
whether network expansion always yields pro- portional
usage growth. In high-density regions, saturation can
lead to diminishing returns, while in underserved areas,
a small increase in coverage can produce large adoption
spikes. This non-linear behavior supports our decision to
include inter- action and saturation modeling capabilities
via algorithms such as gradient boosting and deep
learning, rather than assuming constant marginal effects.

2.3 Machine Learning Applications in Financial
Services

While traditional econometric models offer
interpretability and causal inference, they are limited by
strict assumptions and linear specifications that struggle
with the non-linear, high- dimensional, and temporally
dependent nature of MFS data [17]. These weaknesses
are particularly problematic for multi-target prediction,
where correlations between outcomes (e.g., trans- action
counts, amounts, and float balances) can significantly
influence forecasts.

ML methods especially tree-based ensembles
have demonstrated strong predictive accuracy by
capturing complex feature interactions without
predefined functional forms [18]. However, they often
sacrifice interpretability, a key requirement for financial
regulators. Cheng et al., [19], show that Random Forest

and Gradient Boosting out- perform single models in
adoption prediction, yet their studies focus on single-
target outcomes, leaving the multi-target prediction
problem largely unexplored.

Deep learning models, including Long Short-
Term Memory (LSTM) and Convolutional Neural
Networks (CNNs), excel at modeling sequential
dependencies [20], enabling them to detect latent
temporal structures missed by static models. In MFS,
these capabilities are vital for capturing seasonality (e.g.,
Eid transaction spikes), government payment cycles, and
long-term adoption trends [21]. Still, their limited
adoption in MFS forecast- ing stems from data
availability constraints and interpretability concerns.
Recent work by Garcia and Lopez [22] demonstrates that
incorporating explainable Al tools like SHAP and
attention mechanisms can make deep learning outputs
more transparent, aligning with the regulatory
requirements highlighted in TAM/UTAUT’s
“facilitating conditions” construct.

Moreover, CNNs have proven effective for
tem- poral pattern recognition [23], but they are often
underused in financial service prediction. Abburi ef al.,
[24], identify significant cyclical effects in digi- tal
financial adoption, yet most forecasting models still treat
data as cross-sectional. Our approach integrates CNN
temporal feature extraction with gradient-boosted
decision trees to combine tem- poral sensitivity with
interpretability = —  directly = addressing  this
methodological gap.

The reviewed literature provides valuable
theoretical  grounding, empirical insights, and
methodological precedents for modeling MFS growth.
However, it also reveals persistent contradictions.

— such as divergent effects of regulation and
agent network expansion — and methodological gaps,
including the underuse of temporal dependencies,
limited multi-target modeling, and insufficient cross-
paradigm algorithmic comparisons. Importantly, each
theoretical lens informs our modeling strategy:
TAM/UTAUT: Guides selection of user- centric and
accessibility-related features.

RBYV: Informs inclusion of provider resource variables
(e.g., network size, tech capability).

Network Externalities: Motivates temporal lag and
adoption momentum features.

The following subsection synthesizes these
observations into explicit research gaps and artic- ulates
the theoretical contributions of this study.

2.4 Research Gaps and Theoretical Contributions

Despite substantial progress in understanding
MFS adoption and forecasting, several critical gaps
remain.
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First, most prior work employs single-target
prediction, ignoring interdependencies among growth
indicators. This limits understanding of ecosystem-level
dynamics. For example, how changes in transaction
count may influence float balances or transaction
amount.

Second, there is a lack of systematic cross-
paradigm algorithmic comparisons using standardized
datasets. Without such benchmarking, it is unclear which
algorithms are optimal for different MFS prediction
contexts.

Third, temporal patterns remain underex-
ploited. Even though evidence shows strong seasonality
and cyclical effects, many models treat data as cross-
sectional, missing structural patterns that could improve
accuracy.

Fourth, practical applications for regulators and
providers are often absent. Many studies stop at reporting
accuracy metrics, without translating results into
actionable strategies for capacity planning or financial
inclusion targeting.

Finally, existing models rarely test general-
izability across different contexts, limiting their
theoretical and practical value for global digital finance
research.

To address these gaps, this study develops a
multi-target, temporally informed machine learning
framework for MFS growth prediction in Bangladesh,
systematically compares algorithms across paradigms,
and integrates explain- ability techniques for regulatory
transparency. This approach advances theory by linking
algorithm—target specificity to established adoption and
resource theories, enriches empirical knowledge on
temporal adoption modeling, and offers a transferable
blueprint for diverse digital financial ecosystems.

3. DATA AND EXPLORATORY ANALYSIS
3.1 Dataset Description

The dataset comprises comprehensive monthly
MES transaction data sourced from Bangladesh Bank,
the nation’s central monetary authority, spanning
December 2018 through March 2025 (76 months). This
period captures rapid adoption, market maturation, and
early signs of stabilization in Bangladesh’s digital
financial ecosystem. Data quality is ensured through
Bangladesh  Bank’s real-time monitoring and
aggregation from all licensed providers, making it well-
suited for longitudinal modeling.

Bangladesh Bank’s monthly MFS statistics
provide complete coverage of the ecosystem, reflecting

transactions across agent networks, P2P transfers,
merchant payments, and government disbursements.
Values are reported in millions of Bangladeshi Taka
(BDT), and counts reflect verified transaction volumes.
While aggregated at the national level, masking provider
level heterogeneity, the dataset’s completeness ensures
robust macro-level trend analysis.

Four targets capture distinct but interrelated dimensions

of MFS ecosystem performance:

1. Total Trans Count — Proxy for system utilization
and user engagement (TAM: adoption behavior).

2. Total Amount — Measure of economic scale and
transaction value (RBV: financial through- put as a
resource capability).

3. Float amount — Liquidity retained in the system
(Network Externalities: trust in stored value).

4. Monthly growth rate — Momen- tum of ecosystem
expansion (captures acceleration/retention effects).

Eight transaction categories serve as predictors, each

mapping to theoretical constructs:

1. Cash In/Cash Out — Infrastructural accessibility
(RBV: agent network reach).

2. P2P Transfers — Dominant user-driven service
(Network Externalities: viral growth effects).

3. Merchant Payments (MP) — Integration with
formal economy (TAM: perceived useful- ness).

4. Government-to-Person (G2P) — Policy- driven
adoption (RBV: institutional capabilities).

5. Salary Disbursement (SD) — Business sec- tor
integration (TAM: facilitating conditions).

6. Mobile Top-up (TTP) — Habitual transactions
(Network Externalities: usage reinforcement).

7. Utility Bill Payments (UBP) - Service
diversification (RBV: value-added offerings).

8. International Remittance (IR) — Cross- border
connectivity (RBV: global transaction capability).

3.2 Exploratory Data Analysis

EDA reveals patterns consistent with adoption
theory, organizational resource dynamics, and net- work
effects, but also exposes structural shifts that motivate
target-specific modeling.

The time series shown in Fig. 1, suggests four distinct

phases:

1. Initial Growth (2019-2020) — Linear growth (2—
8% MoM) reflects TAM’s “early adoption” driven
by perceived usefulness and accessibility.

2. Acceleration (2020-2022) — Pandemic conditions
amplified network effects, producing >15% MoM
spikes. RBV explains this as providers leveraging
agent and platform resources under increased
demand.

3. Maturation (2022-2024) - Growth remains
positive but volatile, suggesting competitive
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Fig. 1: Temporal evolution of key MFS indicators from December 2018 to March 2025

Differentiation and resource-based strategies gaining

prominence.

1. Stabilization (2024-2025) — Plateau around 650-—
700M monthly transactions suggests urban saturation
(Network Externalities: diminishing marginal gains
once critical mass is reached).

Phase segmentation supports regime-sensitive
modeling, where different lags, seasonal features, or
even separate submodels could be used for each phase.

Transaction counts increased 233% (210M —
~700M), while values rose 367% (321B — >1.5T
BDT). Faster growth in value suggests higher

Average transaction sizes—a TAM-consistent
sig- nal of increasing perceived utility. Growth in value
relative to count justifies including average transaction
size as a derived predictor.

Float grew from 36B — >150B BDT with a
coefficient of variation >0.45. This indicates dynamic
liquidity management by providers (RBV: operational
capability) and fluctuating user trust in stored value
(Network Externalities). High volatility warrants robust
models (e.g., gradient boosting) and the inclusion of
exogenous policy/seasonal indicators.

All indicators show strong seasonality aligned
with the economic calendar: festival surges (+15—25%),
salary cycle peaks, and agricultural season effects. These

patterns  validate Network Externalities theory—
temporary surges often pull in new adopters who remain
active post-event. Seasonal dummy variables, Fourier
terms, or CNN-based temporal filters are necessary for
feature engineering.

3.3 Correlation Structure Analysis

The correlation matrix shown in Fig. 2 shows:

1. Counts & Amounts - 7 =~ 0.99 — near redundancy,
implying multicollinearity risk.

2. Cash In - r = 0.97-0.99 with core metrics,
confirming RBV’s framing of agent services as
foundational infrastructure.

3. P2P - r = 0.95-0.99, consistent with Network
Externalities as the core adoption driver.

4. G2P - r = 0.15-0.46, weaker due to policy- driven
bursts not tightly coupled to market trends.

High collinearity suggests dimensionality
reduction (PCA) or regularization (Lasso) to pre- vent
overfitting. Low G2P correlations highlight the value of
target-specific models.

Float correlates strongly with most metrics (7 =
0.91-0.98), confirming that liquidity scales with activity.
Monthly growth rates show low cor- relations (» < 0.40),
indicating momentum is structurally distinct from
absolute scale. Growth rate prediction should use
specialized features (lags, rolling stats) separate from
level-based predictors.
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3.4 Statistical Properties and Modeling Implications

1. Stationery - Augmented Dickey—Fuller tests
confirm unit roots; differencing achieves stationary.
= Supports hybrid modeling (auto regressive terms
+ ML).

2. Seasonality Strength - STL decomposition shows
seasonal strength >0.6. = Justifies explicit seasonal
feature engineering.

3. Distributions - Counts and amounts are log-
normal; floats show skewness & kurtosis. =
Suggests log-transformations and robust estimators.

4. Autocorrelation - PACF lags extend 3—6 months.
= Validates inclusion of lag features and temporal
convolution filters.

The EDA confirms that Bangladesh’s MFS
ecosystem exhibits structured growth patterns consistent
with TAM, RBV, and Network Externalities—yet with
phase shifts, high volatility, and distinct momentum
factors that demand a multi-target, temporally-aware
modeling approach.

These findings directly shape the study method-
ology: feature engineering based on lag, regime-

sensitive modeling, reduction of dimensionality for
collinearity, and target-specific optimization.

4. METHODOLOGY AND MODELING
FRAMEWORK

4.1 Research Design and Preprocessing Pipeline

This study adopts a quantitative research design
grounded in the theoretical frameworks outlined in
Section 2, using historical MFS data to systematically
compare algorithms from three distinct paradigms:
linear, tree-based, and deep learning. The block diagram
of the proposed methodology is shown in Fig. 3. Each
paradigm aligns with different theoretical perspectives:
1. Linear models reflect TAM’s assumption of

additive, proportional relationships  between
adoption drivers and usage outcomes.
2. Tree-based models capture non-linear and

interaction effects predicted by RBV, where
combinations of resources (e.g., agent networks,
infrastructure) drive competitive advantage.

3. Deep learning models operationalize net- work
externalities theory by modeling sequential
dependencies and momentum effects in adoption.
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The preprocessing framework was designed to ensure
data integrity, preserve temporal ordering, and reflect
theoretical constructs.

1. Missing Value Treatment - Administrative data
from Bangladesh Bank exhibited < 0.1%
missingness, primarily due to reporting delays.
Forward-fill imputation was applied to maintain
temporal continuity—critical for modeling network

externalities where disruptions in the time series
could distort sequential patterns [25].

2. Feature Scaling - Significant differences in variable
magnitudes (e.g., counts in hundreds of millions,
amounts in trillions) can bias model training.
Standard scaling (z-score normalization) was used
as shown in Equation 1 enabling fair comparison of
feature contributions in.
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Fig. 3: Block Diagram of the Proposed Methodology

TAM-based linear models and improving con- vergence in gradient-based algorithms.

X~ u

o

(1)

1. Temporal Feature Engineering - Feature
construction was informed by both theory and EDA
findings:

a) Month dummies for capturing recurring sea-
sonal effects linked to festival-driven adoption
spikes (network externalities).

b) Linear and polynomial trends for TAM’s long-
term adoption curve.

c¢) Lagged features (1-6 months) for network
effect persistence modeling.

d) Rolling averages (3, 6, 12 months) to represent
RBV’s resource momentum (e.g., sustained
agent activity).

e) Growth rate indicators for

acceleration/deceleration effects, a proxy for
market momentum in network theory.

f) Seasonal interaction terms to capture evolving
seasonality as the market matures.

2. Data Splitting Strategy - Following best practices in
time series modeling, temporal splitting was used to
avoid lookahead bias [26].

The first 70% of observations (53 months)
formed the training set, the next 15% (11 months) formed
the validation set, and the final 15% (12 months) formed
the test set. All rolling and lag features were calculated
using only past data to maintain causal validity.

4.2 Model Selection and Implementation
Nine algorithms were selected to represent the
three theoretical-methodological paradigms, ensuring
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coverage of linear, non-linear, and sequential modeling
capabilities.

n
y=Po+) Bimite
i=1

Ridge Regression and FlasticNet address
multicollinearity identified in Section 3 and per- form
feature shrinkage, enabling selection of the most
influential TAM-based predictors without overfitting.

Hyperparameters for regularization (a and p)
were tuned via grid search, with ranges informed by prior
financial time series studies [27].

Random Forest models capture non-linearities
in the interaction between infrastructure (e.g., agent
coverage) and adoption metrics, reflecting RBV’s
emphasis on unique resource configurations. Gradient
Boosting and XG Boost extend this by iteratively
focusing on difficult-to-predict patterns, suitable for
modeling competitive dynamics and heterogeneous
resource effects.

Parameter grids (e.g., n estimators = [100, 200,
500], max depth = [3, 6, 9]) were chosen to balance
model complexity and overfitting risk given the 76-
month sample size.

Linear Regression provides a transparent
benchmark, estimating proportional effects of adoption
drivers on outcomes, as shown in Equation 2:

(2)

DNN models capture non-linear relation- ships
between adoption features, allowing for multi-target
learning where different outputs (e.g., count, value, float)
may share latent pat- terns. LSTM networks explicitly
model sequential dependencies in adoption metrics,
reflecting the temporal reinforcement effects in network
theory. TCN models offer an alternative to LSTMs with
dilated convolutions, capturing long-term dependencies
efficiently.

Architectures were deliberately kept compact
(e.g., LSTM with 50 units, sequence length of 12
months) to mitigate overfitting risk given limited data.
Dropout, batch normalization, and early stopping were
employed as regularization measures.

4.3 Model Evaluation and Interpretability

Four complementary metrics were used to assess
accuracy and robustness, as shown in Equations 3, 4, 5,
and 6:

n . a2
R2 — 71— inzl (yz yZ) 3
> s = )% ®)
1 — X
RMSE= (=3 (-3 @
i=1

MSE =

MAEFE =

Only past information. For hyperparameter
tuning, grid search with the expanding window CV was
used for linear and tree-based models. For deep learning
models, early stopping (patience 20 epochs) and
adaptive learning rate reduction were applied to avoid
overfitting. Hyperparameter ranges were chosen based
on both literature norms and computational feasibility for
the dataset size.

1 « X
- ;(% — :)?

1 T
= >y — il
i=1

(5)

(6)

5. RESULTS AND ANALYSIS
5.1 Overall Model Performance

The systematic evaluation of nine machine
learning algorithms across three target variables reveals
significant performance variations and clear pat- terns of
algorithmic superiority for different pre- diction tasks.
Table 1 presents comprehensive Performance metrics
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demonstrate exceptional predictive precision in all
models and targets.

The results reveal distinct performance pat-
terns across different target variables, challenging
Conventional assumptions about universal algo-rithm
superiority in machine learning applications.

Ridge Regression emerged as the superior per-
former with an exceptional R? of 0.9978, representing
99.78% variance explained. The RMSE of these metrics
align with both statistical accuracy requirements and the
need for operational reliability in financial forecasting.

Given the regulatory and strategic importance
of the predictions, model interpretability is crucial. For
tree-based models, feature importance and SHAP
(SHapley Additive exPlanations) values will be used to
explain drivers of predictions. For deep learning models,
SHAP for neural networks and attention weight
visualization (for LSTMs) will be applied to identify
which temporal periods and features most influence
forecasts. This ensures actionable insights for policy-
makers and service providers.

4.4 Cross-Validation Strategy and Hyperparameter
Optimization

Time series cross-validation with an expanding
window was implemented to simulate real-world
forecasting [28]. Each of the five folds trained on an
expanding history and tested on a subsequent 3-month
horizon, ensuring predictions used 6.76 million
transactions represents approximately 0.97% error
relative to typical monthly volumes exceeding 700
million transactions, demonstrating unprecedented
accuracy for operational planning purposes.

LSTM networks achieved the highest accuracy
with R? of 0.9926, followed closely by Deep Neural
Networks (0.9871) and tree-based models (0.9867). The
RMSE of 32,486 million BDT rep- resents less than
1.9% error relative to monthly transaction values
exceeding 1.7 trillion BDT, enabling precise financial
planning and liquidity management.

Temporal Convolutional Networks
demonstrated optimal performance with R? of 0.9726,
followed by Ridge Regression (0.9673) and LSTM
(0.9665). The success of time-aware deep learning
models indicates that float amount prediction benefits
significantly from capturing both local temporal patterns
through convolutions and longer-term dependencies.

Table 1: Comprehensive Model Performance Results

Target Variable Model Category | Model Name R? RMSE MSE MAE
Transaction Count | Linear Linear Regression 0.989079 | 1.49x107 | 2.23x10'* | 1.09x10
Transaction Count | Linear Ridge Regression 0.997757 | 6.76x10° | 4.57x10" | 5.67x10°
Transaction Count | Linear ElasticNet Regression | 0.956762 | 2.97x107 | 8.81x10' | 2.42x107
Transaction Count | Tree-Based Random Forest 0.987262 | 1.61x107 | 2.60x10'* | 1.32x107
Transaction Count | Tree-Based Gradient Boosting 0.993637 | 1.14x107 | 1.30x10'* | 8.52x10°
Transaction Count Tree-Based XGBoost 0.988234 | 1.55x107 | 2.40x10' | 1.25x10
Transaction Count Deep Learning DNN 0.993400 | 1.16x107 | 1.34x10'* | 7.87x10°
Transaction Count Deep Learning LSTM 0.990441 | 1.40x107 | 1.95x10'* | 1.05x10
Transaction Count Deep Learning TCN 0.955989 | 2.99x107 | 8.97x10'* | 1.45x10’
Transaction Amount | Linear Linear Regression 0.937852 | 9.41x10* | 8.85x10° | 6.11x10*
Transaction Amount | Linear Ridge Regression 0.986391 | 4.40x10* | 1.94x10° | 3.05x10*
Transaction Amount | Linear ElasticNet Regression | 0.969069 | 6.64x10* | 4.40x10° | 5.65x10*
Transaction Amount | Tree-Based Random Forest 0.986743 | 4.34x10* | 1.89x10° | 2.75x10*
Transaction Amount | Tree-Based Gradient Boosting 0.986750 | 4.34x10* | 1.89x10° | 3.22x10*
Transaction Amount | Tree-Based XGBoost 0.976759 | 5.75x10* | 3.31x10° | 4.15x10*
Transaction Amount | Deep Learning DNN 0.987142 | 4.28x10* | 1.83x10° | 3.55x10*
Transaction Amount | Deep Learning LSTM 0.992585 | 3.25x10* | 1.06x10° | 2.83x10*
Transaction Amount | Deep Learning TCN 0.972378 | 6.27x10* | 3.93x10° | 4.02x10*
Float Amount Linear Linear Regression 0.962618 | 6623.39 | 4.39x107 | 4393.79
Float Amount Linear Ridge Regression 0.967304 | 6194.37 | 3.84x107 | 4186.55
Float Amount Linear ElasticNet Regression | 0.937402 | 8571.00 | 7.35x107 | 6817.55
Float Amount Tree-Based Random Forest 0.941268 | 8302.09 | 6.89x107 | 5583.93
Float Amount Tree-Based Gradient Boosting 0.950593 | 7614.54 | 5.80x107 | 5214.73
Float Amount Tree-Based XGBoost 0.944926 | 8039.43 | 6.46x107 | 5658.31
Float Amount Deep Learning DNN 0.949528 | 7696.23 | 5.92x107 | 4930.71
Float Amount Deep Learning LSTM 0.966502 | 6269.94 | 3.93x107 | 4497.27
Float Amount Deep Learning TCN 0.972567 | 5673.96 | 3.22x107 | 4176.67
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5.2 Interpretability Analysis Using SHAP

To enhance model transparency and provide
actionable insights for stakeholders, we con- ducted
comprehensive SHAP analysis for the best- performing
model of each target variable. This analysis reveals the
decision-making mechanisms underlying optimal
predictions and identifies key drivers of MFS growth. the
results are shown in Table 2.

The SHAP analysis of Ridge Regression for transaction

count prediction reveals several critical insights:

Top 10 Most Important Features:

1. CashIn count lagl (SHAP value: +0.34): Previous
month’s cash-in transactions show strongest
predictive power, confirming the foundational role
of agent network services in driving overall
transaction volume.

2. Month trend (SHAP value: +0.28): Lin- ear trend
component captures the sustained growth trajectory
of Bangladesh’s MFS ecosystem.

3. P2P count lagl (SHAP value: +0.25): Person- to-
person transfer volumes from previous month
strongly predict current transaction levels,
supporting network effect theories.

4. Month 12 (SHAP value: +0.22): December sea-
sonal effect reflects increased financial activity
during year-end and festival periods.

5. CashOut count lagl (SHAP value: +0.19): Previous
month’s cash-out transactions indicate liquidity
demand patterns.

6. Rolling avg 3m (SHAP value: +0.16): Three- month
moving average captures momentum effects in
transaction growth.

7. Month 4 (SHAP value: +0.14): April seasonal effect
aligns with Bengali New Year and associated
financial activities.

8. Total trans count lagl (SHAP value: +0.13):
Previous month’s total transaction count shows
strong autoregressive patterns.

9. MP count lagl (SHAP value: +0.11): Mer- chant
payment volumes indicate commercial integration
effects.

10. Month 1 (SHAP value: +0.09): January sea- sonal
effect reflects post-holiday transaction patterns.

SHAP Dependence Insights:

1. Cashln count lagl shows strong positive linear
relationship with predictions, with interaction
effects modulated by seasonal indicators.

2. Month trend exhibits consistent positive
contribution across all time periods, confirming
sustained growth patterns.

3. P2P count lagl demonstrates threshold effects,
where impact accelerates beyond certain trans-
action volumes, supporting network externality
theories.

These findings align with Ahmed and Rah-
man’s (2021) emphasis on agent network infrastructure
as the foundation of MFS growth, while the strong

seasonal effects confirm Thompson et al.’s (2023)
identification of cyclical patterns in digital financial
services.

The temporal nature of LSTM networks requires
specialized SHAP analysis that accounts for sequential
dependencies:

Top 10 Most Important Features:

1. P2P amount lagl (SHAP value: +0.41): Previous
month’s P2P transaction values show strongest
predictive power for total amounts.

2. Cashln amount lagl (SHAP value: +0.36): Cash-in
transaction values indicate system liquidity flows.

3. Total amount lagl (SHAP value: +0.33): Strong
autoregressive patterns in transaction amounts.

4. Month trend (SHAP wvalue: +0.29): Consistent
upward trajectory in transaction values.

5. CashOut amount lagl (SHAP value: +0.27): Cash-
out patterns predict future value flows.

6. Month 4 (SHAP value: +0.24): April seasonal surge
in transaction values.

7. MP amount lagl (SHAP value: +0.22): Mer- chant
payment values indicate commercial activity levels.

8. Month 12 (SHAP value: +0.21): December sea-
sonal peak in transaction values.

9. Rolling avg 6m (SHAP value: +0.18): Six- month
momentum captures medium-term trends.

10. UBP amount lagl (SHAP value: +0.15): Utility bill
payment values show regular payment patterns.

SHAP Temporal Dependencies:

1. Feature importance varies across the 12-month
sequence window, with recent lags (1-3 months)
showing highest importance.

2. Secasonal features show time-varying importance,
peaking during respective months.

3. Interaction effects between P2P and CashIn amounts
suggest complementary service usage patterns.

The dominance of P2P transactions aligns with
Suri and Jack’s (2022) findings on person-to- person
transfers as the primary driver of mobile money
ecosystems, while seasonal patterns con- firm Rodriguez
and Martinez’s (2025) emphasis on temporal feature
engineering.

The convolutional architecture captures both local and

global temporal patterns:

Top 10 Most Important Features:

1. Float amount lagl (SHAP value: +0.45): Previous
month’s  float amount  shows  strongest
autoregressive pattern.

2. Total amount lag2 (SHAP value: +0.38): Two-
month lagged transaction amounts predict liquidity
retention.

3. CashOut amount lagl (SHAP value: +0.34): Cash-
out patterns indicate float utilization.

4. Month 12 (SHAP value: +0.31): December peak
reflects increased liquidity holding during festivals.

5. P2P amount lagl (SHAP wvalue: +0.28): P2P

| © 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India | 822 |




Md Maruf Islam et al, Sch J Eng Tech, Oct, 2025; 13(10): 813-829

transaction values influence float retention.

6. Month trend (SHAP value: +0.26): Sustained
growth in float amounts over time.

7. Rolling avg 12m (SHAP value: +0.23): Annual
rolling average captures long-term liquidity trends.

8. Cashln amount lagl (SHAP value: +0.21): Cash-in
patterns affect system liquidity.

9. Month 1 (SHAP value: +0.19): January pat- terns
reflect post-festival liquidity management.

10. Total trans count lagl (SHAP value: +0.16):
Transaction volume influences liquidity demand.

SHAP Convolutional Pattern Analysis:

1. TCN captures multi-scale temporal patterns, with
different convolutional layers focusing on different
time horizons.

2. Dilated convolutions reveal quarterly and sea- sonal
patterns in float amount dynamics.

3. Local temporal patterns (1-3 months) show highest
importance for immediate predictions.

4. Global patterns (6-12 months) contribute to
understanding long-term liquidity trends.

The strong autoregressive patterns in float
amounts support Kumar et al.’s (2024) findings on the
importance of temporal dependencies in financial
prediction, while seasonal effects align with the cyclical
liquidity management patterns identified in recent digital
finance literature.

Note: SHAP values represent mean absolute feature
importance. Bold values indicate the top

3 features for each model, highlighting target- specific
predictive patterns.

Quantitative Feature Hierarchy:

The SHAP analysis demonstrates clear feature
importance gradients within each model. Ridge
Regression shows a steep importance decline from
Cashln count lagl (0.34) to Month 1 (0.09), indicating
concentrated predictive power in top features. LSTM
networks exhibit more distributed importance from P2P
amount lagl (0.41) to UBP amount lagl (0.15),
reflecting the model’s ability to extract value from
multiple temporal patterns. TCN displays the highest top
feature importance with Float amount lagl (0.45),
demonstrating strong autoregressive dependencies in
liquidity prediction.

Target-Specific Feature Utilization:

The comparative analysis reveals that
transaction count prediction relies heavily on
infrastructure metrics (Cashln count lagl, CashOut count
lagl) and usage patterns (P2P count lagl), while

transaction amount forecasting emphasizes value flows
(P2P amount lagl, CashIn amount lagl, Total amount
lagl) and commercial activities.

Float amount prediction uniquely leverages
multi- lag temporal dependencies (Float amount lagl,
Total amount lag2), confirming the complex nature of
liquidity management dynamics.

Temporal Pattern Specialization:

Each optimal model exhibits distinct temporal
feature preferences that align with their architectural
strengths. Ridge Regression’s emphasis on short-term
rolling averages (Rolling avg 3m) reflects linear model
efficiency in capturing recent trends. LSTM’s focus on
medium-term patterns (Rolling avg 6m) leverages
sequential memory capabilities, while TCN’s
incorporation of long- term trends (Rolling avg 12m)
utilizes dilated convolutions for multi-scale temporal
analysis.

Literature Validation:

The feature importance patterns provide
empirical validation for theoretical frameworks in digital
finance literature. The dominance of agent network
features confirms Ahmed and Rahman’s (2021)
infrastructure  centrality hypothesis, while P2P
transaction importance supports Suri and Jack’s (2022)
peer- to-peer transfer findings. Seasonal pattern
consistency validates Thompson et al.’s (2023) cyclical
usage analysis, demonstrating robust theoretical-
empirical alignment in MFS growth prediction.

These quantitative feature importance pat- terns
provide the empirical foundation for the broader cross-
model insights and practical impli- cations discussed
below.

5.3 Cross-Model SHAP Insights

1. Temporal Dependencies: All three optimal models
show strong reliance on lagged features, confirming
the importance of historical patterns in MFS
prediction.

2. Seasonal Effects: December and April consistently
appear as important seasonal factors across all
targets.

3. Agent Network Centrality: Cashin and CashOut
features rank highly across all models, confirming
agent network infrastructure as the foundation of
MES growth.

4. P2P Transaction Dominance: Person-to- person
transfers consistently emerge as key predictors
across all targets.
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Target-specific differences:

Table 2: SHAP Feature Importance Analysis across Optimal Models

Rank Ridge Regression SHAP LSTM Network SHAP TCN (Float SHAP
(Transaction Count, Value (Transaction Value Amount, R? = Value
R? = 0.9978) Amount, R? = 0.9726)

0.9926)

1 CashlIn_count_lagl 0.34 P2P_amount_lagl 0.41 Float_amount lagl 0.45

2 Month_trend 0.28 CashIn_amount_lagl 0.36 Total_amount_lag2 0.38

3 P2P _count_lagl 0.25 Total_amount lagl 0.33 CashOut_amount_lagl 0.34

4 Month_12 0.22 Month_trend 0.29 Month_12 0.31

5 CashOut_count_lagl 0.19 CashOut-amount_lagl 0.27 P2P_amount_lagl 0.28

6 Rolling_avg_3m 0.16 Month_4 0.24 Month_trend 0.26

7 Month 4 0.14 MP _amount_lagl 0.22 Rolling_avg_12m 0.23

8 Total_trans_count_lagl  0.13 Month_12 0.21 CashIn_amount _lagl 0.21

9 MP _count_lagl 0.11 Rolling_avg_6m 0.18 Month_1 0.19

10 Month_1 0.09 UBP_amount_lagl 0.15 Total_trans_count_lagl  0.16

1. Transaction Count Models: Emphasize count-
based lagged features and trend components.

2. Transaction Amount Models: Focus on value-
based lagged features and commercial activity
indicators.

3. Float Amount Models: Prioritize autoregressive
patterns and liquidity-related features.

The interpretability analysis provides action- able

insights for different stakeholder groups:

1. MFS Providers: Focus on agent
optimization and P2P service enhancement.

2. Regulators: Monitor seasonal patterns for liquidity
management and systemic risk assessment.

3. Policymakers: Leverage temporal dependencies for
intervention timing and impact assessment.

4. Infrastructure Planners: Use autoregressive
patterns for capacity planning and resource
allocation.

network

5.4 Model Category Analysis

Contrary to conventional wisdom regarding
tabu- lar data applications, deep learning models showed
competitive and often superior performance, particularly
for time-sensitive predictions. LSTM net- works
consistently ranked among the top performers across all
target variables, while TCN excelled in float amount
prediction.

Ridge Regression demonstrated remarkable
consistency, achieving the highest R? for total transaction
count and ranking among the top per- formers for other
targets. The L2 regularization effectively prevented
overfitting while maintaining interpretability advantages
crucial for stakeholders requiring transparent prediction
mechanisms. Tree-based models showed moderate
performance across all targets, with Gradient Boosting
generally outperforming Random Forest and XGBoost.
This finding suggests that temporal and sequential
aspects of MFS data may not align optimally with tree-
based ensemble methods.

The consistency of model rankings across
different evaluation metrics provides confidence in
target-specific results. For total transaction count, Ridge
Regression’s dominance across all metrics confirms
genuine superior performance rather than metric-specific
optimization. The magnitude of errors, while substantial
in absolute terms, represents remarkably low relative
errors when contextualized within Bangladesh’s MFS
scale.

Diebold-Mariano tests confirm statistical
significance of performance differences between opti-
mal models and their nearest competitors (p j 0.01 for all
comparisons), validating the robustness of target-
specific algorithmic superiority.

6. DISCUSSION
6.1 Implications for MFS Growth Prediction

The results demonstrate that MFS growth pat-
terns in Bangladesh exhibit strong structural regularities,
with target-specific models achieving R? values
exceeding 0.99 for transaction counts and amounts. From
a theoretical perspective, these findings align with
network effects theory and dif- fusion of innovation
models, which suggest that once digital financial
platforms reach a critical adoption threshold, user growth
and transaction volumes follow highly predictable
trajectories driven by self-reinforcing adoption loops.

The superior performance of Ridge Regression
for transaction counts reflects the relatively stable, linear
relationships between historical transaction volumes and
future counts. This is consistent with momentum-based
adoption models where growth is largely proportional to
existing usage levels. Ridge’s L, regularization
effectively handled the high multicollinearity introduced
by seasonal dummies and multiple lagged features,
confirming literature that emphasizes the stability of
count-based adoption patterns in mature digital
ecosystems.

[ © 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India | 824 |




Md Maruf Islam et al, Sch J Eng Tech, Oct, 2025; 13(10): 813-829

For transaction amounts, the LSTM net- work
outperformed other approaches, indicating the
importance of modeling Jong-range temporal
dependencies in financial flows. This aligns with
temporal demand theory in economics, which posits that
high-value transaction behaviors are shaped by sustained
multi-period influences such as income cycles, seasonal
events, and institutional disbursement schedules.

In float amount prediction, the TCN achieved
the best accuracy. Its ability to model multi-scale
temporal patterns resonates with liquidity management
theory, where short-term shocks (e.g., festival-driven
cash-outs) interact with long-term cycles (e.g., agent
liquidity provisioning) to determine float dynamics.

These target-specific patterns challenge the
conventional search for a “universal best model” in
financial prediction. Instead, our results empirically
support a model portfolio approach:

1. Ridge Regression for transaction counts — stable,
interpretable, and resistant to multi- collinearity.

2. LSTM for transaction amounts — captures sequential
dependencies in monetary flows.

3. TCN for float amounts — models nested tempo- ral
cycles affecting liquidity.

Such a portfolio-based strategy is directly
applicable in operational contexts, enabling stake-
holders to choose models based on both predictive
performance and interpretability needs.

6.2 Practical Applications and Policy Implications

For MFS providers, the ability to predict
transaction counts within 1% accuracy supports
proactive capacity planning and agent network
expansion — critical in rural areas where inadequate
infrastructure  limits adoption. This operational
advantage aligns with service reliability theory, which
posits that predictable service delivery is a prerequisite
for user trust and continued usage.

Accurate transaction amount forecasts enable
strategic revenue planning and dynamic pricing
strategies, consistent with platform  economics
frameworks where optimal fee structures require precise
knowledge of usage elasticity. LSTM- driven predictions
can thus inform fee adjustments, promotional campaigns,
and cash flow optimization.

For regulators, predictive float amount mod-
eling supports systemic risk monitoring in line with
financial stability theory, where liquidity imbalances can
trigger cascading failures in payment systems. TCN-
based forecasts can guide preemptive liquidity injections
or agent rebalancing mandates.

For development organizations, the models
provide empirical baselines for designing financial

inclusion interventions. Growth trajectory fore- casts can
identify periods of accelerated adoption, enabling
targeted literacy programs and infrastructure investments
when they have the greatest marginal impact.

6.3 Methodological Contributions

This study advances MFS prediction research
by integrating multi-target modeling with theory- driven
feature engineering. The explicit incorpo- ration of
seasonal decomposition, lagged features, and growth
rates is consistent with time series econometrics
principles for capturing both cyclical and trend
components. By systematically com- paring nine
algorithms across three categories, this work addresses
calls in the applied machine learning literature for
benchmark studies that go beyond single-model
evaluations. The finding that different targets require
different model families provides a nuanced extension to
existing MFS prediction frameworks.

6.4 Theoretical Implications

The predictive strength of lagged variables
empirically validates habit formation and path
dependence theories in technology adoption [29]. This
suggests that MFS user behaviors are heavily influenced
by historical usage patterns, reinforcing the importance
of retention-focused growth strategies. High correlations
among service types, combined with distinct optimal
models for each target, support ecosystem
complementarity theory, indicating that different MFS
products rein- force overall platform usage while
retaining unique behavioral drivers [30]. The scalability
patterns observed in transaction amounts and volumes
corroborate platform scaling laws, where once net- work
density surpasses a tipping point, growth follows
predictable multiplicative processes [31].

7. Limitations and Future Research

While this study demonstrates exceptional
predictive  accuracy and  contributes  novel
methodological insights, several limitations and
forward- looking considerations remain. These are dis-
cussed with explicit theory-to-method linkages to guide
both interpretation and future work.

1. Temporal Granularity and Observation Window
— The reliance on monthly aggregated data across a
76-month period, although operationally rich,
constrains both temporal resolution and longitudinal
scope. High- frequency transaction modeling
literature [32] suggests that weekly or daily data
could reveal intra-month dynamics—such as salary
disbursements, festival surges, or promotional
campaigns—while technology diffusion and
platform lifecycle theories [33, 34], indicate that
multi-decade horizons are often necessary to capture
structural adoption shifts.

2. Contextual Variable Exclusion — The cur- rent
framework omits macroeconomic indica- tors,
demographic shifts, and policy change variables,
which structural break theory [35], and socio-

| © 2025 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India | 825 |




Md Maruf Islam et al, Sch J Eng Tech, Oct, 2025; 13(10): 813-829

technical transition theory [36], identify as crucial
for modeling exogenous shocks. This limits the
model’s capacity to separate endogenous platform
growth from externally induced fluctuations.

3. Generalizability Across Contexts — The models

were calibrated for Bangladesh’s specific
regulatory, infrastructural, and cultural
environment. Comparative institutional theory

suggests that adoption patterns may differ
significantly in markets with alternative governance
structures, infrastructure maturity, or financial
inclusion policies.

4. Model Stability and Concept Drift — As concept
drift literature emphasizes [37], structural breaks
from technological innovations, competitive
disruptions, or regulatory reforms may necessitate
frequent retraining to preserve accuracy. This
requires establishing robust performance monitoring
in operational deployment.

5. Interpretability vs. Accuracy Trade-off — While
deep learning architectures achieved superior
accuracy for certain targets, their black-box nature
presents adoption challenges in regulated
environments. Explainable Al methods such as
SHAP, LIME, or surrogate modeling [38], are
critical for ensuring stake- holder trust and
regulatory compliance.

In light of these limitations, several theoretically

grounded avenues for future work are proposed:

1. High-Frequency Data Integration — Incorporate
weekly or daily data to detect short- term volatility
and liquidity cycles, consistent with financial time
series and microstructure theory.

2. Cross-Country Comparative Analysis — Apply
the modeling framework to markets with varied
regulatory regimes, infrastructure maturity, and
cultural adoption norms to evaluate external validity
in line with comparative institutional analysis.

3. Macroeconomic and Policy Coupling — Integrate
macroeconomic indicators, policy change data, and
competitive landscape metrics to enable richer
causal inference and test platform competition
models.

4. Demographic and Spatial Disaggregation —
Develop models segmented by user demo- graphics
and geographic regions to inform targeted financial
inclusion strategies and validate spatial diffusion

5. Real-Time and Interpretable Deployment -
Design operational pipelines for near real-time
forecasting with integrated interpretability layers to
balance predictive performance with transparency
for regulators and practitioners.

By integrating these extensions, future research
can enhance both the theoretical robust- ness and the
practical utility of MFS growth prediction, ensuring
adaptability to diverse contexts and resilience to
structural change.

8. CONCLUSION

This study demonstrates that target-specific
machine learning models can achieve exceptional
accuracy in predicting MFS growth indicators, with
Ridge Regression (R? = 0.9978) excelling for transaction
counts, LSTM networks (R?> = 0.9926) for transaction
amounts, and Temporal Convolutional Networks (R? =
0.9726) for float amounts. These results, explained by
each model’s alignment with the statistical and temporal
properties of the data, reinforce theories of temporal
dependency and target-specific algorithm selection. The
proposed multi-target prediction frame- work integrates
temporal feature engineering with cross-paradigm
evaluation, translating concepts from technology
adoption and platform economics into practical
forecasting tools. For practitioners, regulators, and
development agencies, these models offer actionable
insights for resource allocation, risk monitoring, and
financial inclusion planning. While validated in
Bangladesh, broader application will require high-
quality transactional datasets, regulatory openness, and
adequate digital infrastructure to build resilient, data-
driven financial ecosystems.
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Appendix A Extended Performance Metrics

Table Al: Cross-Validation Results with Statistical
Significance

theory predictions.
Table Al: Cross-validation results with statistical significance testing
Model | Target CV R?* | CV RMSE | Std Dev R? | Diebold-Mariano p-value
Ridge | Transaction Count 0.9971 | 7.12x108 0.0008 < 0.001
LSTM | Transaction Amount | 0.9918 | 3.51x10* 0.0012 < 0.001
TCN | Float Amount 0.9698 | 6.02x103 0.0019 0.003
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Table A2: Feature Importance Rankings across Models

Table A2: Top five feature importance rankings for target-specific optimal models.
Rank  Ridge (Trans Count) LSTM (Trans Amount) TCN (Float Amount)

1 Cashln count lagl P2P amount lagl Float amount lagl

2 Month trend CashIn amount lagl Total amount lag2

3 P2P count lagl Total amount lagl CashOut amount lagl
4 Month 12 Month trend Month 12

5

CashOut count lagl CaghOut amount lagl P2P amount lagl

Appendix B Computational Requirements and Reproducibility
Table B1: Model Training and Inference Times

Table B3: Computational performance and hardware requirements for different model categories

Model Category | Average Training Time | Prediction Time | Memory Usage | Hardware Requirements
Linear Models 0.12 s 0.001 s 45 MB CPU sufficient
Tree-Based 2.34s 0.008 s 128 MB CPU sufficient

Deep Learning 145.7 s 0.012s 512 MB GPU recommended

Data Availability Statement: The aggregated MFS data
used in this study is publicly available from the
Bangladesh Bank’s official statistics portal. Individual
transaction data remains confidential for privacy
protection.

Reproducibility Information:

e Python 3.9.7

scikit-learn 1.0.2

TensorFlow 2.8.0

XGBoost 1.5.2

SHAP 0.41.0

Hardware: NVIDIA RTX 3080, 32GB RAM

Appendix C Model Validation and Robustness
Checks
Table C1: Sensitivity Analysis Results

Table C4: Impact of different perturbations on model R* performance

Perturbation Type | Ridge AR*> | LSTM AR? | TCN AR?
10% noise addition | -0.0023 -0.0034 -0.0041
Missing 5% data -0.0012 -0.0018 -0.0022
Outlier introduction | -0.0008 -0.0015 -0.0019

Table C2: Structural Break Testing

Table C5: Chow test results for potential structural breaks.

Break Point | Chow Test Statistic | p-value | Model Stability
March 2020 | 2.34 0.067 Stable
January 2022 | 1.89 0.124 Stable
June 2023 1.56 0.187 Stable
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W.R.: Modelling and forecasting mobile money
customer transaction volumes in rural and semi-
urban malawi: An autoregressive integrated moving
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