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Abstract Review Article

Al-enabled chemistry is rapidly moving from single-instrument modeling to multimodal chemical measurement, where
spectroscopy, chromatography—mass spectrometry, electrochemical sensing, and chemical imaging jointly constrain the same
underlying chemical state. This review synthesizes how data fusion (low-, mid-, and high-level) can unify heterogeneous
signals from molecules to materials and devices, and why physics guidance is essential for models that remain reliable under
matrix effects, instrument drift, and cross-laboratory transfer. We discuss practical fusion architectures, hybrid mechanistic—
learning models, and uncertainty-aware inference that converts predictions into decision-ready measurement results. A central
theme is that multimodal AI must be evaluated as an analytical procedure: calibration, figures of merit, cross-modality
consistency checks, and uncertainty budgets must be reported with the same discipline expected in analytical chemistry. We
map common Al tasks by modality (peak deconvolution, spectral unmixing, retention-time prediction, MS annotation, EIS
parameter estimation, image segmentation) and show representative case studies spanning pharma/biomedicine,
food/environmental sensing, operando catalysis, energy devices, and polymer/materials quality control. Finally, we outline
future directions: standardized multimodal benchmarks, interoperable metadata and formats, real-time closed-loop
experimentation, greener miniaturized platforms, and trustworthy AI practices that support regulatory acceptance and
deployment. Overall, multimodal measurement is converging toward a new paradigm: quantitative, uncertainty-aware, and
deployable chemical inference from fused evidence rather than isolated instrument readouts.

Keywords: Multimodal data fusion; analytical chemistry; physics-guided Al; chemometrics; spectroscopy; LC-MS/GC-MS;
electrochemical impedance spectroscopy (EIS); chemical imaging; uncertainty quantification; method validation; calibration
transfer; operando characterization.
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1. INTRODUCTION dynamic: they may contain isomers and trace impurities,

Chemical science increasingly operates in exist as multiphase formulations, evolve during
regimes where no single instrument can provide a reactions, or display nanoscale spatial structure that
complete, decision-ready description of a sample. Real controls macroscopic function. In such settings, an
samples are multicomponent, heterogeneous, and analytical result is rarely just “a spectrum” or “a
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chromatogram™; it is an inference about identity,
quantity, structure, dynamics, and spatial context that
must remain defensible under matrix effects, instrument
drift, and incomplete observability. These realities
motivate a shift from single-technique workflows toward
multimodal chemical measurement, where
complementary modalities jointly constrain the
interpretation and reduce ambiguity through -cross-
validation and shared physical consistency checks.
Practical evidence of this direction appears across
application areas from correlative chemical imaging in
tissues (combining vibrational spectroscopy with mass
spectrometry imaging) to multimodal hyperspectral
approaches where rich spectral-spatial data demand
advanced multivariate interpretation. (Tuck et al., 2020;
de Juan, 2025).

At the core of this shift is data fusion: the
deliberate integration of heterogeneous measurements
into a single inferential pipeline. A widely used framing
distinguishes low-level fusion (combining raw signals),
mid-level fusion (combining extracted features), and
high-level fusion (combining decisions or model
outputs). This taxonomy is particularly useful in
chemistry because different instruments produce data
with different noise structures, dimensionalities, and
physical meanings making “how” and “where” fusion
occurs as important as “what” is fused (Smolinska ef al.,
2019). In parallel, the chemometrics community has
developed multi-block (multi-source) data analysis to
integrate distinct but related datasets while preserving
block-specific ~ structure and  avoiding  naive
concatenation; contemporary reviews emphasize its role
in tasks ranging from visualization and prediction to
calibration transfer in multi-instrument settings (Mishra
et al., 2021). In other words, multimodal analytics is not
merely a technological trend; it is a methodological
response to the reality that chemical information is
distributed across measurement physics and must be
recombined in statistically and physically coherent ways
(Smolinska et al., 2019; Mishra et al., 2021).

This review focuses on a modern, broadly
applicable multimodal stack spectroscopy,
chromatography—mass spectrometry, electrochemical
sensing, and chemical imaging because together they
span much of the chemical information space (molecular
structure, composition, interfacial kinetics, and spatial
heterogeneity). Spectroscopy interrogates light—matter
interactions to report functional groups, bonding
environments, electronic structure, and (in some cases)
surface chemistry. Chromatography—mass spectrometry
(e.g., LC-MS, GC-MS and related ‘“hyphenated”
methods) couples  separation with  molecular
identification/quantification, offering powerful
deconvolution of complex mixtures where overlapping
spectral features alone may be insufficient (Patel et al,
2010). Electrochemical sensing adds access to interfacial
processes and kinetics that are central to catalysis,
corrosion, biosensing, and energy materials; for

example, electrochemical impedance spectroscopy (EIS)
is widely treated as a key method for probing interfacial
properties and reaction/transport contributions, with
modern tutorials emphasizing both theory and practical
interpretation pitfalls (Lazanas et al,, 2023). Chemical
imaging (including hyperspectral imaging, vibrational
mapping, and mass spectrometry imaging) adds the
spatial dimension often essential when function depends
on microstructure, phase segregation, or localized
chemistry.  Recent  treatments  highlight that
hyperspectral imaging uniquely combines spatial and
chemical information but typically requires strong
chemometric and modeling support to become
operational in process and applied contexts (de Juan,
2025). The power of multimodality becomes especially
clear in correlative workflows: for instance, multimodal
imaging approaches integrating vibrational
spectroscopies with mass spectrometry imaging have
been reviewed as a route to multi-scale, multi-omic
chemical insight in tissues illustrating how modalities
compensate for each other’s limitations (Tuck et al.,
2020).

However, simply collecting more data does not
guarantee better chemical knowledge. Multimodal
measurement is fundamentally an inverse problem:
instruments report signals shaped by physics (e.g.,
convolution with an instrument response, transport
limitations, ionization efficiency, scattering, and
background contributions), while analysts seek latent
chemical variables (composition, structure, states, rate
constants, maps). Without principled inference,
multimodal workflows can amplify bias, propagate
artifacts across modalities, or create “agreement” that is
merely shared systematic error. This is why the
integration of physics-guided modeling with Al is
increasingly positioned as the modern solution: physics
provides constraints, interpretability, and extrapolation
structure; Al offers flexible function approximation,
automated feature extraction, and scalable fusion across
high-dimensional signals. The broader scientific
literature describes physics-informed machine learning
as an approach that integrates data with
mathematical/physical models (for example by
embedding governing laws or constraints into learning),
particularly valuable when data are noisy, sparse, or
expensive (Karniadakis et al, 2021). In analytical
chemistry terms, this translates to using physically
meaningful priors and constraints such as non-negativity
of concentrations, mass/charge balance, known line-
shape families, diffusion-limited kinetics, or instrument-
response-aware forward models so that learned
representations remain chemically plausible and more
transferable across instruments, batches, and matrices
(Karniadakis ef al., 2021).

Equally important, chemistry is a quantitative
science, and quantification requires metrology. Claims
based on multimodal fusion must be anchored to
established analytical performance concepts selectivity,
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sensitivity, detection capability, and uncertainty. For
example, [UPAC defines the limit of detection (LOD) as
derived from the smallest measured signal that can be
detected with reasonable certainty for a given analytical
procedure (IUPAC Gold Book, “limit of detection”).
Beyond detection, uncertainty must be estimated and
communicated in ways that reflect not just instrument
noise but the full chain including sampling, calibration,
model choice, and fusion strategy. Eurachem’s guidance
on quantifying uncertainty in analytical measurement
provides structured approaches (including use of
validation data and component-based uncertainty
models), while Eurachem’s method validation guide
emphasizes “fitness for purpose” as the organizing
principle for whether a method (or fused workflow) is
suitable  for its intended decision context
(Eurachem/CITAC QUAM, 2012; Eurachem Method
Validation Guide, 2025). In multimodal pipelines, these
principles must be extended from “single-instrument
method validation” to workflow validation, because
fusion introduces new failure modes: leakage between
training/validation sets, unrecognized modality drift,
inconsistent  preprocessing, or  non-identifiable
parameterizations where multiple chemical explanations
fit the fused signals equally well (Mishra et al., 2021;
Smolinska et al., 2019).

The final modern requirement is reproducible,
interoperable data practice, especially because
multimodal studies depend on metadata-rich datasets and
the ability to reuse or reanalyze results. The FAIR

Interoperability, and Reusability—were explicitly
formulated to support machine-actionable reuse of
digital assets and to apply not only to “data” but also to
the algorithms, tools, and workflows that generated them
(Wilkinson et al, 2016). For multimodal chemistry,
FAIR-aligned practice is not administrative overhead; it
is what enables calibration transfer, cross-laboratory
benchmarking, and trustworthy AI development under
realistic drift and domain shift.

Scope and contribution of this review. Building
on these motivations, this review synthesizes an Al- and
physics-guided framework for multimodal chemical
measurement that unifies spectroscopy,
chromatography—mass spectrometry, electrochemical
sensing, and chemical imaging through data fusion.
Figure 1 will introduce the end-to-end pipeline from
sampling and raw signals to quantitative ‘“‘chemical
truth” with uncertainty bounds. Table 1 will summarize
what each modality family measures, the scales it
operates on, and its typical failure modes. Figure 2 will
map chemical questions (identity—quantity—structure—
dynamics—spatial context) to optimal modality
combinations across molecular-to-device scales. Figure
3 will compare low-, mid-, and high-level fusion
blueprints and their practical trade-offs. Finally, the
review will emphasize validation and uncertainty as the
analytical backbone anchored in [IUPAC definitions and
Eurachem guidance so that multimodal/Al claims remain
quantitatively defensible, reproducible, and fit for
purpose (IUPAC Gold Book; Eurachem/CITAC QUAM,

Guiding  Principles  Findability,  Accessibility, 2012; Eurachem Method Validation Guide, 2025).
Table 1: Modality cheat sheet

Modality family | Primary Typical Strengths Common failure Best practice
information output modes anchor

Vibrational Functional groups, | Spectrum Fast, non- Baseline/scatter, Chemometrics with

spectroscopy (IR, | mixture fingerprints | (intensity vs destructive, fluorescence, robust preprocessing

NIR, Raman) wavenumber) | field/PAT- temperature sensitivity, |+ external validation

friendly instrument drift

Chromatography | Separation in time, | Chromatogram, | Reduces RT drift, co-elution, RT alignment +

(LC/GC) resolves retention times | interference, sample prep variability | standards + system
mixtures/isomers supports quant suitability

workflows

Mass Mass-to-charge, Mass spectra, | High sensitivity, | Matrix effects, ion Internal standards +

spectrometry fragmentation peak tables structural clues suppression, annotation | blanks +

(MS, MS/MS) patterns ambiguity confirmation logic

Electrochemical | Redox activity, Current vs Portable, low Fouling, cross- Calibration in

sensing selective sensing potential/time | power, rapid sensitivity, realistic matrices +

(CV/DPV/ chemistry temperature/ionic drift monitoring

amperometry) strength effects

Electrochemical | Kinetics/transport | Nyquist/Bode, | Diagnoses Non-unique fits, Physically

impedance (EIS) | separation via fitted processes, aging, | unstable spectra, wrong | constrained fitting +
frequency response | parameters interfaces equivalent models QC checks

Chemical Spatial composition | Pixel spectra, | Links chemistry | Registration errors, Sample-level splits,

imaging (HSI, and heterogeneity | chemical maps |to morphology/ | illumination bias, pixel | map QC,

Raman mapping, performance leakage registration

MSI) reporting
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Figure 1: Multimodal Chemical Measurement and Data Fusion: From Sample to Decision-Ready Chemistry with Uncertainty

Figure 1 summarizes an end-to-end multimodal
measurement pipeline in  which complementary
analytical modalities constrain a shared latent chemical
state, and fusion converts heterogeneous signals into
decision-ready outputs with explicit uncertainty. The
fusion abstraction levels (low, mid, high) reflect a
commonly used framework for integrating multi-source
chemical data, while FAIR-aligned data stewardship
underpins reproducibility and reuse.

2. Physics foundations shared across modalities
2.1 Measurement starts with a model

A rigorous measurement begins by defining the
measurand, meaning the particular quantity intended to
be measured (for example, concentration of an analyte in
a matrix, surface coverage of a functional group,
diffusion coefficient, or an interfacial charge transfer
resistance). The IUPAC Gold Book definition is concise:
a measurand is a “particular quantity subject to
measurement.” (IUPAC Gold Book, “measurand”).

Across spectroscopy, chromatography,
electrochemical sensing, and chemical imaging,
instruments do not directly output the measurand.
Instead, they output signals that are generated by
physical interactions and then modified by the
instrument. A useful unifying view is the forward model:
a mapping from underlying chemical state to measured
data, typically written as a function plus noise (for
example, signal = instrument response applied to
chemical state + noise). This framing is central in
measurement science because it clarifies where error and
uncertainty enter and why different modalities can
disagree even on the same sample (JCGM 100:2008).

Two universal components shape every modality’s
signal:

» Instrument response / line shape. Spectrometers
do not record infinitely sharp transitions; they
record broadened features governed by an
instrument line shape (for example Gaussian,
Lorentzian, Voigt, and in Fourier-transform

methods, dependence on apodization). [UPAC
explicitly defines instrument line shape and
notes these standard idealized forms and
parameters (IUPAC Gold Book, “instrument
line shape™).

» Noise. Any inference depends on the ratio of
signal to noise. IUPAC defines signal-to-noise
ratio as the power of signal divided by the
power of noise and notes practical RMS forms
commonly used in measurement (IUPAC Gold
Book, “signal-to-noise ratio”).

This immediately links physics to analytical
performance: if two methods disagree, the cause often
lies in different response functions, different noise
structures, and different sensitivities to the sample
matrix.

2.2 Detection, resolution, and the “information
budget” of an experiment

Even before data fusion or AI, measurement
quality is constrained by detection capability and
resolution. [IUPAC defines the limit of detection (LOD)
as derived from the smallest measure that can be detected
with reasonable certainty for a given analytical
procedure (IUPAC Gold Book, “limit of detection™).
Classic analytical chemistry work also emphasizes that
LOD is not a single universal constant; it depends on the
statistical decision rule and the blank distribution,
making the operational definition and validation design
important (Long & Winefordner, 1983).

Resolution limits are modality-specific, but the
pattern is universal: improving one dimension often costs
another (for example spatial resolution versus signal-to-
noise, or temporal resolution versus spectral resolution).
This is not only practical experience; it is quantifiable in
imaging contexts where signal-to-noise and spatial
resolution are analyzed together as coupled performance
metrics (Gureyev et al, 2024). In spectroscopy,
instrument line shape and apodization choices literally
change the recorded line profile and thus influence peak
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fitting and quantitative extraction (IUPAC Gold Book,
“instrument line shape™).

A modern multimodal workflow should treat
every experiment as having an information budget: the
best fusion strategy is often not “collect everything,” but
“collect  complementary  constraints,”  meaning
measurements that reduce ambiguity in the inverse
problem rather than duplicating the same limitation in
different forms.

2.3 Transport and Kinetics

Many analytical signals are not purely “spectral
fingerprints.” They are shaped by transport, mixing, and
kinetics. The simplest example is diffusion. [TUPAC
defines the diffusion coefficient as the proportionality
constant relating flux to the concentration gradient in
Fick’s law form (IUPAC Gold Book, “diffusion
coefficient”). This matters because diffusion sets
characteristic times for separation, equilibration,
interfacial flux, and reaction progress.

In chromatography, band broadening is
fundamentally a transport and mass-transfer problem.
IUPAC defines plate height (HETP) as the column length
divided by the plate number, a standard efficiency metric
used across chromatographic modes (IUPAC Gold
Book, “plate height”; IUPAC Recommendations 1993).
The classic van Deemter rate-theory treatment explicitly
identifies sources of nonideality (including longitudinal
diffusion and resistance to mass transfer) as causes of
peak broadening (van Deemter, Zuiderweg &
Klinkenberg, 1956). This is why multimodal fusion that
combines chromatography with spectroscopy or mass
spectrometry is not just “more identification.” It is also a
physics-based way to separate overlapping chemical
states so that downstream inverse problems become
better posed.

In electrochemical sensing, transport and
kinetics are inseparable. Electrochemical impedance
spectroscopy (EIS), for example, is explicitly used to
disentangle contributions from processes such as charge
transfer, double-layer behavior, and mass transport by
analyzing frequency-dependent response. Modern
tutorials emphasize the theoretical basis of EIS and the
interpretation pitfalls that arise when different physical
processes can produce similar impedance features
(Lazanas et al., 2023). IUPAC’s recommendations on
electrochemical methods further standardize the
terminology and classification of electroanalytical
techniques, reinforcing that consistent definitions are
necessary before quantitative comparison or fusion
across studies (Pingarron et al, 2020; IUPAC
Recommendations 2019/2020).

A practical implication across modalities is that
“matrix” is not an abstract nuisance. IUPAC defines
matrix effect as the combined effect of all components
other than the analyte on the measurement of the

quantity, and distinguishes it from a specific interference
when a single component is identifiable (IUPAC Gold
Book, “matrix effect”). This definition applies equally
well to ion suppression in LC-MS, fluorescence
background in Raman, adsorption and fouling in
electrochemical sensors, and scattering or absorption
artifacts in imaging.

2.4 The inverse problem view

Most chemical measurements are inverse
problems: you observe data and infer the latent chemical
quantities that produced them. Inverse problems are
often ill-posed, meaning small noise or modeling errors
can cause large changes in the inferred solution, or
multiple solutions can fit the same data. A standard
statistical and computational framework treats inversion
as inference under uncertainty, often Bayesian in form,
explicitly highlighting how prior knowledge and
complementary information improve stability (Kaipio &
Somersalo, 2005).

Two concepts matter especially for a multimodal
review:

o Identifiability. Even with perfect computation,
parameters may not be uniquely determined
from the available observations. Classic
identifiability literature frames this as a
uniqueness problem for fitted parameters given
observations (Vajda et al,, 1989). In practice,
poor identifiability is common in kinetics,
spectroscopy peak fitting, equivalent-circuit
extraction from EIS, and deconvolution of
overlapping chromatographic peaks.

e Regularization. Because inverse problems are
commonly ill-posed, stable estimation requires
constraints or priors (for example smoothness,
sparsity,  non-negativity, or  physically
meaningful bounds). Modern surveys describe
regularization as a key tool to introduce prior
knowledge and obtain robust approximations to
ill-posed inverses, with strong emphasis on
variational and nonlinear methods that connect
naturally to modern learning approaches
(Benning & Burger, 2018).

This is exactly where multimodal design
becomes scientific rather than descriptive. Adding a
second modality helps when it provides independent
constraints that shrink the set of feasible explanations
and improves identifiability. Adding a second modality
hurts when it shares the same confounder (for example
the same matrix effect) or introduces correlated errors
without modeling them.

2.5 Uncertainty is not optional: propagation,
correlation, and traceable reporting across a fused
workflow

For multimodal fusion to be credible in
analytical chemistry, it must carry uncertainty through
the full pipeline. The Guide to the Expression of
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Uncertainty in Measurement (GUM) formalizes how
measurement results should be expressed with associated
uncertainty and describes evaluation using a
measurement model and propagation principles (JCGM
100:2008). For complex or nonlinear models, the GUM
supplements extend the framework using Monte Carlo
propagation of distributions through the measurement
model (JCGM 101:2008).

In analytical chemistry practice, Eurachem’s
QUAM guide provides detailed guidance on identifying
uncertainty sources, combining them, and reporting
expanded uncertainty in a way aligned with laboratory
competence and comparability expectations
(Eurachem/CITAC QUAM, 2012). The key point for
multimodal studies is correlation: modalities often share
common inputs (sample preparation, calibration
standards, environmental conditions), so uncertainties
are not independent. GUM explicitly treats uncertainty

as arising through a model with input quantities, and
correlated inputs can propagate to correlated outputs,
which matters directly when fusing results (JCGM
100:2008; JCGM 101:2008).

Finally, this physics and metrology foundation
explains why “Al alone” is insufficient for high-stakes
chemical claims. Physics-informed machine learning
explicitly targets the integration of data with physical or
mathematical models, including in forward and inverse
problems, as a route to improve generalization and
reliability when data are limited or noisy (Karniadakis et
al., 2021). In a multimodal chemical context, this
translates to models that respect constraints such as non-
negativity of concentrations, physically valid line shapes,
mass-balance structure, and transport-limited kinetics,
while still leveraging Al to learn complex mappings and
perform scalable fusion.

Table 2: Minimum preprocessing + alignment steps needed before fusion

Mass spectrum (NquIst/Bode) o —

’ “I |||| ‘/ |‘ e RT Alignment

e Mass Calibration

Raw Signals | * Features

PAVAVAY b A

Mpof = 2222 L Aak

Modality Minimum preprocessing Alignment step QC signals to report
IR/NIR/Raman Baseline correction, scatter Wavenumber Replicate agreement, drift trend,
correction/normalization, smoothing | calibration (if needed) outlier rate
(if justified)
LC/GC Peak picking/integration, baseline Retention-time System suitability, RT shift,
correction alignment internal standard recovery
MS/MS Mass calibration, peak detection, de- | m/z alignment across Mass error ppm, blank features,
isotoping (if used), blank subtraction | runs ID confidence metrics
Electrochem Baseline drift correction, Time alignment with Response stability, fouling
sensing temperature compensation (if other streams indicators, calibration residuals
applicable)
EIS Noise screening, unstable spectrum | Time alignment to Fit residuals, parameter bounds,
rejection operating condition replicate consistency
Imaging/maps Denoising, illumination correction, Spatial registration to Registration error, sample-level
normalization reference image split integrity
7 Data Types [Z] Alignment [[@ Representations 5] QC Gates
Spectrum Chromatogram ‘* Alignment Representations ‘ @ Blanks
:U\/ J\V/ i JUUuL @ l’/ | [ /f\/i\/ﬁ\ / \ ’\;2) Standards
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| 1 H i i \;‘,@ Replicate Agreement

i Outlier Flagging

o 3

E 53
r.*'_. 1) Stop if QC fails
Spatial Registration f
Features Latent
(peaks/descriptors) embeddings
| (encoder output)
f
A ad
L s I‘l__ A F

Figure 2: Making Heterogeneous Chemistry Comparable: Data Representations, Alignment, and Quality Control Across
Modalities
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Figure 2 highlights why multimodal fusion
succeeds or fails: heterogeneous signals must be
converted into comparable representations through
alignment (time, mass, space) and quality control gates
that prevent drift, leakage, and nonphysical artifacts from
propagating into fused decisions.

3. The four modality families: what they measure,
where they fail, and why they complement each other
3.1 Spectroscopy (bonding, structure, electronic
states, and surfaces)

Spectroscopy is best treated as a measurement
family defined by its physics: it studies physical systems
through the electromagnetic radiation with which they
interact, or that they produce. This definition is
formalized in the [IUPAC Gold Book and is broad enough
to include vibrational, electronic, and surface sensitive
methods used across chemistry and physics. (IUPAC
Gold Book).

Vibrational spectroscopy includes infrared and
Raman methods, which are central to analytical
chemistry because they provide chemically interpretable
fingerprints of functional groups, bonding environments,
and lattice vibrations. IUPAC defines infrared
spectroscopy as a measurement principle of vibrational
spectroscopy using infrared radiation, and notes that
without qualification it usually refers to the mid infrared
region, approximately 2.5 to 25 micrometers,
corresponding to 4000 to 400 inverse centimeters.
(IUPAC Gold Book). Raman spectroscopy is defined by
IUPAC as a vibrational spectroscopy principle based on
Raman scattering, where Raman scattered light is shifted
relative to the incident light by vibrational energies.
(IUPAC Gold Book). These definitions matter in a
multimodal review because they clarify why IR and
Raman often behave differently on the same sample: IR
intensity is governed largely by changes in dipole
moment, while Raman intensity is governed largely by
changes in polarizability as emphasized in [UPAC
terminology for Raman scattering. (IUPAC Gold Book).

Electronic spectroscopy includes absorption
and emission methods. Fluorescence is formally defined
in the IUPAC Gold Book as luminescence that occurs
essentially only during irradiation by electromagnetic
radiation. (IUPAC Gold Book). This definition
highlights why fluorescence can be extremely sensitive
for trace analysis and imaging, but also why it can be
unstable in real matrices, because the measured signal
depends not only on concentration but also on quenching
pathways, optical attenuation, and excitation conditions.
In multimodal workflows, fluorescence or UV Vis
signals often become more reliable when anchored to
independent  quantitative =~ methods  such  as
chromatography mass  spectrometry, or when
constrained by physics guided calibration models.

Nuclear magnetic resonance is a structurally
powerful modality that often functions as both a

qualitative and quantitative anchor. IUPAC defines
nuclear magnetic resonance spectroscopy and explicitly
notes its use for structure determination of organic
molecules and for quantification. (IUPAC Gold Book).
In multimodal design, NMR often complements
chromatography mass spectrometry by providing
orthogonal structural evidence and quantitative
composition without relying on ionization efficiency,
while chromatography mass spectrometry often
complements NMR by improving sensitivity and
resolving trace components.

Surface and electronic state spectroscopy
provides the most direct bridge to condensed matter
physics and materials chemistry. X ray photoelectron
spectroscopy is defined by IUPAC as any technique in
which a sample is bombarded with X rays and
photoelectrons are detected as a function of energy, with
ESCA referring to using this technique to identify
elements, concentrations, and chemical state within the
sample. (IUPAC Gold Book). The multimodal
implication is that surface sensitive signals can be
chemically decisive but not always representative of the
bulk, so fusing surface spectroscopy with bulk
spectroscopy, separations, or spatial mapping can
prevent over interpretation.

In short, spectroscopy is fast and chemically
rich, but it frequently faces overlapping bands, baseline
artifacts, and matrix effects. These limitations are exactly
why the next three modality families are not optional in
a modern quantitative workflow.

3.2 Chromatography plus mass spectrometry
(mixture resolution, identity, and trace
quantification)

Chromatography is the primary way analytical
chemistry converts mixture complexity into interpretable
signals. A key organizing parameter is the retention
factor, defined by IUPAC as a measure of the time a
component resides in the stationary phase relative to the
time it resides in the mobile phase, expressing how much
longer it is retarded compared with traveling at the
mobile phase velocity. (IUPAC Gold Book). In
multimodal  terms,  chromatography  improves
identifiability because it turns one difficult inverse
problem, such as overlapping spectral features, into a
better posed problem by separating contributions across
time before detection.

Mass spectrometry then provides highly
specific molecular information through ion formation
and mass analysis. IUPAC mass spectrometry
terminology ~ recommendations  describe = mass
spectrometry as the study of matter through the
formation of gas phase ions that are detected and
characterized by their mass and charge, and they exist
specifically to standardize interpretation across rapidly
evolving instruments and methods. (IUPAC
Recommendations 2013). The quantity used to label ion
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signals is commonly written as mover z. [UPAC clarifies
that mover z denotes a dimensionless quantity formed by
dividing the mass number of an ion by its charge number,
and notes that the traditional phrase mass to charge ratio
is historically used but technically imperfect. (IUPAC
Gold Book).

The most important limitation  for
chromatography mass spectrometry in quantitative work
is not lack of sensitivity, but matrix dependence. [IUPAC
defines matrix effect as the combined effect of all sample
components other than the analyte on the measurement
of the quantity, and distinguishes this from a specific
interference when one component can be identified as
causing the effect. (IUPAC Gold Book). Modern reviews
and guidance emphasize that matrix effects can arise
throughout the analytical process and are a major source
of bias, particularly in workflows involving complex
sample preparation and detection steps such as LC MS.
(Williams, 2023). Recent LC MS focused literature also
details practical approaches to assess matrix effect,
including post column infusion and spiking approaches,
reinforcing that quantitative LC MS is inseparable from
explicit matrix effect assessment. (Fu et al., 2024).

In multimodal fusion, chromatography mass
spectrometry often functions as a quantitative anchor and
identity validator for models trained on faster or cheaper
modalities such as spectroscopy or electrochemical
sensors. It also provides the reference labels needed for
supervised learning and calibration, while physics
guided constraints and uncertainty models prevent
overfitting to instrument specific artifacts.

3.3 Electrochemical sensing (interfaces, Kinetics, and
selective detection)

Electrochemical sensing interrogates chemical
systems through electrical signals governed by
interfacial thermodynamics, reaction kinetics, and mass
transport. It is uniquely powerful for chemistry where
electron transfer, adsorption, or ionic processes define
function, such as catalysis, corrosion, energy materials,
and biosensing. Among electrochemical tools,
electrochemical impedance spectroscopy is widely used
because it separates processes by frequency response and
can, when carefully modeled, distinguish charge transfer
from transport and capacitive contributions. A modern
tutorial in ACS Measurement Science Au explicitly
provides theoretical background, principles, and
applications of EIS and discusses how interpretation can
fail when models are underconstrained or misapplied.
(Lazanas & Prodromidis, 2023).

Electrochemical measurements are also highly
exposed to matrix effects in the IUPAC sense. Changes
in ionic strength, pH, dissolved oxygen, and co reactive
species can shift potentials or alter currents, while
electrode fouling and surface reconstruction change
response over time. These issues often produce drift that
is hard to diagnose from electrochemistry alone, which

is why multimodal validation is so important. Surface
spectroscopy such as XPS can verify chemical state
changes at electrodes, vibrational spectroscopy can track
functional group evolution in films, and chromatography
mass spectrometry can confirm which dissolved species
actually correlate with electrochemical signals. This kind
of cross checking is the difference between a sensor that
appears selective in a controlled solution and a sensor
that remains reliable in real samples.

3.4 Chemical imaging (spatially resolved chemistry
from microstructure to devices)

Chemical  imaging  extends  chemical
measurement into space, producing maps of chemical
composition or state rather than a single bulk value. This
is essential when heterogeneity controls behavior, such
as phase segregation in polymers, active site distributions
in catalysts, degradation fronts in batteries, or spatial
microenvironments in tissues.

Hyperspectral imaging is one of the most
general chemical imaging formats because it combines
spatial information with spectral information, effectively
creating a spectrum per pixel. A recent perspective in
Analytical and Bioanalytical Chemistry describes
hyperspectral imaging as a very complete analytical
measurement enclosing rich spatial and chemical
information, but also emphasizes that it requires
powerful data analysis tools for interpretation and for
practical implementation in process analytical
technology contexts. (de Juan, 2025). This aligns
naturally with the Al plus physics theme of this review,
because unmixing and quantifying pixelwise chemical
information requires both physically meaningful spectral
models and robust statistical learning.

Mass spectrometry imaging maps spatial
chemical distributions on complex surfaces and tissues,
providing high molecular specificity. A recent Analytical
Chemistry review states that MSI maps spatial
distributions of chemicals on chemically complex
surfaces and highlights its sensitivity and information
richness, which is why it is widely used in spatial biology
and materials contexts. (Korber, 2025). At the same time,
MSI has fundamental tradeoffs between spatial
resolution and sensitivity. A widely cited MSI review
explains that improving spatial resolution decreases the
sampled area per pixel, producing an inherent tradeoff
with sensitivity. (Buchberger et al., 2017).

Because no single imaging modality optimizes
spatial resolution, molecular specificity, throughput, and
quantification simultaneously, multimodal imaging has
become a major direction. A multimodal imaging mass
spectrometry review describes how MSI technologies
have been integrated with other analytical modalities
such as microscopy, spectroscopy, and even
electrochemistry in what is now termed multimodal
imaging, and discusses the promise and challenges of
integration. (Neumann et al, 2020). This multimodal
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trend is also visible in recent studies integrating Raman
spectroscopy with MSI on the same section to combine
complementary chemical contrasts. (Toth et al., 2025).

3.5 Why these four families together approximate
quantitative chemical truth

These modality families were chosen because
together they cover most of the chemical information
space with minimal redundancy. Spectroscopy provides
rapid, physics grounded signatures of bonding and state
and is standardized in its conceptual definition by
IUPAC. Chromatography plus mass spectrometry
resolves mixtures, supports identification and trace
quantification, and is grounded in standardized
definitions for retention behavior and mass spectrometric
terminology. Electrochemical sensing adds direct access
to interfacial kinetics and transport constrained processes
and is strongly supported by modern interpretive
guidance for tools such as EIS. Chemical imaging adds

spatial context, with hyperspectral imaging and MSI
explicitly recognized as chemically rich but analysis
intensive  modalities, motivating Al  assisted
interpretation and fusion.

A rigorous multimodal workflow uses this
complementarity to reduce non uniqueness in inference.
Chromatography mass spectrometry can anchor identity
and concentration labels for calibration. Spectroscopy
can provide fast screening and mechanistic signatures.
Electrochemistry can test interfacial hypotheses and
kinetic constraints. Imaging can reveal heterogeneity that
would bias bulk results and can localize chemistry to
specific structures. The next section builds on this
foundation by explaining how these heterogeneous
signals are fused at the raw, feature, or decision levels
and how physics guided Al makes fusion more
interpretable and transferable.

Table 3: Fusion strategy decision guide (low vs mid vs high)
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Figure 3: Low-, Mid-, and High-Level Fusion in Multimodal Chemistry: When to Use Which

Figure 3 compares low-, mid-, and high-level
fusion, emphasizing the trade-off between information
richness and robustness to missing modalities, and
illustrating how the same analytical stack can be fused at

different abstraction levels depending on
synchronization, data quality, and deployment
constraints.
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4. Data fusion architectures for multimodal chemical
measurement

Multimodal chemical measurement produces
heterogeneous data blocks that differ in dimensionality
(scalar metadata, 1D spectra, 2D chromatograms, 3D
hyperspectral cubes, time series), noise structure,
dynamic range, and sampling rate. The core purpose of
data fusion is to combine these blocks so the final model
captures complementary chemical information while
controlling redundancy and modality specific artifacts
(Smolinska et al., 2019). In practice, the architecture you
choose is inseparable from experimental design
decisions such as sample pairing, replication,
randomization, instrument calibration, and how you
encode metadata and reference values because these
choices determine whether the fused signal is chemically
meaningful or simply a larger space for confounding
(Westad & Marini, 2015; Lopez et al., 2023).

4.1 Sample alignment, synchronization, and the
“shared object” requirement

Most fusion strategies assume that different
modalities describe the same underlying objects (the
same sample, batch, location, time window, or process
state). If objects are not aligned, concatenation or joint
modeling can create spurious correlations that look
predictive but do not generalize (Lopez et al., 2023).
Alignment can be trivial (same vial measured by NMR

and LC MS) or difficult (linking operando
electrochemistry  time  series to  intermittent
chromatographic fractions, or mapping chemical images
to bulk spectra). When temporal structure exists, the
alignment problem becomes a design and validation
problem: the correct unit for cross validation is often the
higher-level grouping (batch, day, patient, reactor run)
rather than individual scans, otherwise leakage inflates
performance (Westad & Marini, 2015; Kiraly & Toth,
2025).

A practical implication is that fusion should be
described in terms of an explicit fusion index: what
constitutes one “row” in the fused analysis (sample,
pixel, peak, time slice) and how it maps across
instruments. Reporting this mapping is not optional in
multimodal analytical chemistry because it determines
the chemical meaning of “features” and “labels”
(Smolinska et al., 2019; Westad & Marini, 2015).

4.2 Taxonomy of fusion levels: low, mid, high, plus
sustainable and kernel fusion

Chemometrics commonly organizes
multimodal fusion into low level, mid-level, and high-
level strategies, with extensions such as sustainable mid-
level fusion and kernel-based fusion (Smolinska et al.,
2019). This taxonomy is useful because it links directly
to how chemical information is represented.

Inputs

Fusion stage

Outputs

Spectroscopy

Low level fusion

Quantitative chemical truth

Y

(IR, Raman, UV-Vis, NMR, XPS)

Raw or minimally processed signals concatenated

\ 4

o identity

I

s concentration

Chromatography-MS
(LC-MS, GC-MS)

Y

Mid level fusion

— e structure/state

Features or latent components extracted per modality .
then combined

kinetics

e spatial maps

Electrochemistry [

\

(voltammetry, EIS)

High level fusion

e uncertainty

Model outputs combined (probabilities, decisions, predictions)

Chemical imaging
(hyperspectral imaging, MSI)

vV

Yy Vv

Physics constraints .
and forward models s

Uncertainty and validation

(calibration, grouped CV, external test)

Figure 3. Taxonomy of fusion architectures for AI and physics-guided multimodal chemical measurement.

Fusion levels follow the low-, mid-, and high-
level framing commonly used in chemometrics and data
fusion literature, with deep fusion represented as

intermediate representation fusion inside learned models
(Smolinska et al., 2019; Stahlschmidt et al., 2022; Jiao
etal., 2024).
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Table 4: Comparison of fusion levels for multimodal chemical measurement

Fusion level What is Typical Main strengths Main risks and | Best used when Minimum
fused implementations failure modes validation and
in chemistry reporting you
must include
Low level Raw or Simple Preserves fine Dominance of large | Modalities are | Define the shared
fusion (early | minimally concatenation cross modality blocks or high- tightly unit (sample, pixel,
fusion) processed then PCA, PLS, | relationships; can | variance modalities; | synchronized time slice); specify
variables PLS-DA, SVM, | maximize scaling choices can | (same block scaling and
from each RF; multiway information if change the model; sample/time), centering choices;
modality extensions when | blocks are well spurious similar scale or | do leakage safe
combined you truly have aligned correlations if carefully scaled, | preprocessing
into one matched samples are and you have inside CV; use
joint matrix | multiway misaligned, enough samples | grouped CV if
(or tensor) structure missingness for the joint batches exist;
becomes difficult; dimension include an external
high risk of leakage test set when
if preprocessing possible
uses full dataset
Mid-level Features or | Feature Reduces noise and | Feature extraction Each modality | Fully document
fusion latent extraction by dimensionality; can discard weak has different feature
(feature variables PCA, PLS features can be but important dimension and | engineering;
fusion) extracted scores, peak chemically information; feature | noise structure | justify number of
separately tables, targeted meaningful; easier | choices can inject (spectra, LC- components (when
per biomarkers, handling of bias; different MS peaks, EIS | using
modality, PARAFAC missing feature pipelines descriptors, decompositions);
then components, modalities; often | can break image features), | perform feature
combined MCR-ALS more stable than comparability; or when extraction within
profiles, low level interpretation can interpretability | training folds;
summary become unclear if | is needed report feature
descriptors; then features are not stability and
concatenation documented uncertainty
and modeling
High level Outputs of | Voting, weighted | Most robust to Loses some cross Modalities have | Report calibration
fusion modality- averaging, heterogeneous modality interaction | different of probabilities;
(decision specific stacking meta- data; each information; can reliability, show performance
fusion) models models, Bayesian | modality can use | hide conflicts; coverage, or per modality and
fused decision fusion, | its best model; weights can overfit | missingness; fused; evaluate
(predictions, | ensemble easier to deploy if tuned improperly; | deployment robustness under
probabilities, | learning and update one requires calibrated | settings where | missing modality
decisions) modality without | probabilities for not all sensors | scenarios
retraining all principled always
weighting available
Kernel fusion | Similarity Kernel PLS-DA, | Handles nonlinear | Kernel choice and Strong Nested CV for
(similarity matrices multiple kernel relationships; hyperparameters nonlinear kernel and
fusion) (kernels) per | learning; fusion | avoids variable can dominate; structure or hyperparameter
modality in kernel space scaling issues by | interpretability is incomparable selection;
combined fusing similarities; | harder; risk of feature spaces | sensitivity analysis
often works with | optimistic tuning if | across on kernel settings;
very different data | nested CV notused | modalities report how kernels
types are built
Deep fusion | Learned Separate Captures complex | Data hungry; can Very large Strict separation of
(intermediate | modality- encoders for cross modality learn shortcuts; datasets or train and test by
representation | specific spectra, interactions; strong | difficult strong batch or study;
fusion) embeddings | chromatograms, | for large datasets; | interpretability; augmentation uncertainty or
fused within | images, time can integrate raw | domain shift and and external confidence
a joint series; fusion and engineered drift can break validation; calibration;
neural layers via features models when ablation studies per
architecture | concatenation, interactions modality; external
attention, gating; across validation across
hybrid early plus modalities are | time or instrument
late fusion essential

Key foundations supporting the table: low, mid,
high fusion definitions and extensions including kernel
based fusion (Smolinska ef al., 2019); scaling impact in

chemometric component models (Bro & Smilde, 2003);
example of kernel space fusion in metabolomics
(Smolinska et al, 2012); deep multimodal fusion
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categories and fusion layer placement (Stahlschmidt et
al., 2022; Jiao et al., 2024); validation pitfalls and proper
strategies (Westad & Marini, 2015; Lopez et al., 2023).

4.3 Low level fusion (early fusion): concatenation
with careful scaling and structure preservation

Low level fusion merges modalities before
modeling, typically by concatenating variables into one
matrix. It is attractive because it can preserve subtle cross
modality relationships, but it is also fragile: blocks with
many variables or large variance can dominate unless
block scaling is handled deliberately (Smolinska et al.,
2019). In chemical data, centering and scaling are not
cosmetic. They define what variation is considered
comparable across instruments and can change the latent
structure learned by PCA, PLS, and multiway extensions
(Bro & Smilde, 2003).

A robust low-level workflow usually includes
(i) within block preprocessing that respects instrument
physics (baseline correction, alignment, denoising), (ii)
inter block scaling or weighting to prevent dominance,
and (iii) explicit handling of missingness because real
multimodal studies often have incomplete modality
coverage (Smolinska et al, 2019). Architectures that
formalize low level fusion as a symmetric combination
of blocks have been discussed as “frameworks for low
level data fusion,” emphasizing that fusion is not only
concatenation but also a choice of equivalence between
measurements (Smilde, 2019).

4.4 Mid-level fusion (feature fusion): chemically
meaningful representations as the fusion interface
Mid-level fusion first transforms each modality
into a reduced representation and then merges these
representations. In chemometrics this is often called
feature level fusion and is motivated by the idea that
feature extraction removes modality specific noise and
compresses signals into chemically interpretable
components (Smolinska et al., 2019; Casian et al., 2022).

Feature extraction can be done with
unsupervised decompositions (PCA, ICA, MCR ALS),
supervised latent variable models (PLS variants), or
multiway tensor models when data are naturally multi-
dimensional. Multiway analysis is particularly important
for chemical measurement because many instruments
produce structured arrays such as excitation emission
matrices, hyphenated separations with spectral detection,
or time resolved spectroscopy. PARAFAC is a widely
used multiway decomposition in chemometrics and has
tutorial treatments emphasizing its ability to generalize
PCA to higher order arrays and recover chemically
meaningful profiles under appropriate conditions (Bro,
1997). Model complexity diagnostics such as
CORCONDIA have been proposed to assess the
appropriateness of PARAFAC component numbers,
which is crucial when features become the fusion
interface (Bro & Kiers, 2003).

For complex mixtures and hyphenated data,
mid-level fusion can also be built around multivariate
curve resolution. Reviews of MCR ALS highlight how
bilinear decompositions and constraints can extract pure
contributions from chromatographic data and related
analytical signals (Mazivila et al, 2022). In
metabolomics, MCR ALS has been used for knowledge
integration across CE MS and LC MS, including
strategies that explicitly implement low level merging
before MCR ALS to exploit a common spectral mode
(Ortiz Villanueva et al., 2017).

4.5 High level fusion (decision fusion): combining
predictions, probabilities, or decisions

High level fusion combines outputs from
separate modality specific models, such as class
probabilities, concentration predictions, or decision
scores. This approach is often more robust to
heterogeneity because each modality can use its best
suited preprocessing and model family, and fusion can
be performed by voting, weighted averaging, stacking, or
Bayesian decision rules (Smolinska ef al., 2019).

Decision fusion becomes especially relevant
when modalities have different coverage or reliability.
For example, Bayesian based decision fusion has been
used to combine NIR and Raman based classifiers by
integrating evidence from modality specific PLS DA
models, illustrating a concrete route to uncertainty aware
weighting at the decision stage (Xu ef al., 2022).

4.6 Multiblock chemometrics: shared, unique, and
orthogonal variation as a design principle

Beyond low, mid, and high-level categories,
modern chemometrics treats multimodal measurement as
a multiblock problem: a set of matrices measured on the
same objects. Reviews on multiblock data analysis
emphasize tasks ranging from visualization and
exploration to predictive modeling and calibration
transfer, with many methods designed to separate
predictive variation from block specific structured noise
(Mishra et al., 2021).

A central idea is that blocks can share common
chemical variation but also contain distinct information.
A unifying linear algebra framework for common and
distinct components in data fusion has been proposed,
clarifying terminology and linking methods such as
O2PLS style decompositions and related approaches
(Smilde et al., 2017).

Sequential strategies are also important when
blocks have natural priority, for example cheap high
throughput sensors first, expensive confirmatory
measurements second. Sequential and orthogonalized
PLS methods formalize this by extracting information
block by block while controlling overlap, and have been
discussed for multiblock regression and related modeling
goals (Nes et al., 2021).
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For symmetric multiblock settings, OnPLS
extends O2PLS concepts to more than two blocks,
extracting globally predictive and  orthogonal
components; OnPLS has also been applied with variable
influence diagnostics for interpretable multiomics and
other multiblock studies (Lofstedt ez al., 2011; Reinke et
al., 2018).

4.7 Kernel based and nonlinear fusion: fusing
similarity rather than raw variables

When relationships across modalities are
nonlinear or the feature spaces are incomparable, kernel-
based fusion provides an alternative: each modality is
mapped to a kernel (a similarity matrix between samples)
and kernels are combined before modeling (Smolinska et
al., 2019).

A worked example is fusion in kernel space for
metabolomics based on proton NMR and GC MS, where
optimized kernels were merged and analyzed with kernel
PLS DA, yielding performance improvements over
common mid-level fusion in that study (Smolinska et al.,
2012).

4.8 Deep multimodal fusion: early, intermediate, late,
and hybrid architectures

Deep learning literature often  groups
multimodal fusion into early fusion, intermediate fusion
(sometimes called deep or representation fusion), late
fusion, and hybrids, echoing the chemometrics taxonomy
but implemented inside neural architectures (Jiao ef al.,
2024).

A detailed review in biomedical multimodal
fusion further distinguishes how fusion layers are placed
and how joint representations are learned, and it
discusses practical tradeoffs such as when early fusion
fails to capture higher level cross modality relations
versus when late fusion cannot model feature
interactions (Stahlschmidt ez al., 2022).

For chemical measurement, deep fusion is most
convincing when it respects physics and instrument
structure, for example using modality specific encoders
that preserve spectral smoothness, chromatographic peak
locality, or image spatial correlations, followed by a
controlled fusion module. Even when deep models are
used, the same alignment, scaling, and validation
principles from chemometrics still apply (Lopez et al.,
2023; Westad & Marini, 2015).

4.9 Preprocessing, block scaling, drift, and transfer:
preventing fusion from amplifying artifacts

Fusion increases model capacity, which
increases the risk that models learn instrument artifacts.
Chemometric work on centering and scaling shows that
preprocessing choices directly change the geometry of
component models and can be generalized from two way
to multiway data, making it a foundation for multimodal
fusion pipelines (Bro & Smilde, 2003).

Dedicated studies on multiblock preprocessing
propose workflows that explicitly consider intra block
and inter block variation components, because naive
preprocessing can overemphasize one block or distort
shared structure (Campos et al., 2020). Transfer across
instruments and time is another key issue. Calibration
transfer addresses how to adapt models between
spectrometers and related settings, highlighting practical
barriers such as the need for standard samples and the
impact of instrument differences (Mishra et al., 2021).

Sustainable mid-level fusion has been proposed
to reduce the risk of discarding useful information during
feature selection by introducing a recycling step for
initially rejected variables, which is relevant when
signals are weak or distributed across modalities (Geurts,
2017; Smolinska et al., 2019).

4.10 Validation for fused models: leakage control,
grouped resampling, and external generalization

Because fusion pipelines involve many choices
(preprocessing, feature extraction, block weighting,
model selection), validation must be nested and must
treat preprocessing and feature selection as part of the
trained model, otherwise leakage occurs. Tutorials
emphasize that independent test sets are the most
conservative assessment for calibration, while cross
validation remains essential for rank selection and
stability, especially under grouped data structures
(Westad & Marini, 2015). Recent didactic work shows
how wrong designed cross validation and external
validation can produce models that look promising but
fail on truly independent samples, stressing that
hierarchical or dependent data structure must shape the
validation strategy (Lopez et al., 2023).

Work specifically raising awareness about data
leakage and cross validation scaling in chemometric
model validation further wunderlines how easily
performance can be inflated when scaling or
preprocessing uses information from held out folds
(Kiraly & Toéth, 2025).

5. Physics-guided AI: making models reliable,
interpretable, and transferable

Physics-guided Al aims to merge data-driven
learning with domain constraints so that predictions
respect chemistry and measurement physics, remain
stable under changing conditions, and provide
uncertainty that is meaningful for decision-making. This
matters most in multimodal analytical pipelines because
each modality brings its own inductive biases, artifacts,
and failure modes, and naive fusion can amplify these
weaknesses instead of cancelling them. (Karniadakis et
al., 2021; Smolinska et al., 2019).
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5.1 Why purely data-driven models can break
(shortcut learning, OOD failures)

Many high-performing ML models learn
“shortcuts”, meaning they exploit spurious correlations
that are predictive on a benchmark but not causally tied
to the chemistry of interest, so performance collapses
when conditions shift (Geirhos et al., 2020). In chemical
measurement this can look like a classifier that relies on
batch-specific baseline shapes, a chromatography model
that “recognizes” an instrument method ID, or a
microscopy segmenter that keys on illumination
differences rather than chemical contrast. These
behaviors are a special case of dataset shift: when the
joint distribution of inputs and outputs differs between
training and deployment due to new instruments,
columns, operators, reagents, temperature, drift, or
sample composition changes (Quifionero-Candela et al.,
2009).

Out-of-distribution (OOD) failures are common
in chemistry workflows because the test regime often
differs from the training regime in subtle ways: new
matrices, new interferents, new operating points, or
different preprocessing pipelines. Unless evaluation
explicitly simulates these shifts, accuracy can be
overestimated and models may fail when moved to a new
lab or a new instrument. This is why validation strategy
and leakage control are not “ML hygiene”, they are part
of scientific correctness in fused analytical models
(Westad & Marini, 2015; Lopez et al., 2023; Kirdly &
Téth, 2025).

Finally, streaming and long-term deployments
add concept drift: the data-generating process changes
over time (for example sensor aging or changing
feedstock), so a model that was correct last month may
degrade today. Surveys on concept drift emphasize that
drift detection and adaptation need to be designed into
operational ML systems, not added after failures occur
(Gama et al, 2014).

5.2 Physics constraints in ML

Physics constraints shape the hypothesis space
so the model is encouraged (or forced) to obey rules that
must hold regardless of dataset idiosyncrasies. In
multimodal chemistry, constraints typically enter in three
places: the chemistry (conservation and stoichiometry),
the signal model (non-negativity and smoothness), and
the instrument response (what the instrument can
physically measure).

5.2.1 Conservation and stoichiometry constraints
Chemical transformations and reactive systems
are governed by conservation of mass and elements.
Recent work shows how to enforce atom conservation as
a hard constraint in neural models of chemical kinetics
by inserting an element-balance layer, so outputs cannot
violate conservation even if training data are noisy or
incomplete (Doppel et al, 2024). Similarly, hard-
constrained neural architectures have been proposed to

strictly enforce mass, energy, and element conservation
in chemical source term prediction, which directly
targets the common failure where flexible regressors
create physically impossible species trends (Wang et al.,
2025).

These constraints generalize beyond kinetics: in
quantitative spectroscopy, constraints can enforce that
mixture fractions are non-negative and optionally sum to
one; in separations and mass spectrometry, constraints
can enforce that isotopic envelopes and adduct
relationships follow known rules; in process analytical
technology, constraints can enforce that material
balances close across sensors. The key benefit is that
constraints reduce shortcut learning because the model
cannot ‘“‘explain away” outcomes using physically
impossible internal states (Karniadakis et al., 2021).

5.2.2 non-negativity, sparsity, and smoothness priors

Many chemical quantities are inherently non-
negative (concentrations, absorbance contributions,
abundance maps). Enforcing non-negativity is a classic
route to interpretability, exemplified by non-negative
matrix factorization, which yields parts-based, additive
representations that align with mixture intuition (Lee &
Seung, 1999). In hyperspectral Raman unmixing,
modern approaches explicitly impose abundance non-
negativity and related constraints to improve physical
interpretability of recovered components (Georgiev et
al., 2024).

Sparsity priors are useful when only a few
chemical sources, peaks, or reactions dominate, and they
can stabilize ill-posed inversions (for example peak
deconvolution or sparse mixture identification).
Compressed sensing theory formalized how sparsity
enables recovery from undersampled measurements,
which motivated many modern sparse regularization
strategies used in spectroscopy and imaging pipelines
(Donoho, 2006). Smoothness priors are equally
important: spectra and time-series often vary smoothly,
and penalizing non-physical roughness can suppress
noise amplification. A concrete example in infrared
analysis is blind spectral deconvolution that estimates
both latent spectrum and instrument response while
using total-variation style regularization to control
unrealistic oscillations (Liu ef al., 2024).

5.2.3 Instrument-response-aware learning

Instrument effects are not nuisances; they
define the forward map from chemical reality to
measured data. If the model ignores this forward map, it
can learn instrument-specific signatures that do not
transfer. A simple but powerful practice is to encode
measurement  knowledge  explicitly:  incorporate
instrument line shape concepts, detector saturation
behavior,  chromatographic = peak models, or
electrochemical circuit constraints. Even basic
terminology like “instrument line shape” is formalized in
IUPAC definitions, emphasizing that spectral features
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are shaped by the spectrometer response and processing
choices (IUPAC, 2025).

In learning systems, instrument-response
awareness can be implemented by (i) training on
synthetic data generated from a forward model, (ii)
adding a differentiable forward layer inside the network,
or (iii) learning residual corrections around a known
forward simulator. Blind infrared deconvolution
methods that explicitly model the instrument response
function illustrate the principle: you do not ask a neural
model to “guess” the true spectrum without telling it how
the instrument distorts the signal (Liu et al., 2024).

5.3 Hybrid models: mechanistic core + learned
residuals

Hybrid modeling treats first-principles physics
and chemistry as the backbone and uses ML to learn what
the mechanistic model misses: unmodeled Kkinetics,
unknown parameters, nuisance effects, or systematic
biases. In chemical engineering, hybrid science-guided
ML has been reviewed as a structured family of
strategies, including serial (mechanistic then ML),
parallel (mechanistic plus ML residual), inverse/hybrid
identification, and reduced-order surrogates, with clear
discussion of when each approach is appropriate
(Sharma & Liu, 2022).

This architecture is attractive for multimodal
measurement because mechanistic parts can act as a
shared “physics interface” across modalities. For
example, a mechanistic reaction model can constrain
feasible  concentration  trajectories  while  the
spectroscopy and chromatography models learn
modality-specific mappings to those latent states. The
physics core improves extrapolation beyond the training
window, while the learned residual captures systematic
discrepancies such as temperature dependence, matrix
effects, or sensor cross-sensitivity that are hard to model
from first principles (Karniadakis et al., 2021; Sharma &
Liu, 2022).

5.4 Bayesian and probabilistic approaches for
uncertainty-aware predictions

Uncertainty is essential in analytical chemistry
because decisions are often threshold-based: pass/fail
quality control, identity confirmation, or whether to
trigger confirmatory measurement. Modern probabilistic
ML distinguishes aleatoric uncertainty (noise inherent in
the observations) from epistemic uncertainty (model
uncertainty that can shrink with more data), and this
separation helps interpret whether uncertainty is coming
from poor measurement quality or from the model being
outside its competence region (Kendall & Gal, 2017).

Bayesian deep learning methods provide
practical approximations to epistemic uncertainty in
neural networks. A well-known result is that dropout
training can be interpreted as approximate Bayesian
inference in deep Gaussian processes, enabling
uncertainty estimates without redesigning the full
architecture (Gal & Ghahramani, 2016). Gaussian
processes themselves remain a strong probabilistic
baseline for regression and calibration because they
provide principled predictive distributions and are well-
studied for scientific inference and surrogate modeling
(Rasmussen & Williams, 2006).

For electrochemical impedance analysis,
uncertainty-aware tools are becoming concrete:
AutoEIS, for example, explicitly integrates Bayesian
inference to automate equivalent-circuit modeling from
EIS data, reflecting a broader trend toward probabilistic
workflows that quantify parameter uncertainty instead of
returning single-point fits (Sadeghi et al., 2025).

5.5 Model governance: dataset bias, drift monitoring,
documentation

Reliable physics-guided Al is not only about
model equations; it requires governance so users can
trust where the model works, where it fails, and how it
was validated. Two widely adopted documentation
frameworks are datasheets for datasets, which
standardize how datasets are described (collection
process, composition, intended use, limitations), and
model cards, which standardize how trained models are
reported (performance slices, ethical considerations,
caveats, intended users) (Gebru et al., 2018; Mitchell et
al., 2019).

For multimodal chemistry, governance should
also include drift monitoring. Dataset shift is expected
when deploying to a new instrument, method, or
operator, and concept drift is expected in long-running
processes. Drift surveys emphasize that drift detection is
a defined task with established evaluation approaches,
and it should be part of operational monitoring for
analytical Al systems (Quifionero-Candela et al., 2009;
Gama et al., 2014).

A minimal governance package for your review
can therefore recommend: (i) dataset documentation
(datasheet), (ii) model documentation (model card), (iii)
leakage-safe validation and grouped evaluation when
batches or days are present, (iv) ongoing drift detection,
and (v) recalibration or transfer procedures when drift is
detected (Gebru et al., 2018; Mitchell et al., 2019; Lopez
et al., 2023).
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Figure 4: Physics-Guided AI Workflow for Multimodal Chemistry: Forward Models + Constraints + Learning + Uncertainty
Quantification + Validation

Table 5: Al Tasks by Modality: Typical Inputs, Targets, and Suitable Model Families (with Pros/Cons)

Modality Typical Common Al Typical Suitable model | Pros Cons / failure | Physics-guided
inputs tasks targets families modes additions
Spectroscopy | 1D spectra; Baseline/denoise; | Peak PLS/PLS2; Fast, often Shortcut Non-negativity
(IR, Raman, | sometimes peak picking and | positions/areas | sparse interpretable | learning on and smoothness
UV-Vis, time-resolved | deconvolution; ; component regression; with baseline/batch | priors (Lee &
NMR) or spectral spectra; NMF; 1D CNN; | constraints; ; instrument- | Seung, 1999);
hyperspectral | unmixing; concentrations | autoencoders; strong for specific instrument line-
cubes quantitative ; uncertainty Bayesian NNs | quant artifacts; poor | shape and
prediction transfer deconvolution
without models (IUPAC,
calibration 2025; Liu et al.,
2024)
Chromatograp | Chromatogra | Peak RT; peak Gradient High Domain shift | Physics/chemistry
hy-MS (LC- | ms; MS1 detection/deconvo | identity; boosting; deep | specificity across rules (isotopes,
MS, GC-MS) | isotope lution; retention formula/ embeddings for | when models | columns/meth | adducts); RT
patterns; time prediction; structure spectra; graph | use ods; false constraints;
MS/MS compound candidates; models; kernel | fragmentation | annotation uncertainty-aware
spectra; peak | annotation; class labels methods rules and RT | confidence; ranking;
tables molecular missingness community
networking and batch curation
effects
Electrochemis | Current— Denoise; Circuit Feature + tree Strong for Non- Conservation and
try potential state/parameter topology; R,C, | models; 1D parameter uniqueness of | monotonicity
(voltammetry, | curves; estimation; diffusion CNN; inference; circuit fits; constraints;
EIS) Nyquist/Bode; | equivalent-circuit | params; state- | probabilistic supports overfitting to | Bayesian
time series identification; of-health inference; principled UQ | geometry; inference for
inverse modeling Bayesian drift with circuits
methods aging (AutoEIS)
Chemical 2D/3D Segmentation; Chemical U-Net; Captures Illumination | Non-negativity
imaging images; unmixing; super- | maps; class transformers; spatial and and abundance
(hyperspectral | hyperspectral | resolution/ masks; spatial | NMF/ heterogeneity | instrument constraints; PSF /
, MSI, cubes; MSI deconvolution; distributions unmixing; and transfer instrument
microscopy) | maps spatial physics- microstructure | issues; response models;
quantification informed shortcut spatial
deconvolution learning via smoothness priors
background
Cross- Aligned Joint Robust Multiblock Better Fusion can Grouped
modality blocks across | representation predictions methods; deep | robustness if | amplify validation; drift
fusion modalities learning; decision | across multimodal modalities confounding | monitoring;
fusion; OOD instruments fusion; complement if alignment is | physics interface
detection; and labs probabilistic wrong as shared latent
calibration stacking state
transfer
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Representative anchors: non-negativity
foundations (Lee & Seung, 1999); instrument line shape
concept (IUPAC, 2025); IR instrument-response
deconvolution (Liu et al, 2024); retention-time
generalization challenges and methods (Zhang et al.,
2024); MS community curation and networking (Wang
et al., 2016); EIS deep learning and automated modeling
(Doonyapisut ef al., 2023; Sadeghi et al., 2025).

6. Validation, metrology, and uncertainty (the
analytical chemistry backbone)

Multimodal data fusion becomes analytical
chemistry only when it is treated as a measurement
procedure: the measurand is defined, -calibration
establishes traceability, validation demonstrates fitness
for intended use, and uncertainty is stated and propagated
to decisions (JCGM, 2008; JCGM, 2012a; De Biévre et
al,, 2011). In this framing, “Al performance” is not
enough; reviewers increasingly expect the same
discipline used for analytical procedures, including
validation characteristics and lifecycle thinking (ICH,
2023a; ICH, 2023b).

6.1 Calibration strategies across modalities (external,
internal standard, standard addition)

Calibration connects instrument response to a
quantity value that can be compared across time,
instruments, and laboratories, so it is the first place where
multimodal workflows either become trustworthy or
become irreproducible (De Biévre ef al., 2011; JCGM,
2012b). External calibration is straightforward and
supports linearity/range claims, but it is vulnerable to
matrix effects and drift when the calibration environment
differs from real samples (ICH, 2023a; Thompson et al.,
2002). Internal standardization improves robustness
when an internal standard tracks losses, injection
variability, or signal fluctuations and is particularly
important in workflows where instrument response is
sensitive to sample composition (Thompson et al., 2002).
Standard addition is often the most defensible approach
in severe matrix-effect regimes because the calibration is
performed inside the sample matrix, reducing bias from
suppression/enhancement and other matrix-dependent
behavior (Thompson et al., 2002; Ellison & Williams,
2012).

In multimodal studies, reviewers will look for
an explicit calibration hierarchy: which modality
provides the traceable anchor (often a separation—-MS
method or a certified reference method), how other
modalities are cross-calibrated to it, and whether transfer
is re-checked when instruments, operators, or batches
change (De Biévre et al., 2011; ICH, 2023b). Whenever
reference materials are used, good practice is to
document how they were selected, handled, and applied
to maintain comparability and traceability across runs
(IS0, 2015; ISO, 2017a).

6.2 Figures of merit: selectivity, sensitivity,
LOD/LOQ, precision, accuracy, robustness

Analytical figures of merit must be reported in
a way that maps to established validation language. ICH
validation guidance explicitly requires characterizing
performance  with core  attributes such as
specificity/selectivity, accuracy, precision, detection
limit, quantitation limit, linearity, range, and robustness
(ICH, 2023a). For detection and quantification, it is
important to use consistent definitions. The classic
statistical treatment of detection capability in analytical
chemistry is often traced to Currie’s framework, which
clarifies how detection decisions depend on error
probabilities and distributional assumptions (Currie,
1968). Later work discusses practical pitfalls and
interpretation issues around IUPAC-aligned LOD
definitions, highlighting how inconsistent practice can
produce  misleading comparability (Long &
Winefordner, 1983). Related international terminology
and guidance for detection capability are also covered in
ISO standards (ISO, 1997).

Precision should be stated under clearly
described conditions (repeatability vs intermediate
precision), and accuracy should be treated as trueness
plus precision rather than a single “error” number (ICH,
2023a; ISO/IEC, 2017). In fusion papers, the minimum
expectation is to report figures of merit per modality and
for the fused output, and to state whether fusion
improved sensitivity/selectivity at the expense of
robustness or interpretability (Westad & Marini, 2015;
Lopez et al., 2023).

6.3 Cross-modality consistency checks (does the fused
result obey chemistry/physics?)

A unique advantage of multimodal chemistry is
that different instruments constrain the same underlying
chemical state through different physics. That advantage
only becomes credible when authors explicitly show that
the fused result obeys chemical and physical constraints
and that modalities do not contradict each other beyond
stated uncertainty (JCGM, 2008; Smolinska ef al., 2019).
Practically, reviewers expect evidence of (i) scale
consistency (units and calibration compatibility), (ii)
constraint consistency (non-negativity for
concentrations, mass or charge balance where relevant),
and (iii) agreement diagnostics (residual plots and
disagreement metrics showing when modalities diverge)
(De Bigvre et al., 2011; JCGM, 2008).

A simple but powerful pattern is to treat each
modality as an independent measurement model and then
test whether they converge on the same measurand
within uncertainty. When they do not, the paper should
explain whether the discrepancy is attributable to
sampling, matrix effects, model bias, or instrument drift,
rather than silently averaging disagreements through
fusion (Ellison & Williams, 2012; Westad & Marini,
2015).
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6.4 Uncertainty decomposition:
instrument, model, fusion

Uncertainty is what converts a fused estimate
into a defensible measurement result. The GUM
framework  formalizes uncertainty through a
measurement model and propagation from input
quantities to the output, using either analytical
propagation or Monte Carlo methods when linear
approximations are not appropriate (JCGM, 2008;
JCGM, 2008a). In chemistry labs, Eurachem guidance
operationalizes this into practical uncertainty budgets
and emphasizes that uncertainty evaluation must be tied
to fitness-for-purpose  rather than theoretical
completeness (Ellison & Williams, 2012; Bettencourt da
Silva & Williams, 2015).

sampling,

For multimodal fusion, a practical uncertainty
budget should separate at least four components:
sampling uncertainty, instrument/calibration uncertainty
(per modality), model uncertainty (chemometrics/ML),
and fusion uncertainty (introduced by combining
modalities and any cross-calibration). Sampling
uncertainty can dominate in real-world settings, and
Eurachem guidance treats sampling as part of the
measurement process rather than a pre-analytical
footnote (Eurachem et al, 2019). For compliance or
pass/fail decisions, uncertainty must be connected to
decision rules and statements of conformity; this is
addressed both by metrology guidance on conformity

assessment and by laboratory accreditation guidance
used in ISO/IEC 17025 contexts (JCGM, 2012b; ILAC,
2019; ISO/IEC, 2017).

6.5 Reporting standards and reproducibility (what
reviewers expect now)

Reviewers increasingly judge multimodal
fusion manuscripts as method papers: they expect
enough detail to reproduce the pipeline and to evaluate
whether performance is real or inflated. At minimum,
this means reporting calibration and validation elements
aligned with analytical procedure guidance (ICH, 2023a;
Thompson et al., 2002) and describing model validation
in a way that avoids leakage and respects grouping
(batch, day, instrument, site) (Westad & Marini, 2015;
Lopez et al., 2023). For long-running or field-deployed
systems, reviewers also expect drift control (QC
samples, monitoring logic, recalibration triggers)
because stability over time is part of “robustness” in
practice (Thompson & Wood, 1995; ISO/IEC, 2017).

Reproducibility expectations now commonly
extend beyond narrative description to structured sharing
of data and metadata. FAIR principles are frequently
used as the standard reference for how scientific data
should be made reusable, and they are especially
important in multimodal studies where hidden metadata
debt prevents independent replication (Wilkinson ef al.,
2016).

Table 6: Multimodal Validation Checklist: Minimum Reporting Requirements for Reproducible Fusion Studies

Checklist domain Minimum reporting requirements

Key guidance anchor

how “ground truth” is established

Measurand definition | Measurand, units, matrix definition, operating conditions, and JCGM (2008); De Biévre et al., (2011)

Sampling and
handling contamination controls

Sampling design, replicates, holding times, storage, transport,

Eurachem et al., (2019)

Sample preparation
standards/standard addition if used

Full workflow, blanks, spike recovery strategy, internal

Thompson et al., (2002); ICH (2023a)

Instrument settings
environment, QC schedule

Instrument model/configuration, acquisition parameters,

ISO/IEC (2017)

range; recalibration frequency

Calibration strategy External/internal standard/standard addition; model form;

ICH (2023a); Ellison & Williams (2012)

Figures of merit

Selectivity, sensitivity, LOD/LOQ, precision, accuracy,
robustness per modality + fused output

ICH (2023a); Currie (1968); ISO (1997)

Preprocessing
alignment/normalization rules

Exact preprocessing steps, parameters, software versions;

Westad & Marini (2015)

Data splits and

validation set when claiming transfer

Grouped splitting rules; nested CV if tuning; truly external test | Westad & Marini (2015); Lopez et al.,

(2023)

Fusion description
(drop-modality)

Fusion level (data/feature/decision), rationale, ablation tests

Smolinska et al., (2019)

Dirift control
versioning

Drift indicators, control charts/QC logic, recalibration triggers, | Thompson & Wood (1995); ISO/IEC

(2017)

Cross-modality

consistency residual analysis

Chemical/physical plausibility checks, disagreement metrics,

JCGM (2008); De Biévre et al., (2011)

Uncertainty budget

Sampling + instrument + model + fusion components;
propagation method; coverage statement

JCGM (2008); Ellison & Williams
(2012); Eurachem et al, (2019)

Decision rules
conformity, risk rationale

Guard bands/decision rule for compliance, statement of

ILAC (2019); JCGM (2012b)

Data and code
availability

FAIR alignment

Raw data, metadata schema, code/workflows, versioning;

Wilkinson et al., (2016)
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7. Representative application case studies (show
power across many fields)

This section is designed to prove a single point:
multimodal chemical measurement is not “more
instruments,” it is a way to remove ambiguity by
combining orthogonal physical principles (separation,
spectral fingerprints, electrochemical kinetics, and
spatially resolved imaging) and then fusing the evidence
with validation strategies that prevent overconfident
failures. A useful framing is to decide, for each problem,
whether you need low level fusion (combine aligned
signals), mid-level fusion (combine engineered features
or latent variables), or high-level fusion (combine
decisions from separate models), and then to choose
validation splits that reflect the real deployment scenario
rather than random splits that leak information.
(Smolinska et al., 2019; Lopez et al., 2023; Westad &
Marini, 2015).

7.1 Pharmaceutical and biomedical: identity plus
quantification in complex matrices (LC-MS plus
spectroscopy plus ML)

In pharma and biomedical analysis, the central
challenge is that complex matrices (plasma, serum, urine,
tissue, formulated products) can distort signals at
multiple stages, especially in mass spectrometry where
ion suppression or enhancement changes the apparent
analyte response. A dedicated matrix effects review
emphasizes that these effects can arise throughout
sample preparation and in GC-MS and LC-MS
workflows, and they directly threaten accuracy,
sensitivity, and reproducibility if not assessed and
controlled. (Williams et al., 2023).

For quantitative claims to be credible in
regulated contexts, the method must be validated against
recognized expectations for accuracy, precision,
selectivity, and stability, and the study sample analysis
must follow disciplined procedures. Regulatory
guidance documents (FDA and ICH MI10 related
guidance) explicitly define validation elements and
expectations for bioanalytical methods used for
regulatory decisions, which is why this case study is ideal
for showing how “Al plus multimodal” has to be paired
with traceable validation and documentation. (FDA,
2024; FDA, 2018; EMA, 2022).

A strong multimodal strategy here uses LC-MS
as the quantitative anchor while spectroscopy provides
speed and non-destructive screening. Portable and
handheld Raman and NIR are widely reviewed for in-
process and quality-control testing of pharmaceutical
products, typically relying on chemometrics for
classification and prediction rather than single peak
rules. (Deidda et al, 2019). Process Analytical
Technology reviews further explain how PAT supports
quality-by-design style manufacturing by monitoring
critical attributes in unit operations such as blending,
granulation, tableting, and coating, which naturally
creates a multimodal setting where signals must be

integrated to support control decisions. (Kim et al.,
2021).

In writing this case study, emphasize the
“reference to deployment” chain. LC-MS provides
identity and quantification, spectroscopy provides rapid
screening and process monitoring, and Al primarily
functions as a calibration and transfer tool across
batches, instruments, and sites. The most defensible
fusion pattern is often mid-level fusion, where you
combine LC-MS peak table features with spectroscopic
latent variables, then validate using batch-wise or
instrument-wise splits, aligned with predictive-model
validation guidance for real-world generalization.
(Smolinska et al., 2019; Lopez et al., 2023).

7.2 Environmental and food: trace contaminants and
field deployable fusion (electrochemistry plus
spectroscopy)

Environmental and food settings stress the
system in different ways: targets can be trace level,
samples are diverse and messy, and measurement may
need to happen outside the lab. Reviews of
electrochemical biosensors for on-site food safety
emphasize the promise of rapid and low-cost detection,
but they also highlight that complex matrices and
minimal sample preparation make sensitivity and
selectivity difficult, which is exactly where orthogonal
sensing and fusion become valuable. (Hosseinikebria et
al., 2025). A complementary review on smart
electrochemical sensors for foodborne hazards similarly
frames the field around design strategies and persistent
performance challenges in real matrices. (Dong et al.,
2025).

The multimodal argument is strongest when
you show how electrochemistry and spectroscopy
compensate for each other. Electrochemical sensors are
excellent for fast response and portable deployment,
while infrared or Raman-based approaches add a
chemical fingerprint that can reduce false positives and
improve specificity. A recent RSC review explicitly
evaluates electrochemical sensing, infrared
spectroscopy, hyperspectral imaging, SERS, and
fluorescence sensing for food safety, highlighting that
different technologies dominate under different
constraints and that validation milestones matter. (Feng
et al, 2025).

Data fusion becomes the mechanism to turn
“two imperfect sensors” into one reliable decision. A
recent review dedicated to multi-source data fusion for
food contaminant detection surveys how data from
spectroscopy, imaging, and other modalities are
combined and why the choice of fusion level and
preprocessing determines whether performance transfers
across sample types. (Adade et al, 2024). In your
narrative, you can motivate high level fusion for field
programs, because it tolerates missing modalities and
supports calibrated decision thresholds, while still
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allowing a lab confirmatory test (for example LC-MS) to
close the loop when needed. This mapping from
modality to fusion choice aligns with general data-fusion
frameworks wused across life science analytics.
(Smolinska et al., 2019).

7.3 Catalysis and surface chemistry (operando):
intermediates and structure activity links
(spectroscopy plus electrochemistry plus imaging)
Catalysis is the showcase domain for why
multimodal must be “physics guided.” Surface
intermediates are transient, spatially heterogeneous, and
strongly dependent on operating conditions, so
conclusions drawn from a single probe are often
underdetermined. A recent Chemical Reviews
perspective on operando and in situ studies emphasizes
that operando approaches are central for linking catalyst
structure and reactivity, and it situates modern catalysis
research around integrated characterization under
working conditions. (Roldan Cuenya ef al., 2024).

The practical problem is that operando
experiments can produce misleading certainty if the cell
design, synchronization, or interpretation is weak. A
best-practices article in Nature Communications makes
this point directly, arguing that execution and
interpretation determine how strong mechanistic
conclusions can be and what uncertainties remain, which
is why this article is ideal to cite when you justify design
choices for fusion and validation. (Prajapati ef al., 2025).

A compelling multimodal template for this case
study is to treat spectroscopy as the “intermediate and
state” channel, electrochemistry as the “kinetics and
transport” channel, and imaging as the “heterogeneity
and structure” channel. When you describe fusion,
emphasize that the goal is not to stack raw signals, but to
fuse mechanistically meaningful descriptors (for
example, spectral proxies for adsorbate coverage,
electrochemical descriptors of charge transfer and mass
transport, and image-derived activity hotspot metrics).
This is a natural fit for mid-level fusion, followed by
perturbation-based validation such as potential steps or
reactant switching that must produce consistent cross-
modal narratives, as recommended by operando best-
practice guidance. (Prajapati et al., 2025).

7.4 Energy materials and devices: batteries and
corrosion (EIS plus imaging plus spectroscopy)

Energy devices highlight a different failure
mode: standard electrochemical measurements provide
global averages, but degradation is driven by local
inhomogeneities, interfaces, and evolving
microstructure. Electrochemical impedance
spectroscopy is widely used because it can separate
contributions from different processes in frequency
space, but a major tutorial also stresses that interpretation
must be physically grounded and that poor modeling can
create convincing but incorrect parameter stories.
(Lazanas & Prodromidis, 2023).

This is why imaging and spectroscopy matter.
A recent review on operando imaging for batteries
frames operando imaging as a way to connect micro and
mesoscale  evolution to  macroscopic  device
performance, which directly supports the multimodal
promise of linking structure, composition, and
performance in real time rather than post-mortem
inference. (Zhang et al., 2024). Complementary research
and reviews on local imaging in batteries further
reinforce that spatially varying transport and reaction
rates can self-amplify, making local observation
essential for diagnosing and mitigating degradation.
(Pollok et al., 2025).

For corrosion, the same measurement logic
applies, but the deployment context can be field
structures and longtime horizons. A recent review
focused on corrosion in reinforced concrete explains that
EIS has expanded beyond laboratory studies toward field
assessment, while still facing challenges that motivate
improved analysis and interpretation. (Alexander et al.,
2025). In writing the case study, emphasize that fusion is
not optional: EIS helps infer interfacial and transport
behavior, imaging helps localize damage evolution, and
spectroscopy helps identify chemical state changes and
reaction products. The most defensible fusion here is
often hybrid and physics guided: you use physically
meaningful constraints for impedance interpretation and
you validate across cells, temperatures, protocols, or
exposure environments using validation strategies
known to prevent optimistic leakage. (Lazanas &
Prodromidis, 2023; Lopez ef al., 2023).

7.5 Polymer and materials QC: composition to
morphology coupling (spectroscopy plus imaging
plus chemometrics)

Polymers and formulated materials are an ideal
“bridging” domain because the same chemical
composition can yield different properties depending on
morphology, phase separation, and spatial distribution of
additives. A polymer characterization review focused on
vibrational ~spectroscopy and chemical imaging
summarizes how Raman, NIR, and mid-IR based
approaches are used to characterize polymers in diverse
forms and to capture behavior that is not visible to bulk
assays. (Mukherjee & Gowen, 2015).

Chemical imaging is particularly important
because morphology is often the hidden variable that
drives performance. A classic Analytical Chemistry
paper on Raman chemical imaging demonstrates
noninvasive visualization of polymer blend architecture,
providing a foundational reference for why spatially
resolved spectroscopy is central for polymer QC and
structure-property links. (Schaeberle et al., 1995).

To make the topic modern, connect polymer QC
to hyperspectral imaging and advanced chemometrics,
where data volume and dimensionality demand learning-
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spectral latent variables with spatial texture and
morphology descriptors to predict QC endpoints, and
that validation must hold out entire lots or production
runs rather than pixels to avoid inflated performance,
consistent with general chemometric validation
guidance. (Westad & Marini, 2015).

based analysis. A recent critical review positions
hyperspectral imaging as a step beyond -classical
spectroscopic PAT tools by combining spatial and
chemical information, while emphasizing that powerful
data analysis is required for interpretation and industrial
implementation. (de Juan & Rocha de Oliveira, 2025). In
this case study, show that mid level fusion can combine

Table 7: Application-to-Workflow Map: Recommended multimodal stacks for common chemical questions (concise)

Application area Primary question Recommended multimodal Fusion level Key validation step
stack (typical)
Pharmaceutical & Identity + accurate LC-MS/MS (anchor) + Mid-level Split/hold-out by batch or
biomedical quant in complex Raman/NIR (rapid screen) + site; matrix-effect checks;
matrices NMR (structure) external test set
Environmental & food Trace contaminants | Electrochemical sensor + High-level Stress-test across matrix
with field-ready portable IR/Raman =+ lab LC— types and conditions;
decisions MS confirm calibrated decision
thresholds
Catalysis & surface Intermediates + Operando Mid-level Synchronization +
chemistry (operando) structure—activity IR/Raman/XAS/EPR + (physics- perturbation tests
links electrochemistry + operando guided) (switching/steps); cross-
imaging modality consistency
Energy devices Degradation EIS + operando spectroscopy Hybrid / Mid- | Hold-out by cell/batch; test
(batteries/supercaps) diagnosis during (Raman/XAS/IR) + operando level across temperature &
operation imaging protocol; drift monitoring
Corrosion monitoring State and EIS + metadata (T, humidity, High-level Time-split validation
progression under chloride) + surface (deploy) / (past—future); field
real exposure spectroscopy/imaging Mid-level validation; recalibration plan
(lab)
Polymers & materials Blend ratio, phase IR/Raman + Mid-level Hold-out by lot/run (not
QC separation, defects hyperspectral/Raman imaging pixels); cross-instrument
+ chemometrics transfer test
Semiconductors & thin Surface state, XPS/Raman + Mid-level Replicate locations; inter-
films contamination, mapping/imaging + MS for operator reproducibility;
uniformity trace contaminants registration error reporting
Bioprocess/PAT Real-time CQAs Inline NIR/Raman + process High-level Time-based splits
and process control | sensors =+ periodic (control) / (early—late); site transfer;
LC/HPLC/LC-MS reference Mid-level drift alarms & recalibration
(build)
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8. Challenges and future directions
8.1 Standardized multimodal datasets and
benchmark tasks

A major barrier to multimodal chemical
intelligence is the lack of fusion-ready datasets where the
same samples are measured across multiple modalities
with consistent identifiers, raw data availability, and rich
metadata. Without this, models often learn lab- or
instrument-specific signatures instead of chemistry, and
results become hard to reproduce or transfer. The FAIR
principles  (Findable, = Accessible, Interoperable,
Reusable) are widely used guidance for making datasets
machine-actionable and reusable, which is exactly what
multimodal benchmarking needs (Wilkinson et al.,
2016).

Community benchmarking already works well
in sub-areas and can be extended to multimodal fusion.
For example, the CASMI challenges created shared
evaluation settings for small-molecule identification and
exposed realistic failure modes that are hidden when
studies use non-comparable metrics (Schymanski et al.,
2017). Likewise, open community platforms such as
GNPS enable large-scale sharing and curation of MS/MS
data and libraries, supporting reproducible comparisons
of annotation pipelines (Wang et al., 2016).

For “chemistry-wide” multimodal benchmarks,
the next step is paired and synchronized repositories
where raw data and metadata are preserved across
techniques. Metabolomics infrastructure shows what is
possible:  MetaboLights explicitly archives raw
experimental data and associated metadata (Haug et al.,
2013; Haug et al, 2020). For imaging mass
spectrometry, METASPACE supports metabolite
annotation workflows and hosts large public collections
that can be used to stress-test generalization (Palmer et
al., 2017; METASPACE, n.d.).

A modern direction is to define benchmark
tasks that reflect real deployment: calibration transfer,
drift-robust quantification, operando state estimation,
and uncertainty-calibrated decisions across labs and
instruments (not only average accuracy within one
dataset). (Wilkinson et al., 2016).

8.2 Interoperability: metadata, FAIR data,
instrument formats and ontologies

Multimodal fusion often fails for simple
reasons: missing metadata, inconsistent units, unknown
preprocessing, and unclear provenance. FAIR explicitly
elevates interoperability and reuse, implying that
multimodal studies must capture enough structured
context for both humans and machines (Wilkinson et al.,
2016).

Several communities already provide strong
building blocks. In mass spectrometry, mzML is a widely
adopted community standard for vendor-neutral MS data
exchange (Martens et al, 2011). In NMR, nmrML

provides a vendor-agnostic open format designed for
long-term archiving and reuse of NMR data (Schober et
al., 2018).

Beyond file formats, multimodal chemistry
needs structured descriptions of the experiment itself.
The ISA software suite was designed to support
standards-compliant experimental annotation, including
multi-technology studies and ontology-backed checklists
(Rocca-Serra ef al., 2010). Complementary perspectives
on interoperable bioscience data and “data commoning”
further emphasize shared frameworks and incentives for
standardized metadata (Sansone ef al., 2012).

For regulated and industrial workflows,
enterprise-level interoperability efforts are also growing.
The Allotrope Framework describes a standardized
approach to storing analytical data plus instrument
settings and contextual metadata to support integrity and
downstream analytics (Allotrope Foundation, n.d.;
Kayser & Lau, 2024). For cross-technique interchange
and archiving, AnIML is an ASTM-linked
standardization effort for analytical result data and
metadata (ASTM International, n.d.).

A practical “future direction” message for your
review is: treat interoperability as a design constraint,
meaning minimum metadata fields, standard formats
when available, controlled vocabularies for instrument
and sample descriptors, and explicit provenance of
preprocessing and calibration. (Wilkinson et al., 2016;
Rocca-Serra et al., 2010).

8.3 Real-time fusion and closed-loop experimentation
The frontier is moving from offline data fusion
to real-time inference that guides what the lab does next.
Self-driving laboratories combine automation, online
analytics, and algorithmic experiment selection to
accelerate discovery and optimization (Tom et al., 2024).
In this setting, multimodal fusion becomes a control
problem: each modality constrains a latent chemical
state, and the system chooses the next action to reduce
uncertainty or optimize objectives (Tom ef al., 2024).

Demonstrations show why these matters: a self-
driving laboratory can efficiently explore trade-offs and
move toward a Pareto front when multiple objectives
compete (MacLeod et al, 2022). For multimodal
chemistry, the key research direction is “measurement-
aware autonomy,” where the platform selects the next
measurement because it is maximally informative for the
fused estimate (for example, spectroscopy for specificity,
electrochemistry ~ for  kinetics,  imaging  for
heterogeneity), rather than simply collecting everything
all the time (Tom et al., 2024).

8.4 Green and miniaturized analytics (portable
multimodal platforms)

Sustainable measurement is increasingly a
design requirement, not an optional add-on. The 12
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principles of green analytical chemistry explicitly
promote miniaturization, automation, and reducing
reagent use, waste, and energy demand (Gatuszka et al.,
2013).

Portable spectroscopy is a strong example
because it can reduce sampling logistics and enable in
situ decisions when coupled to robust chemometrics.
Reviews discuss how portable NIR supports
nondestructive, online, or in situ analyses and highlight
the central role of chemometrics for extracting reliable
information from compact instruments (Gullifa et al.,
2023; Yan et al., 2023). Portable Raman instrumentation
is also expanding rapidly; reviews emphasize
performance limits and the importance of careful
validation and preprocessing for field deployment
(Jehlicka et al., 2022).

Miniaturization at the platform level has deep
roots in micro total analysis systems. The classic concept
of miniaturized “total chemical analysis systems”
proposed integrating analytical operations to reduce
transport time and reagent consumption while enabling
faster workflows (Manz et al., 1990). The modern future
direction is portable multimodal stacks (for example
handheld spectroscopy plus electrochemical sensing)
with on-device fusion that reports not only a prediction,
but also uncertainty and an “out-of-scope” warning
(Gatuszka et al., 2013; Gullifa et al., 2023).

8.5 Trustworthy AI: uncertainty, explainability, and
regulatory acceptance

As multimodal AI shifts from papers to
regulated or safety-relevant decisions, “trustworthy AI”
must be operationalized as governance, evaluation,
monitoring, and lifecycle management. The NIST Al
Risk Management Framework (Al RMF 1.0) provides a
lifecycle structure for managing Al risks and emphasizes
continuous monitoring and governance rather than one-
time model building (NIST, 2023).

Regulatory expectations around Al lifecycle
documentation are becoming more explicit, especially
for medical-device software. FDA’s SaMD pages
highlight ongoing guidance activity for Al-enabled
device software functions and lifecycle considerations
(FDA, 2025a; FDA, 2025b). In parallel, Good Machine
Learning Practice principles (referenced by FDA and
published by IMDRF) emphasize total product lifecycle
thinking, transparency, and quality systems alignment
(FDA, 2025c; IMDREF, 2025).

For chemistry and pharmaceutical analysis,
method validation and lifecycle concepts provide strong
analogies for multimodal Al validation. ICH Q2(R2) sets
expectations for analytical procedure validation, and
Q14 frames science- and risk-based analytical procedure
development and maintenance (ICH, 2023a; ICH,
2023b). A clean future direction is ‘“audit-ready
multimodal AI”: clearly defined intended use, locked

preprocessing,  uncertainty  calibration,  external
validation under domain shift (new instruments, labs,
matrices), and drift monitoring with controlled update
pathways (NIST, 2023; ICH, 2023a).

CONCLUSION

Multimodal ~ chemical = measurement s
becoming a practical unifying layer across chemistry and
physics because it links orthogonal signals to a common
chemical reality: identity, concentration, structure/state,
kinetics, and spatial heterogeneity. When designed well,
fusion does not merely increase accuracy; it reduces
ambiguity by forcing agreement between independent
physical principles, so the final output is more robust to
interference, drift, and instrument changes than any
single modality alone. The strongest workflows therefore
treat fusion as a measurement strategy, not a post-
processing trick: the modalities are chosen to be
complementary, the fusion level is kept as simple as
possible, and models are built around a clearly defined
decision (screening vs quantification vs mechanistic
inference vs control).

A key message of this review is that the field
will not achieve real-world impact without the analytical
chemistry backbone. Multimodal Al must be calibrated,
validated, and reported like an analytical procedure,
including figures of merit per modality and for the fused
output, explicit cross-modality consistency checks, and
uncertainty budgets that separate sampling, instrument,
model, and fusion components. Only then can fused
results be compared across labs and time, used in
conformity decisions, and trusted in regulated or safety-
relevant settings. In parallel, physics-guided modeling
and probabilistic inference are shifting multimodal Al
from “high performance on a dataset” to transferable and
uncertainty-aware  predictions, enabling reliable
deployment and safer automation.

Looking forward, the most exciting trajectory is
the convergence of multimodal sensing, interoperability,
and autonomy: standardized datasets and benchmark
tasks will make comparisons fair; FAIR-aligned
metadata and instrument formats will make fusion
reproducible; real-time fusion will power closed-loop
experimentation and self-driving labs; and miniaturized
green platforms will move multimodal analytics from
centralized facilities to field and production
environments. The practical decision framework is:
select an anchor modality for traceable quantification,
add orthogonal modalities that constrain ambiguity, fuse
at the simplest level that achieves robustness, and
validate under realistic domain shift with uncertainty
reporting. If this discipline becomes standard, the next
decade will see multimodal workflows evolve from
descriptive measurements into quantitative, uncertainty-
aware, and deployable chemical intelligence.
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