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Abstract  Review Article 

 

AI-enabled chemistry is rapidly moving from single-instrument modeling to multimodal chemical measurement, where 

spectroscopy, chromatography–mass spectrometry, electrochemical sensing, and chemical imaging jointly constrain the same 

underlying chemical state. This review synthesizes how data fusion (low-, mid-, and high-level) can unify heterogeneous 

signals from molecules to materials and devices, and why physics guidance is essential for models that remain reliable under 

matrix effects, instrument drift, and cross-laboratory transfer. We discuss practical fusion architectures, hybrid mechanistic–

learning models, and uncertainty-aware inference that converts predictions into decision-ready measurement results. A central 

theme is that multimodal AI must be evaluated as an analytical procedure: calibration, figures of merit, cross-modality 

consistency checks, and uncertainty budgets must be reported with the same discipline expected in analytical chemistry. We 

map common AI tasks by modality (peak deconvolution, spectral unmixing, retention-time prediction, MS annotation, EIS 

parameter estimation, image segmentation) and show representative case studies spanning pharma/biomedicine, 

food/environmental sensing, operando catalysis, energy devices, and polymer/materials quality control. Finally, we outline 

future directions: standardized multimodal benchmarks, interoperable metadata and formats, real-time closed-loop 

experimentation, greener miniaturized platforms, and trustworthy AI practices that support regulatory acceptance and 

deployment. Overall, multimodal measurement is converging toward a new paradigm: quantitative, uncertainty-aware, and 

deployable chemical inference from fused evidence rather than isolated instrument readouts. 

Keywords: Multimodal data fusion; analytical chemistry; physics-guided AI; chemometrics; spectroscopy; LC–MS/GC–MS; 

electrochemical impedance spectroscopy (EIS); chemical imaging; uncertainty quantification; method validation; calibration 

transfer; operando characterization. 
Copyright © 2026 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 
author and source are credited. 

 

1. INTRODUCTION 
Chemical science increasingly operates in 

regimes where no single instrument can provide a 

complete, decision-ready description of a sample. Real 

samples are multicomponent, heterogeneous, and 

dynamic: they may contain isomers and trace impurities, 

exist as multiphase formulations, evolve during 

reactions, or display nanoscale spatial structure that 

controls macroscopic function. In such settings, an 

analytical result is rarely just “a spectrum” or “a 
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chromatogram”; it is an inference about identity, 

quantity, structure, dynamics, and spatial context that 

must remain defensible under matrix effects, instrument 

drift, and incomplete observability. These realities 

motivate a shift from single-technique workflows toward 

multimodal chemical measurement, where 

complementary modalities jointly constrain the 

interpretation and reduce ambiguity through cross-

validation and shared physical consistency checks. 

Practical evidence of this direction appears across 

application areas from correlative chemical imaging in 

tissues (combining vibrational spectroscopy with mass 

spectrometry imaging) to multimodal hyperspectral 

approaches where rich spectral–spatial data demand 

advanced multivariate interpretation. (Tuck et al., 2020; 

de Juan, 2025).  

 

At the core of this shift is data fusion: the 

deliberate integration of heterogeneous measurements 

into a single inferential pipeline. A widely used framing 

distinguishes low-level fusion (combining raw signals), 

mid-level fusion (combining extracted features), and 

high-level fusion (combining decisions or model 

outputs). This taxonomy is particularly useful in 

chemistry because different instruments produce data 

with different noise structures, dimensionalities, and 

physical meanings making “how” and “where” fusion 

occurs as important as “what” is fused (Smolinska et al., 

2019). In parallel, the chemometrics community has 

developed multi-block (multi-source) data analysis to 

integrate distinct but related datasets while preserving 

block-specific structure and avoiding naïve 

concatenation; contemporary reviews emphasize its role 

in tasks ranging from visualization and prediction to 

calibration transfer in multi-instrument settings (Mishra 

et al., 2021). In other words, multimodal analytics is not 

merely a technological trend; it is a methodological 

response to the reality that chemical information is 

distributed across measurement physics and must be 

recombined in statistically and physically coherent ways 

(Smolinska et al., 2019; Mishra et al., 2021).  

 

This review focuses on a modern, broadly 

applicable multimodal stack spectroscopy, 

chromatography–mass spectrometry, electrochemical 

sensing, and chemical imaging because together they 

span much of the chemical information space (molecular 

structure, composition, interfacial kinetics, and spatial 

heterogeneity). Spectroscopy interrogates light–matter 

interactions to report functional groups, bonding 

environments, electronic structure, and (in some cases) 

surface chemistry. Chromatography–mass spectrometry 

(e.g., LC–MS, GC–MS and related “hyphenated” 

methods) couples separation with molecular 

identification/quantification, offering powerful 

deconvolution of complex mixtures where overlapping 

spectral features alone may be insufficient (Patel et al., 

2010). Electrochemical sensing adds access to interfacial 

processes and kinetics that are central to catalysis, 

corrosion, biosensing, and energy materials; for 

example, electrochemical impedance spectroscopy (EIS) 

is widely treated as a key method for probing interfacial 

properties and reaction/transport contributions, with 

modern tutorials emphasizing both theory and practical 

interpretation pitfalls (Lazanas et al., 2023). Chemical 

imaging (including hyperspectral imaging, vibrational 

mapping, and mass spectrometry imaging) adds the 

spatial dimension often essential when function depends 

on microstructure, phase segregation, or localized 

chemistry. Recent treatments highlight that 

hyperspectral imaging uniquely combines spatial and 

chemical information but typically requires strong 

chemometric and modeling support to become 

operational in process and applied contexts (de Juan, 

2025). The power of multimodality becomes especially 

clear in correlative workflows: for instance, multimodal 

imaging approaches integrating vibrational 

spectroscopies with mass spectrometry imaging have 

been reviewed as a route to multi-scale, multi-omic 

chemical insight in tissues illustrating how modalities 

compensate for each other’s limitations (Tuck et al., 

2020).  

 

However, simply collecting more data does not 

guarantee better chemical knowledge. Multimodal 

measurement is fundamentally an inverse problem: 

instruments report signals shaped by physics (e.g., 

convolution with an instrument response, transport 

limitations, ionization efficiency, scattering, and 

background contributions), while analysts seek latent 

chemical variables (composition, structure, states, rate 

constants, maps). Without principled inference, 

multimodal workflows can amplify bias, propagate 

artifacts across modalities, or create “agreement” that is 

merely shared systematic error. This is why the 

integration of physics-guided modeling with AI is 

increasingly positioned as the modern solution: physics 

provides constraints, interpretability, and extrapolation 

structure; AI offers flexible function approximation, 

automated feature extraction, and scalable fusion across 

high-dimensional signals. The broader scientific 

literature describes physics-informed machine learning 

as an approach that integrates data with 

mathematical/physical models (for example by 

embedding governing laws or constraints into learning), 

particularly valuable when data are noisy, sparse, or 

expensive (Karniadakis et al., 2021). In analytical 

chemistry terms, this translates to using physically 

meaningful priors and constraints such as non-negativity 

of concentrations, mass/charge balance, known line-

shape families, diffusion-limited kinetics, or instrument-

response-aware forward models so that learned 

representations remain chemically plausible and more 

transferable across instruments, batches, and matrices 

(Karniadakis et al., 2021).  

 

Equally important, chemistry is a quantitative 

science, and quantification requires metrology. Claims 

based on multimodal fusion must be anchored to 

established analytical performance concepts selectivity, 
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sensitivity, detection capability, and uncertainty. For 

example, IUPAC defines the limit of detection (LOD) as 

derived from the smallest measured signal that can be 

detected with reasonable certainty for a given analytical 

procedure (IUPAC Gold Book, “limit of detection”). 

Beyond detection, uncertainty must be estimated and 

communicated in ways that reflect not just instrument 

noise but the full chain including sampling, calibration, 

model choice, and fusion strategy. Eurachem’s guidance 

on quantifying uncertainty in analytical measurement 

provides structured approaches (including use of 

validation data and component-based uncertainty 

models), while Eurachem’s method validation guide 

emphasizes “fitness for purpose” as the organizing 

principle for whether a method (or fused workflow) is 

suitable for its intended decision context 

(Eurachem/CITAC QUAM, 2012; Eurachem Method 

Validation Guide, 2025). In multimodal pipelines, these 

principles must be extended from “single-instrument 

method validation” to workflow validation, because 

fusion introduces new failure modes: leakage between 

training/validation sets, unrecognized modality drift, 

inconsistent preprocessing, or non-identifiable 

parameterizations where multiple chemical explanations 

fit the fused signals equally well (Mishra et al., 2021; 

Smolinska et al., 2019).  

 

The final modern requirement is reproducible, 

interoperable data practice, especially because 

multimodal studies depend on metadata-rich datasets and 

the ability to reuse or reanalyze results. The FAIR 

Guiding Principles Findability, Accessibility, 

Interoperability, and Reusability—were explicitly 

formulated to support machine-actionable reuse of 

digital assets and to apply not only to “data” but also to 

the algorithms, tools, and workflows that generated them 

(Wilkinson et al., 2016). For multimodal chemistry, 

FAIR-aligned practice is not administrative overhead; it 

is what enables calibration transfer, cross-laboratory 

benchmarking, and trustworthy AI development under 

realistic drift and domain shift. 

 

Scope and contribution of this review. Building 

on these motivations, this review synthesizes an AI- and 

physics-guided framework for multimodal chemical 

measurement that unifies spectroscopy, 

chromatography–mass spectrometry, electrochemical 

sensing, and chemical imaging through data fusion. 

Figure 1 will introduce the end-to-end pipeline from 

sampling and raw signals to quantitative “chemical 

truth” with uncertainty bounds. Table 1 will summarize 

what each modality family measures, the scales it 

operates on, and its typical failure modes. Figure 2 will 

map chemical questions (identity–quantity–structure–

dynamics–spatial context) to optimal modality 

combinations across molecular-to-device scales. Figure 

3 will compare low-, mid-, and high-level fusion 

blueprints and their practical trade-offs. Finally, the 

review will emphasize validation and uncertainty as the 

analytical backbone anchored in IUPAC definitions and 

Eurachem guidance so that multimodal/AI claims remain 

quantitatively defensible, reproducible, and fit for 

purpose (IUPAC Gold Book; Eurachem/CITAC QUAM, 

2012; Eurachem Method Validation Guide, 2025).  

 

Table 1: Modality cheat sheet 

Modality family Primary 

information 

Typical 

output 

Strengths Common failure 

modes 

Best practice 

anchor 

Vibrational 

spectroscopy (IR, 

NIR, Raman) 

Functional groups, 

mixture fingerprints 

Spectrum 

(intensity vs 

wavenumber) 

Fast, non-

destructive, 

field/PAT-

friendly 

Baseline/scatter, 

fluorescence, 

temperature sensitivity, 

instrument drift 

Chemometrics with 

robust preprocessing 

+ external validation 

Chromatography 

(LC/GC) 

Separation in time, 

resolves 

mixtures/isomers 

Chromatogram, 

retention times 

Reduces 

interference, 

supports quant 

workflows 

RT drift, co-elution, 

sample prep variability 

RT alignment + 

standards + system 

suitability 

Mass 

spectrometry 

(MS, MS/MS) 

Mass-to-charge, 

fragmentation 

patterns 

Mass spectra, 

peak tables 

High sensitivity, 

structural clues 

Matrix effects, ion 

suppression, annotation 

ambiguity 

Internal standards + 

blanks + 

confirmation logic 

Electrochemical 

sensing 

(CV/DPV/ 

amperometry) 

Redox activity, 

selective sensing 

chemistry 

Current vs 

potential/time 

Portable, low 

power, rapid 

Fouling, cross-

sensitivity, 

temperature/ionic 

strength effects 

Calibration in 

realistic matrices + 

drift monitoring 

Electrochemical 

impedance (EIS) 

Kinetics/transport 

separation via 

frequency response 

Nyquist/Bode, 

fitted 

parameters 

Diagnoses 

processes, aging, 

interfaces 

Non-unique fits, 

unstable spectra, wrong 

equivalent models 

Physically 

constrained fitting + 

QC checks 

Chemical 

imaging (HSI, 

Raman mapping, 

MSI) 

Spatial composition 

and heterogeneity 

Pixel spectra, 

chemical maps 

Links chemistry 

to morphology/ 

performance 

Registration errors, 

illumination bias, pixel 

leakage 

Sample-level splits, 

map QC, 

registration 

reporting 
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Figure 1: Multimodal Chemical Measurement and Data Fusion: From Sample to Decision-Ready Chemistry with Uncertainty 

 

Figure 1 summarizes an end-to-end multimodal 

measurement pipeline in which complementary 

analytical modalities constrain a shared latent chemical 

state, and fusion converts heterogeneous signals into 

decision-ready outputs with explicit uncertainty. The 

fusion abstraction levels (low, mid, high) reflect a 

commonly used framework for integrating multi-source 

chemical data, while FAIR-aligned data stewardship 

underpins reproducibility and reuse. 

 

2. Physics foundations shared across modalities  

2.1 Measurement starts with a model 

A rigorous measurement begins by defining the 

measurand, meaning the particular quantity intended to 

be measured (for example, concentration of an analyte in 

a matrix, surface coverage of a functional group, 

diffusion coefficient, or an interfacial charge transfer 

resistance). The IUPAC Gold Book definition is concise: 

a measurand is a “particular quantity subject to 

measurement.” (IUPAC Gold Book, “measurand”).  

 

Across spectroscopy, chromatography, 

electrochemical sensing, and chemical imaging, 

instruments do not directly output the measurand. 

Instead, they output signals that are generated by 

physical interactions and then modified by the 

instrument. A useful unifying view is the forward model: 

a mapping from underlying chemical state to measured 

data, typically written as a function plus noise (for 

example, signal = instrument response applied to 

chemical state + noise). This framing is central in 

measurement science because it clarifies where error and 

uncertainty enter and why different modalities can 

disagree even on the same sample (JCGM 100:2008).  

 

Two universal components shape every modality’s 

signal: 

➢ Instrument response / line shape. Spectrometers 

do not record infinitely sharp transitions; they 

record broadened features governed by an 

instrument line shape (for example Gaussian, 

Lorentzian, Voigt, and in Fourier-transform 

methods, dependence on apodization). IUPAC 

explicitly defines instrument line shape and 

notes these standard idealized forms and 

parameters (IUPAC Gold Book, “instrument 

line shape”).  

➢ Noise. Any inference depends on the ratio of 

signal to noise. IUPAC defines signal-to-noise 

ratio as the power of signal divided by the 

power of noise and notes practical RMS forms 

commonly used in measurement (IUPAC Gold 

Book, “signal-to-noise ratio”).  

 

This immediately links physics to analytical 

performance: if two methods disagree, the cause often 

lies in different response functions, different noise 

structures, and different sensitivities to the sample 

matrix. 

 

2.2 Detection, resolution, and the “information 

budget” of an experiment 

Even before data fusion or AI, measurement 

quality is constrained by detection capability and 

resolution. IUPAC defines the limit of detection (LOD) 

as derived from the smallest measure that can be detected 

with reasonable certainty for a given analytical 

procedure (IUPAC Gold Book, “limit of detection”). 

Classic analytical chemistry work also emphasizes that 

LOD is not a single universal constant; it depends on the 

statistical decision rule and the blank distribution, 

making the operational definition and validation design 

important (Long & Winefordner, 1983).  

 

Resolution limits are modality-specific, but the 

pattern is universal: improving one dimension often costs 

another (for example spatial resolution versus signal-to-

noise, or temporal resolution versus spectral resolution). 

This is not only practical experience; it is quantifiable in 

imaging contexts where signal-to-noise and spatial 

resolution are analyzed together as coupled performance 

metrics (Gureyev et al., 2024). In spectroscopy, 

instrument line shape and apodization choices literally 

change the recorded line profile and thus influence peak 
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fitting and quantitative extraction (IUPAC Gold Book, 

“instrument line shape”).  

 

A modern multimodal workflow should treat 

every experiment as having an information budget: the 

best fusion strategy is often not “collect everything,” but 

“collect complementary constraints,” meaning 

measurements that reduce ambiguity in the inverse 

problem rather than duplicating the same limitation in 

different forms. 

 

2.3 Transport and kinetics 

Many analytical signals are not purely “spectral 

fingerprints.” They are shaped by transport, mixing, and 

kinetics. The simplest example is diffusion. IUPAC 

defines the diffusion coefficient as the proportionality 

constant relating flux to the concentration gradient in 

Fick’s law form (IUPAC Gold Book, “diffusion 

coefficient”). This matters because diffusion sets 

characteristic times for separation, equilibration, 

interfacial flux, and reaction progress. 

 

In chromatography, band broadening is 

fundamentally a transport and mass-transfer problem. 

IUPAC defines plate height (HETP) as the column length 

divided by the plate number, a standard efficiency metric 

used across chromatographic modes (IUPAC Gold 

Book, “plate height”; IUPAC Recommendations 1993). 

The classic van Deemter rate-theory treatment explicitly 

identifies sources of nonideality (including longitudinal 

diffusion and resistance to mass transfer) as causes of 

peak broadening (van Deemter, Zuiderweg & 

Klinkenberg, 1956). This is why multimodal fusion that 

combines chromatography with spectroscopy or mass 

spectrometry is not just “more identification.” It is also a 

physics-based way to separate overlapping chemical 

states so that downstream inverse problems become 

better posed. 

 

In electrochemical sensing, transport and 

kinetics are inseparable. Electrochemical impedance 

spectroscopy (EIS), for example, is explicitly used to 

disentangle contributions from processes such as charge 

transfer, double-layer behavior, and mass transport by 

analyzing frequency-dependent response. Modern 

tutorials emphasize the theoretical basis of EIS and the 

interpretation pitfalls that arise when different physical 

processes can produce similar impedance features 

(Lazanas et al., 2023). IUPAC’s recommendations on 

electrochemical methods further standardize the 

terminology and classification of electroanalytical 

techniques, reinforcing that consistent definitions are 

necessary before quantitative comparison or fusion 

across studies (Pingarrón et al., 2020; IUPAC 

Recommendations 2019/2020).  

 

A practical implication across modalities is that 

“matrix” is not an abstract nuisance. IUPAC defines 

matrix effect as the combined effect of all components 

other than the analyte on the measurement of the 

quantity, and distinguishes it from a specific interference 

when a single component is identifiable (IUPAC Gold 

Book, “matrix effect”). This definition applies equally 

well to ion suppression in LC-MS, fluorescence 

background in Raman, adsorption and fouling in 

electrochemical sensors, and scattering or absorption 

artifacts in imaging. 

 

2.4 The inverse problem view 

Most chemical measurements are inverse 

problems: you observe data and infer the latent chemical 

quantities that produced them. Inverse problems are 

often ill-posed, meaning small noise or modeling errors 

can cause large changes in the inferred solution, or 

multiple solutions can fit the same data. A standard 

statistical and computational framework treats inversion 

as inference under uncertainty, often Bayesian in form, 

explicitly highlighting how prior knowledge and 

complementary information improve stability (Kaipio & 

Somersalo, 2005).  

 

Two concepts matter especially for a multimodal 

review: 

• Identifiability. Even with perfect computation, 

parameters may not be uniquely determined 

from the available observations. Classic 

identifiability literature frames this as a 

uniqueness problem for fitted parameters given 

observations (Vajda et al., 1989). In practice, 

poor identifiability is common in kinetics, 

spectroscopy peak fitting, equivalent-circuit 

extraction from EIS, and deconvolution of 

overlapping chromatographic peaks. 

• Regularization. Because inverse problems are 

commonly ill-posed, stable estimation requires 

constraints or priors (for example smoothness, 

sparsity, non-negativity, or physically 

meaningful bounds). Modern surveys describe 

regularization as a key tool to introduce prior 

knowledge and obtain robust approximations to 

ill-posed inverses, with strong emphasis on 

variational and nonlinear methods that connect 

naturally to modern learning approaches 

(Benning & Burger, 2018).  

 

This is exactly where multimodal design 

becomes scientific rather than descriptive. Adding a 

second modality helps when it provides independent 

constraints that shrink the set of feasible explanations 

and improves identifiability. Adding a second modality 

hurts when it shares the same confounder (for example 

the same matrix effect) or introduces correlated errors 

without modeling them. 

 

2.5 Uncertainty is not optional: propagation, 

correlation, and traceable reporting across a fused 

workflow 

For multimodal fusion to be credible in 

analytical chemistry, it must carry uncertainty through 

the full pipeline. The Guide to the Expression of 
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Uncertainty in Measurement (GUM) formalizes how 

measurement results should be expressed with associated 

uncertainty and describes evaluation using a 

measurement model and propagation principles (JCGM 

100:2008). For complex or nonlinear models, the GUM 

supplements extend the framework using Monte Carlo 

propagation of distributions through the measurement 

model (JCGM 101:2008).  

 

In analytical chemistry practice, Eurachem’s 

QUAM guide provides detailed guidance on identifying 

uncertainty sources, combining them, and reporting 

expanded uncertainty in a way aligned with laboratory 

competence and comparability expectations 

(Eurachem/CITAC QUAM, 2012). The key point for 

multimodal studies is correlation: modalities often share 

common inputs (sample preparation, calibration 

standards, environmental conditions), so uncertainties 

are not independent. GUM explicitly treats uncertainty 

as arising through a model with input quantities, and 

correlated inputs can propagate to correlated outputs, 

which matters directly when fusing results (JCGM 

100:2008; JCGM 101:2008).  

 

Finally, this physics and metrology foundation 

explains why “AI alone” is insufficient for high-stakes 

chemical claims. Physics-informed machine learning 

explicitly targets the integration of data with physical or 

mathematical models, including in forward and inverse 

problems, as a route to improve generalization and 

reliability when data are limited or noisy (Karniadakis et 

al., 2021). In a multimodal chemical context, this 

translates to models that respect constraints such as non-

negativity of concentrations, physically valid line shapes, 

mass-balance structure, and transport-limited kinetics, 

while still leveraging AI to learn complex mappings and 

perform scalable fusion. 

 

Table 2: Minimum preprocessing + alignment steps needed before fusion 

Modality Minimum preprocessing Alignment step QC signals to report 

IR/NIR/Raman Baseline correction, scatter 

correction/normalization, smoothing 

(if justified) 

Wavenumber 

calibration (if needed) 

Replicate agreement, drift trend, 

outlier rate 

LC/GC Peak picking/integration, baseline 

correction 

Retention-time 

alignment 

System suitability, RT shift, 

internal standard recovery 

MS/MS Mass calibration, peak detection, de-

isotoping (if used), blank subtraction 

m/z alignment across 

runs 

Mass error ppm, blank features, 

ID confidence metrics 

Electrochem 

sensing 

Baseline drift correction, 

temperature compensation (if 

applicable) 

Time alignment with 

other streams 

Response stability, fouling 

indicators, calibration residuals 

EIS Noise screening, unstable spectrum 

rejection 

Time alignment to 

operating condition 

Fit residuals, parameter bounds, 

replicate consistency 

Imaging/maps Denoising, illumination correction, 

normalization 

Spatial registration to 

reference image 

Registration error, sample-level 

split integrity 

 

 
Figure 2: Making Heterogeneous Chemistry Comparable: Data Representations, Alignment, and Quality Control Across 

Modalities 
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Figure 2 highlights why multimodal fusion 

succeeds or fails: heterogeneous signals must be 

converted into comparable representations through 

alignment (time, mass, space) and quality control gates 

that prevent drift, leakage, and nonphysical artifacts from 

propagating into fused decisions. 

 

3. The four modality families: what they measure, 

where they fail, and why they complement each other 

3.1 Spectroscopy (bonding, structure, electronic 

states, and surfaces) 

Spectroscopy is best treated as a measurement 

family defined by its physics: it studies physical systems 

through the electromagnetic radiation with which they 

interact, or that they produce. This definition is 

formalized in the IUPAC Gold Book and is broad enough 

to include vibrational, electronic, and surface sensitive 

methods used across chemistry and physics. (IUPAC 

Gold Book).  

 

Vibrational spectroscopy includes infrared and 

Raman methods, which are central to analytical 

chemistry because they provide chemically interpretable 

fingerprints of functional groups, bonding environments, 

and lattice vibrations. IUPAC defines infrared 

spectroscopy as a measurement principle of vibrational 

spectroscopy using infrared radiation, and notes that 

without qualification it usually refers to the mid infrared 

region, approximately 2.5 to 25 micrometers, 

corresponding to 4000 to 400 inverse centimeters. 

(IUPAC Gold Book). Raman spectroscopy is defined by 

IUPAC as a vibrational spectroscopy principle based on 

Raman scattering, where Raman scattered light is shifted 

relative to the incident light by vibrational energies. 

(IUPAC Gold Book). These definitions matter in a 

multimodal review because they clarify why IR and 

Raman often behave differently on the same sample: IR 

intensity is governed largely by changes in dipole 

moment, while Raman intensity is governed largely by 

changes in polarizability as emphasized in IUPAC 

terminology for Raman scattering. (IUPAC Gold Book).  

 

Electronic spectroscopy includes absorption 

and emission methods. Fluorescence is formally defined 

in the IUPAC Gold Book as luminescence that occurs 

essentially only during irradiation by electromagnetic 

radiation. (IUPAC Gold Book). This definition 

highlights why fluorescence can be extremely sensitive 

for trace analysis and imaging, but also why it can be 

unstable in real matrices, because the measured signal 

depends not only on concentration but also on quenching 

pathways, optical attenuation, and excitation conditions. 

In multimodal workflows, fluorescence or UV Vis 

signals often become more reliable when anchored to 

independent quantitative methods such as 

chromatography mass spectrometry, or when 

constrained by physics guided calibration models. 

 

Nuclear magnetic resonance is a structurally 

powerful modality that often functions as both a 

qualitative and quantitative anchor. IUPAC defines 

nuclear magnetic resonance spectroscopy and explicitly 

notes its use for structure determination of organic 

molecules and for quantification. (IUPAC Gold Book). 

In multimodal design, NMR often complements 

chromatography mass spectrometry by providing 

orthogonal structural evidence and quantitative 

composition without relying on ionization efficiency, 

while chromatography mass spectrometry often 

complements NMR by improving sensitivity and 

resolving trace components. 

 

Surface and electronic state spectroscopy 

provides the most direct bridge to condensed matter 

physics and materials chemistry. X ray photoelectron 

spectroscopy is defined by IUPAC as any technique in 

which a sample is bombarded with X rays and 

photoelectrons are detected as a function of energy, with 

ESCA referring to using this technique to identify 

elements, concentrations, and chemical state within the 

sample. (IUPAC Gold Book). The multimodal 

implication is that surface sensitive signals can be 

chemically decisive but not always representative of the 

bulk, so fusing surface spectroscopy with bulk 

spectroscopy, separations, or spatial mapping can 

prevent over interpretation. 

 

In short, spectroscopy is fast and chemically 

rich, but it frequently faces overlapping bands, baseline 

artifacts, and matrix effects. These limitations are exactly 

why the next three modality families are not optional in 

a modern quantitative workflow. 

 

3.2 Chromatography plus mass spectrometry 

(mixture resolution, identity, and trace 

quantification) 

Chromatography is the primary way analytical 

chemistry converts mixture complexity into interpretable 

signals. A key organizing parameter is the retention 

factor, defined by IUPAC as a measure of the time a 

component resides in the stationary phase relative to the 

time it resides in the mobile phase, expressing how much 

longer it is retarded compared with traveling at the 

mobile phase velocity. (IUPAC Gold Book). In 

multimodal terms, chromatography improves 

identifiability because it turns one difficult inverse 

problem, such as overlapping spectral features, into a 

better posed problem by separating contributions across 

time before detection. 

 

Mass spectrometry then provides highly 

specific molecular information through ion formation 

and mass analysis. IUPAC mass spectrometry 

terminology recommendations describe mass 

spectrometry as the study of matter through the 

formation of gas phase ions that are detected and 

characterized by their mass and charge, and they exist 

specifically to standardize interpretation across rapidly 

evolving instruments and methods. (IUPAC 

Recommendations 2013). The quantity used to label ion 
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signals is commonly written as mover z. IUPAC clarifies 

that mover z denotes a dimensionless quantity formed by 

dividing the mass number of an ion by its charge number, 

and notes that the traditional phrase mass to charge ratio 

is historically used but technically imperfect. (IUPAC 

Gold Book).  

 

The most important limitation for 

chromatography mass spectrometry in quantitative work 

is not lack of sensitivity, but matrix dependence. IUPAC 

defines matrix effect as the combined effect of all sample 

components other than the analyte on the measurement 

of the quantity, and distinguishes this from a specific 

interference when one component can be identified as 

causing the effect. (IUPAC Gold Book). Modern reviews 

and guidance emphasize that matrix effects can arise 

throughout the analytical process and are a major source 

of bias, particularly in workflows involving complex 

sample preparation and detection steps such as LC MS. 

(Williams, 2023). Recent LC MS focused literature also 

details practical approaches to assess matrix effect, 

including post column infusion and spiking approaches, 

reinforcing that quantitative LC MS is inseparable from 

explicit matrix effect assessment. (Fu et al., 2024).  

 

In multimodal fusion, chromatography mass 

spectrometry often functions as a quantitative anchor and 

identity validator for models trained on faster or cheaper 

modalities such as spectroscopy or electrochemical 

sensors. It also provides the reference labels needed for 

supervised learning and calibration, while physics 

guided constraints and uncertainty models prevent 

overfitting to instrument specific artifacts. 

 

3.3 Electrochemical sensing (interfaces, kinetics, and 

selective detection) 

Electrochemical sensing interrogates chemical 

systems through electrical signals governed by 

interfacial thermodynamics, reaction kinetics, and mass 

transport. It is uniquely powerful for chemistry where 

electron transfer, adsorption, or ionic processes define 

function, such as catalysis, corrosion, energy materials, 

and biosensing. Among electrochemical tools, 

electrochemical impedance spectroscopy is widely used 

because it separates processes by frequency response and 

can, when carefully modeled, distinguish charge transfer 

from transport and capacitive contributions. A modern 

tutorial in ACS Measurement Science Au explicitly 

provides theoretical background, principles, and 

applications of EIS and discusses how interpretation can 

fail when models are underconstrained or misapplied. 

(Lazanas & Prodromidis, 2023).  

 

Electrochemical measurements are also highly 

exposed to matrix effects in the IUPAC sense. Changes 

in ionic strength, pH, dissolved oxygen, and co reactive 

species can shift potentials or alter currents, while 

electrode fouling and surface reconstruction change 

response over time. These issues often produce drift that 

is hard to diagnose from electrochemistry alone, which 

is why multimodal validation is so important. Surface 

spectroscopy such as XPS can verify chemical state 

changes at electrodes, vibrational spectroscopy can track 

functional group evolution in films, and chromatography 

mass spectrometry can confirm which dissolved species 

actually correlate with electrochemical signals. This kind 

of cross checking is the difference between a sensor that 

appears selective in a controlled solution and a sensor 

that remains reliable in real samples. 

 

3.4 Chemical imaging (spatially resolved chemistry 

from microstructure to devices) 

Chemical imaging extends chemical 

measurement into space, producing maps of chemical 

composition or state rather than a single bulk value. This 

is essential when heterogeneity controls behavior, such 

as phase segregation in polymers, active site distributions 

in catalysts, degradation fronts in batteries, or spatial 

microenvironments in tissues. 

 

Hyperspectral imaging is one of the most 

general chemical imaging formats because it combines 

spatial information with spectral information, effectively 

creating a spectrum per pixel. A recent perspective in 

Analytical and Bioanalytical Chemistry describes 

hyperspectral imaging as a very complete analytical 

measurement enclosing rich spatial and chemical 

information, but also emphasizes that it requires 

powerful data analysis tools for interpretation and for 

practical implementation in process analytical 

technology contexts. (de Juan, 2025). This aligns 

naturally with the AI plus physics theme of this review, 

because unmixing and quantifying pixelwise chemical 

information requires both physically meaningful spectral 

models and robust statistical learning. 

 

Mass spectrometry imaging maps spatial 

chemical distributions on complex surfaces and tissues, 

providing high molecular specificity. A recent Analytical 

Chemistry review states that MSI maps spatial 

distributions of chemicals on chemically complex 

surfaces and highlights its sensitivity and information 

richness, which is why it is widely used in spatial biology 

and materials contexts. (Körber, 2025). At the same time, 

MSI has fundamental tradeoffs between spatial 

resolution and sensitivity. A widely cited MSI review 

explains that improving spatial resolution decreases the 

sampled area per pixel, producing an inherent tradeoff 

with sensitivity. (Buchberger et al., 2017).  

 

Because no single imaging modality optimizes 

spatial resolution, molecular specificity, throughput, and 

quantification simultaneously, multimodal imaging has 

become a major direction. A multimodal imaging mass 

spectrometry review describes how MSI technologies 

have been integrated with other analytical modalities 

such as microscopy, spectroscopy, and even 

electrochemistry in what is now termed multimodal 

imaging, and discusses the promise and challenges of 

integration. (Neumann et al., 2020). This multimodal 



 
 

 

 

 

 

 

Ubaid Ullah Khan et al, Sch J Eng Tech, Jan, 2026; 14(1): 10-40 

© 2026 Scholars Journal of Engineering and Technology | Published by SAS Publishers, India                                                                                          18 

 

 

 

 

trend is also visible in recent studies integrating Raman 

spectroscopy with MSI on the same section to combine 

complementary chemical contrasts. (Tóth et al., 2025).  

 

3.5 Why these four families together approximate 

quantitative chemical truth 

These modality families were chosen because 

together they cover most of the chemical information 

space with minimal redundancy. Spectroscopy provides 

rapid, physics grounded signatures of bonding and state 

and is standardized in its conceptual definition by 

IUPAC. Chromatography plus mass spectrometry 

resolves mixtures, supports identification and trace 

quantification, and is grounded in standardized 

definitions for retention behavior and mass spectrometric 

terminology. Electrochemical sensing adds direct access 

to interfacial kinetics and transport constrained processes 

and is strongly supported by modern interpretive 

guidance for tools such as EIS. Chemical imaging adds 

spatial context, with hyperspectral imaging and MSI 

explicitly recognized as chemically rich but analysis 

intensive modalities, motivating AI assisted 

interpretation and fusion.  

 

A rigorous multimodal workflow uses this 

complementarity to reduce non uniqueness in inference. 

Chromatography mass spectrometry can anchor identity 

and concentration labels for calibration. Spectroscopy 

can provide fast screening and mechanistic signatures. 

Electrochemistry can test interfacial hypotheses and 

kinetic constraints. Imaging can reveal heterogeneity that 

would bias bulk results and can localize chemistry to 

specific structures. The next section builds on this 

foundation by explaining how these heterogeneous 

signals are fused at the raw, feature, or decision levels 

and how physics guided AI makes fusion more 

interpretable and transferable. 

 

Table 3: Fusion strategy decision guide (low vs mid vs high) 

Fusion 

level 

What is fused When it is best Strength Weakness Example in 

chemistry 

Low-

level 

Aligned raw 

signals 

Tight 

synchronization and 

stable instruments 

Max information 

retained 

Brittle to missing 

data and 

misalignment 

Time-synced 

operando streams 

fused as one model 

Mid-

level 

Features/latent 

variables 

Most lab settings; 

easier alignment 

Strong performance 

with manageable 

complexity 

Feature design 

can bias results 

LC–MS peak tables 

+ spectroscopy 

latent variables 

High-

level 

Decisions/scores Field deployment, 

missing modalities, 

variable quality 

Robust and modular Can lose fine-

grained info 

Electrochem screen 

+ Raman confirm + 

decision fusion 

 

 
Figure 3: Low-, Mid-, and High-Level Fusion in Multimodal Chemistry: When to Use Which 

 

Figure 3 compares low-, mid-, and high-level 

fusion, emphasizing the trade-off between information 

richness and robustness to missing modalities, and 

illustrating how the same analytical stack can be fused at 

different abstraction levels depending on 

synchronization, data quality, and deployment 

constraints. 
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4. Data fusion architectures for multimodal chemical 

measurement 

Multimodal chemical measurement produces 

heterogeneous data blocks that differ in dimensionality 

(scalar metadata, 1D spectra, 2D chromatograms, 3D 

hyperspectral cubes, time series), noise structure, 

dynamic range, and sampling rate. The core purpose of 

data fusion is to combine these blocks so the final model 

captures complementary chemical information while 

controlling redundancy and modality specific artifacts 

(Smolinska et al., 2019). In practice, the architecture you 

choose is inseparable from experimental design 

decisions such as sample pairing, replication, 

randomization, instrument calibration, and how you 

encode metadata and reference values because these 

choices determine whether the fused signal is chemically 

meaningful or simply a larger space for confounding 

(Westad & Marini, 2015; Lopez et al., 2023). 

 

4.1 Sample alignment, synchronization, and the 

“shared object” requirement 

Most fusion strategies assume that different 

modalities describe the same underlying objects (the 

same sample, batch, location, time window, or process 

state). If objects are not aligned, concatenation or joint 

modeling can create spurious correlations that look 

predictive but do not generalize (Lopez et al., 2023). 

Alignment can be trivial (same vial measured by NMR 

and LC MS) or difficult (linking operando 

electrochemistry time series to intermittent 

chromatographic fractions, or mapping chemical images 

to bulk spectra). When temporal structure exists, the 

alignment problem becomes a design and validation 

problem: the correct unit for cross validation is often the 

higher-level grouping (batch, day, patient, reactor run) 

rather than individual scans, otherwise leakage inflates 

performance (Westad & Marini, 2015; Király & Tóth, 

2025). 

 

A practical implication is that fusion should be 

described in terms of an explicit fusion index: what 

constitutes one “row” in the fused analysis (sample, 

pixel, peak, time slice) and how it maps across 

instruments. Reporting this mapping is not optional in 

multimodal analytical chemistry because it determines 

the chemical meaning of “features” and “labels” 

(Smolinska et al., 2019; Westad & Marini, 2015). 

 

4.2 Taxonomy of fusion levels: low, mid, high, plus 

sustainable and kernel fusion 

Chemometrics commonly organizes 

multimodal fusion into low level, mid-level, and high-

level strategies, with extensions such as sustainable mid-

level fusion and kernel-based fusion (Smolinska et al., 

2019). This taxonomy is useful because it links directly 

to how chemical information is represented. 

 

 
Figure 3. Taxonomy of fusion architectures for AI and physics-guided multimodal chemical measurement. 

 

Fusion levels follow the low-, mid-, and high-

level framing commonly used in chemometrics and data 

fusion literature, with deep fusion represented as 

intermediate representation fusion inside learned models 

(Smolinska et al., 2019; Stahlschmidt et al., 2022; Jiao 

et al., 2024). 
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Table 4: Comparison of fusion levels for multimodal chemical measurement 

Fusion level What is 

fused 

Typical 

implementations 

in chemistry 

Main strengths Main risks and 

failure modes 

Best used when Minimum 

validation and 

reporting you 

must include 

Low level 

fusion (early 

fusion) 

Raw or 

minimally 

processed 

variables 

from each 

modality 

combined 

into one 

joint matrix 

(or tensor) 

Simple 

concatenation 

then PCA, PLS, 

PLS-DA, SVM, 

RF; multiway 

extensions when 

you truly have 

matched 

multiway 

structure 

Preserves fine 

cross modality 

relationships; can 

maximize 

information if 

blocks are well 

aligned 

Dominance of large 

blocks or high-

variance modalities; 

scaling choices can 

change the model; 

spurious 

correlations if 

samples are 

misaligned; 

missingness 

becomes difficult; 

high risk of leakage 

if preprocessing 

uses full dataset 

Modalities are 

tightly 

synchronized 

(same 

sample/time), 

similar scale or 

carefully scaled, 

and you have 

enough samples 

for the joint 

dimension 

Define the shared 

unit (sample, pixel, 

time slice); specify 

block scaling and 

centering choices; 

do leakage safe 

preprocessing 

inside CV; use 

grouped CV if 

batches exist; 

include an external 

test set when 

possible 

Mid-level 

fusion 

(feature 

fusion) 

Features or 

latent 

variables 

extracted 

separately 

per 

modality, 

then 

combined 

Feature 

extraction by 

PCA, PLS 

scores, peak 

tables, targeted 

biomarkers, 

PARAFAC 

components, 

MCR-ALS 

profiles, 

summary 

descriptors; then 

concatenation 

and modeling 

Reduces noise and 

dimensionality; 

features can be 

chemically 

meaningful; easier 

handling of 

missing 

modalities; often 

more stable than 

low level 

Feature extraction 

can discard weak 

but important 

information; feature 

choices can inject 

bias; different 

feature pipelines 

can break 

comparability; 

interpretation can 

become unclear if 

features are not 

documented 

Each modality 

has different 

dimension and 

noise structure 

(spectra, LC-

MS peaks, EIS 

descriptors, 

image features), 

or when 

interpretability 

is needed 

Fully document 

feature 

engineering; 

justify number of 

components (when 

using 

decompositions); 

perform feature 

extraction within 

training folds; 

report feature 

stability and 

uncertainty 

High level 

fusion 

(decision 

fusion) 

Outputs of 

modality-

specific 

models 

fused 

(predictions, 

probabilities, 

decisions) 

Voting, weighted 

averaging, 

stacking meta-

models, Bayesian 

decision fusion, 

ensemble 

learning 

Most robust to 

heterogeneous 

data; each 

modality can use 

its best model; 

easier to deploy 

and update one 

modality without 

retraining all 

Loses some cross 

modality interaction 

information; can 

hide conflicts; 

weights can overfit 

if tuned improperly; 

requires calibrated 

probabilities for 

principled 

weighting 

Modalities have 

different 

reliability, 

coverage, or 

missingness; 

deployment 

settings where 

not all sensors 

always 

available 

Report calibration 

of probabilities; 

show performance 

per modality and 

fused; evaluate 

robustness under 

missing modality 

scenarios 

Kernel fusion 

(similarity 

fusion) 

Similarity 

matrices 

(kernels) per 

modality 

combined 

Kernel PLS-DA, 

multiple kernel 

learning; fusion 

in kernel space 

Handles nonlinear 

relationships; 

avoids variable 

scaling issues by 

fusing similarities; 

often works with 

very different data 

types 

Kernel choice and 

hyperparameters 

can dominate; 

interpretability is 

harder; risk of 

optimistic tuning if 

nested CV not used 

Strong 

nonlinear 

structure or 

incomparable 

feature spaces 

across 

modalities 

Nested CV for 

kernel and 

hyperparameter 

selection; 

sensitivity analysis 

on kernel settings; 

report how kernels 

are built 

Deep fusion 

(intermediate 

representation 

fusion) 

Learned 

modality-

specific 

embeddings 

fused within 

a joint 

neural 

architecture 

Separate 

encoders for 

spectra, 

chromatograms, 

images, time 

series; fusion 

layers via 

concatenation, 

attention, gating; 

hybrid early plus 

late fusion 

Captures complex 

cross modality 

interactions; strong 

for large datasets; 

can integrate raw 

and engineered 

features 

Data hungry; can 

learn shortcuts; 

difficult 

interpretability; 

domain shift and 

drift can break 

models 

Very large 

datasets or 

strong 

augmentation 

and external 

validation; 

when 

interactions 

across 

modalities are 

essential 

Strict separation of 

train and test by 

batch or study; 

uncertainty or 

confidence 

calibration; 

ablation studies per 

modality; external 

validation across 

time or instrument 

 

Key foundations supporting the table: low, mid, 

high fusion definitions and extensions including kernel 

based fusion (Smolinska et al., 2019); scaling impact in 

chemometric component models (Bro & Smilde, 2003); 

example of kernel space fusion in metabolomics 

(Smolinska et al., 2012); deep multimodal fusion 
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categories and fusion layer placement (Stahlschmidt et 

al., 2022; Jiao et al., 2024); validation pitfalls and proper 

strategies (Westad & Marini, 2015; Lopez et al., 2023).  

 

4.3 Low level fusion (early fusion): concatenation 

with careful scaling and structure preservation 

Low level fusion merges modalities before 

modeling, typically by concatenating variables into one 

matrix. It is attractive because it can preserve subtle cross 

modality relationships, but it is also fragile: blocks with 

many variables or large variance can dominate unless 

block scaling is handled deliberately (Smolinska et al., 

2019). In chemical data, centering and scaling are not 

cosmetic. They define what variation is considered 

comparable across instruments and can change the latent 

structure learned by PCA, PLS, and multiway extensions 

(Bro & Smilde, 2003).  

 

A robust low-level workflow usually includes 

(i) within block preprocessing that respects instrument 

physics (baseline correction, alignment, denoising), (ii) 

inter block scaling or weighting to prevent dominance, 

and (iii) explicit handling of missingness because real 

multimodal studies often have incomplete modality 

coverage (Smolinska et al., 2019). Architectures that 

formalize low level fusion as a symmetric combination 

of blocks have been discussed as “frameworks for low 

level data fusion,” emphasizing that fusion is not only 

concatenation but also a choice of equivalence between 

measurements (Smilde, 2019).  

 

4.4 Mid-level fusion (feature fusion): chemically 

meaningful representations as the fusion interface 

Mid-level fusion first transforms each modality 

into a reduced representation and then merges these 

representations. In chemometrics this is often called 

feature level fusion and is motivated by the idea that 

feature extraction removes modality specific noise and 

compresses signals into chemically interpretable 

components (Smolinska et al., 2019; Casian et al., 2022).  

 

Feature extraction can be done with 

unsupervised decompositions (PCA, ICA, MCR ALS), 

supervised latent variable models (PLS variants), or 

multiway tensor models when data are naturally multi-

dimensional. Multiway analysis is particularly important 

for chemical measurement because many instruments 

produce structured arrays such as excitation emission 

matrices, hyphenated separations with spectral detection, 

or time resolved spectroscopy. PARAFAC is a widely 

used multiway decomposition in chemometrics and has 

tutorial treatments emphasizing its ability to generalize 

PCA to higher order arrays and recover chemically 

meaningful profiles under appropriate conditions (Bro, 

1997). Model complexity diagnostics such as 

CORCONDIA have been proposed to assess the 

appropriateness of PARAFAC component numbers, 

which is crucial when features become the fusion 

interface (Bro & Kiers, 2003).  

 

For complex mixtures and hyphenated data, 

mid-level fusion can also be built around multivariate 

curve resolution. Reviews of MCR ALS highlight how 

bilinear decompositions and constraints can extract pure 

contributions from chromatographic data and related 

analytical signals (Mazivila et al., 2022). In 

metabolomics, MCR ALS has been used for knowledge 

integration across CE MS and LC MS, including 

strategies that explicitly implement low level merging 

before MCR ALS to exploit a common spectral mode 

(Ortiz Villanueva et al., 2017).  

 

4.5 High level fusion (decision fusion): combining 

predictions, probabilities, or decisions 

High level fusion combines outputs from 

separate modality specific models, such as class 

probabilities, concentration predictions, or decision 

scores. This approach is often more robust to 

heterogeneity because each modality can use its best 

suited preprocessing and model family, and fusion can 

be performed by voting, weighted averaging, stacking, or 

Bayesian decision rules (Smolinska et al., 2019).  

 

Decision fusion becomes especially relevant 

when modalities have different coverage or reliability. 

For example, Bayesian based decision fusion has been 

used to combine NIR and Raman based classifiers by 

integrating evidence from modality specific PLS DA 

models, illustrating a concrete route to uncertainty aware 

weighting at the decision stage (Xu et al., 2022).  

 

4.6 Multiblock chemometrics: shared, unique, and 

orthogonal variation as a design principle 

Beyond low, mid, and high-level categories, 

modern chemometrics treats multimodal measurement as 

a multiblock problem: a set of matrices measured on the 

same objects. Reviews on multiblock data analysis 

emphasize tasks ranging from visualization and 

exploration to predictive modeling and calibration 

transfer, with many methods designed to separate 

predictive variation from block specific structured noise 

(Mishra et al., 2021).  

 

A central idea is that blocks can share common 

chemical variation but also contain distinct information. 

A unifying linear algebra framework for common and 

distinct components in data fusion has been proposed, 

clarifying terminology and linking methods such as 

O2PLS style decompositions and related approaches 

(Smilde et al., 2017).  

 

Sequential strategies are also important when 

blocks have natural priority, for example cheap high 

throughput sensors first, expensive confirmatory 

measurements second. Sequential and orthogonalized 

PLS methods formalize this by extracting information 

block by block while controlling overlap, and have been 

discussed for multiblock regression and related modeling 

goals (Næs et al., 2021).  
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For symmetric multiblock settings, OnPLS 

extends O2PLS concepts to more than two blocks, 

extracting globally predictive and orthogonal 

components; OnPLS has also been applied with variable 

influence diagnostics for interpretable multiomics and 

other multiblock studies (Löfstedt et al., 2011; Reinke et 

al., 2018).  

 

4.7 Kernel based and nonlinear fusion: fusing 

similarity rather than raw variables 

When relationships across modalities are 

nonlinear or the feature spaces are incomparable, kernel-

based fusion provides an alternative: each modality is 

mapped to a kernel (a similarity matrix between samples) 

and kernels are combined before modeling (Smolinska et 

al., 2019).  

 

A worked example is fusion in kernel space for 

metabolomics based on proton NMR and GC MS, where 

optimized kernels were merged and analyzed with kernel 

PLS DA, yielding performance improvements over 

common mid-level fusion in that study (Smolinska et al., 

2012).  

 

4.8 Deep multimodal fusion: early, intermediate, late, 

and hybrid architectures 

Deep learning literature often groups 

multimodal fusion into early fusion, intermediate fusion 

(sometimes called deep or representation fusion), late 

fusion, and hybrids, echoing the chemometrics taxonomy 

but implemented inside neural architectures (Jiao et al., 

2024).  

 

A detailed review in biomedical multimodal 

fusion further distinguishes how fusion layers are placed 

and how joint representations are learned, and it 

discusses practical tradeoffs such as when early fusion 

fails to capture higher level cross modality relations 

versus when late fusion cannot model feature 

interactions (Stahlschmidt et al., 2022).  

 

For chemical measurement, deep fusion is most 

convincing when it respects physics and instrument 

structure, for example using modality specific encoders 

that preserve spectral smoothness, chromatographic peak 

locality, or image spatial correlations, followed by a 

controlled fusion module. Even when deep models are 

used, the same alignment, scaling, and validation 

principles from chemometrics still apply (Lopez et al., 

2023; Westad & Marini, 2015).  

 

4.9 Preprocessing, block scaling, drift, and transfer: 

preventing fusion from amplifying artifacts 

Fusion increases model capacity, which 

increases the risk that models learn instrument artifacts. 

Chemometric work on centering and scaling shows that 

preprocessing choices directly change the geometry of 

component models and can be generalized from two way 

to multiway data, making it a foundation for multimodal 

fusion pipelines (Bro & Smilde, 2003).  

 

Dedicated studies on multiblock preprocessing 

propose workflows that explicitly consider intra block 

and inter block variation components, because naive 

preprocessing can overemphasize one block or distort 

shared structure (Campos et al., 2020). Transfer across 

instruments and time is another key issue. Calibration 

transfer addresses how to adapt models between 

spectrometers and related settings, highlighting practical 

barriers such as the need for standard samples and the 

impact of instrument differences (Mishra et al., 2021). 

 

Sustainable mid-level fusion has been proposed 

to reduce the risk of discarding useful information during 

feature selection by introducing a recycling step for 

initially rejected variables, which is relevant when 

signals are weak or distributed across modalities (Geurts, 

2017; Smolinska et al., 2019).  

 

4.10 Validation for fused models: leakage control, 

grouped resampling, and external generalization 

Because fusion pipelines involve many choices 

(preprocessing, feature extraction, block weighting, 

model selection), validation must be nested and must 

treat preprocessing and feature selection as part of the 

trained model, otherwise leakage occurs. Tutorials 

emphasize that independent test sets are the most 

conservative assessment for calibration, while cross 

validation remains essential for rank selection and 

stability, especially under grouped data structures 

(Westad & Marini, 2015). Recent didactic work shows 

how wrong designed cross validation and external 

validation can produce models that look promising but 

fail on truly independent samples, stressing that 

hierarchical or dependent data structure must shape the 

validation strategy (Lopez et al., 2023). 

 

Work specifically raising awareness about data 

leakage and cross validation scaling in chemometric 

model validation further underlines how easily 

performance can be inflated when scaling or 

preprocessing uses information from held out folds 

(Király & Tóth, 2025).  

 

5. Physics-guided AI: making models reliable, 

interpretable, and transferable 

Physics-guided AI aims to merge data-driven 

learning with domain constraints so that predictions 

respect chemistry and measurement physics, remain 

stable under changing conditions, and provide 

uncertainty that is meaningful for decision-making. This 

matters most in multimodal analytical pipelines because 

each modality brings its own inductive biases, artifacts, 

and failure modes, and naive fusion can amplify these 

weaknesses instead of cancelling them. (Karniadakis et 

al., 2021; Smolinska et al., 2019).  
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5.1 Why purely data-driven models can break 

(shortcut learning, OOD failures) 

Many high-performing ML models learn 

“shortcuts”, meaning they exploit spurious correlations 

that are predictive on a benchmark but not causally tied 

to the chemistry of interest, so performance collapses 

when conditions shift (Geirhos et al., 2020). In chemical 

measurement this can look like a classifier that relies on 

batch-specific baseline shapes, a chromatography model 

that “recognizes” an instrument method ID, or a 

microscopy segmenter that keys on illumination 

differences rather than chemical contrast. These 

behaviors are a special case of dataset shift: when the 

joint distribution of inputs and outputs differs between 

training and deployment due to new instruments, 

columns, operators, reagents, temperature, drift, or 

sample composition changes (Quiñonero-Candela et al., 

2009).  

 

Out-of-distribution (OOD) failures are common 

in chemistry workflows because the test regime often 

differs from the training regime in subtle ways: new 

matrices, new interferents, new operating points, or 

different preprocessing pipelines. Unless evaluation 

explicitly simulates these shifts, accuracy can be 

overestimated and models may fail when moved to a new 

lab or a new instrument. This is why validation strategy 

and leakage control are not “ML hygiene”, they are part 

of scientific correctness in fused analytical models 

(Westad & Marini, 2015; Lopez et al., 2023; Király & 

Tóth, 2025).  

 

Finally, streaming and long-term deployments 

add concept drift: the data-generating process changes 

over time (for example sensor aging or changing 

feedstock), so a model that was correct last month may 

degrade today. Surveys on concept drift emphasize that 

drift detection and adaptation need to be designed into 

operational ML systems, not added after failures occur 

(Gama et al., 2014).  

 

5.2 Physics constraints in ML 

Physics constraints shape the hypothesis space 

so the model is encouraged (or forced) to obey rules that 

must hold regardless of dataset idiosyncrasies. In 

multimodal chemistry, constraints typically enter in three 

places: the chemistry (conservation and stoichiometry), 

the signal model (non-negativity and smoothness), and 

the instrument response (what the instrument can 

physically measure). 

 

5.2.1 Conservation and stoichiometry constraints 

Chemical transformations and reactive systems 

are governed by conservation of mass and elements. 

Recent work shows how to enforce atom conservation as 

a hard constraint in neural models of chemical kinetics 

by inserting an element-balance layer, so outputs cannot 

violate conservation even if training data are noisy or 

incomplete (Döppel et al., 2024). Similarly, hard-

constrained neural architectures have been proposed to 

strictly enforce mass, energy, and element conservation 

in chemical source term prediction, which directly 

targets the common failure where flexible regressors 

create physically impossible species trends (Wang et al., 

2025).  

 

These constraints generalize beyond kinetics: in 

quantitative spectroscopy, constraints can enforce that 

mixture fractions are non-negative and optionally sum to 

one; in separations and mass spectrometry, constraints 

can enforce that isotopic envelopes and adduct 

relationships follow known rules; in process analytical 

technology, constraints can enforce that material 

balances close across sensors. The key benefit is that 

constraints reduce shortcut learning because the model 

cannot “explain away” outcomes using physically 

impossible internal states (Karniadakis et al., 2021).  

 

5.2.2 non-negativity, sparsity, and smoothness priors 

Many chemical quantities are inherently non-

negative (concentrations, absorbance contributions, 

abundance maps). Enforcing non-negativity is a classic 

route to interpretability, exemplified by non-negative 

matrix factorization, which yields parts-based, additive 

representations that align with mixture intuition (Lee & 

Seung, 1999). In hyperspectral Raman unmixing, 

modern approaches explicitly impose abundance non-

negativity and related constraints to improve physical 

interpretability of recovered components (Georgiev et 

al., 2024).  

 

Sparsity priors are useful when only a few 

chemical sources, peaks, or reactions dominate, and they 

can stabilize ill-posed inversions (for example peak 

deconvolution or sparse mixture identification). 

Compressed sensing theory formalized how sparsity 

enables recovery from undersampled measurements, 

which motivated many modern sparse regularization 

strategies used in spectroscopy and imaging pipelines 

(Donoho, 2006). Smoothness priors are equally 

important: spectra and time-series often vary smoothly, 

and penalizing non-physical roughness can suppress 

noise amplification. A concrete example in infrared 

analysis is blind spectral deconvolution that estimates 

both latent spectrum and instrument response while 

using total-variation style regularization to control 

unrealistic oscillations (Liu et al., 2024).  

 

5.2.3 Instrument-response-aware learning 

Instrument effects are not nuisances; they 

define the forward map from chemical reality to 

measured data. If the model ignores this forward map, it 

can learn instrument-specific signatures that do not 

transfer. A simple but powerful practice is to encode 

measurement knowledge explicitly: incorporate 

instrument line shape concepts, detector saturation 

behavior, chromatographic peak models, or 

electrochemical circuit constraints. Even basic 

terminology like “instrument line shape” is formalized in 

IUPAC definitions, emphasizing that spectral features 
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are shaped by the spectrometer response and processing 

choices (IUPAC, 2025).  

 

In learning systems, instrument-response 

awareness can be implemented by (i) training on 

synthetic data generated from a forward model, (ii) 

adding a differentiable forward layer inside the network, 

or (iii) learning residual corrections around a known 

forward simulator. Blind infrared deconvolution 

methods that explicitly model the instrument response 

function illustrate the principle: you do not ask a neural 

model to “guess” the true spectrum without telling it how 

the instrument distorts the signal (Liu et al., 2024).  

 

5.3 Hybrid models: mechanistic core + learned 

residuals 

Hybrid modeling treats first-principles physics 

and chemistry as the backbone and uses ML to learn what 

the mechanistic model misses: unmodeled kinetics, 

unknown parameters, nuisance effects, or systematic 

biases. In chemical engineering, hybrid science-guided 

ML has been reviewed as a structured family of 

strategies, including serial (mechanistic then ML), 

parallel (mechanistic plus ML residual), inverse/hybrid 

identification, and reduced-order surrogates, with clear 

discussion of when each approach is appropriate 

(Sharma & Liu, 2022).  

 

This architecture is attractive for multimodal 

measurement because mechanistic parts can act as a 

shared “physics interface” across modalities. For 

example, a mechanistic reaction model can constrain 

feasible concentration trajectories while the 

spectroscopy and chromatography models learn 

modality-specific mappings to those latent states. The 

physics core improves extrapolation beyond the training 

window, while the learned residual captures systematic 

discrepancies such as temperature dependence, matrix 

effects, or sensor cross-sensitivity that are hard to model 

from first principles (Karniadakis et al., 2021; Sharma & 

Liu, 2022).  

 

5.4 Bayesian and probabilistic approaches for 

uncertainty-aware predictions 

Uncertainty is essential in analytical chemistry 

because decisions are often threshold-based: pass/fail 

quality control, identity confirmation, or whether to 

trigger confirmatory measurement. Modern probabilistic 

ML distinguishes aleatoric uncertainty (noise inherent in 

the observations) from epistemic uncertainty (model 

uncertainty that can shrink with more data), and this 

separation helps interpret whether uncertainty is coming 

from poor measurement quality or from the model being 

outside its competence region (Kendall & Gal, 2017).  

 

Bayesian deep learning methods provide 

practical approximations to epistemic uncertainty in 

neural networks. A well-known result is that dropout 

training can be interpreted as approximate Bayesian 

inference in deep Gaussian processes, enabling 

uncertainty estimates without redesigning the full 

architecture (Gal & Ghahramani, 2016). Gaussian 

processes themselves remain a strong probabilistic 

baseline for regression and calibration because they 

provide principled predictive distributions and are well-

studied for scientific inference and surrogate modeling 

(Rasmussen & Williams, 2006).  

 

For electrochemical impedance analysis, 

uncertainty-aware tools are becoming concrete: 

AutoEIS, for example, explicitly integrates Bayesian 

inference to automate equivalent-circuit modeling from 

EIS data, reflecting a broader trend toward probabilistic 

workflows that quantify parameter uncertainty instead of 

returning single-point fits (Sadeghi et al., 2025).  

 

5.5 Model governance: dataset bias, drift monitoring, 

documentation 

Reliable physics-guided AI is not only about 

model equations; it requires governance so users can 

trust where the model works, where it fails, and how it 

was validated. Two widely adopted documentation 

frameworks are datasheets for datasets, which 

standardize how datasets are described (collection 

process, composition, intended use, limitations), and 

model cards, which standardize how trained models are 

reported (performance slices, ethical considerations, 

caveats, intended users) (Gebru et al., 2018; Mitchell et 

al., 2019).  

 

For multimodal chemistry, governance should 

also include drift monitoring. Dataset shift is expected 

when deploying to a new instrument, method, or 

operator, and concept drift is expected in long-running 

processes. Drift surveys emphasize that drift detection is 

a defined task with established evaluation approaches, 

and it should be part of operational monitoring for 

analytical AI systems (Quiñonero-Candela et al., 2009; 

Gama et al., 2014).  

 

A minimal governance package for your review 

can therefore recommend: (i) dataset documentation 

(datasheet), (ii) model documentation (model card), (iii) 

leakage-safe validation and grouped evaluation when 

batches or days are present, (iv) ongoing drift detection, 

and (v) recalibration or transfer procedures when drift is 

detected (Gebru et al., 2018; Mitchell et al., 2019; Lopez 

et al., 2023).  
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Figure 4: Physics-Guided AI Workflow for Multimodal Chemistry: Forward Models + Constraints + Learning + Uncertainty 

Quantification + Validation 

 
Table 5: AI Tasks by Modality: Typical Inputs, Targets, and Suitable Model Families (with Pros/Cons) 

Modality Typical 

inputs 

Common AI 

tasks 

Typical 

targets 

Suitable model 

families 

Pros Cons / failure 

modes 

Physics-guided 

additions 

Spectroscopy 

(IR, Raman, 

UV-Vis, 

NMR) 

1D spectra; 

sometimes 

time-resolved 

or 

hyperspectral 

cubes 

Baseline/denoise; 

peak picking and 

deconvolution; 

spectral 

unmixing; 

quantitative 

prediction 

Peak 

positions/areas

; component 

spectra; 

concentrations

; uncertainty 

PLS/PLS2; 

sparse 

regression; 

NMF; 1D CNN; 

autoencoders; 

Bayesian NNs 

Fast, often 

interpretable 

with 

constraints; 

strong for 

quant 

Shortcut 

learning on 

baseline/batch

; instrument-

specific 

artifacts; poor 

transfer 

without 

calibration 

Non-negativity 

and smoothness 

priors (Lee & 

Seung, 1999); 

instrument line-

shape and 

deconvolution 

models (IUPAC, 

2025; Liu et al., 

2024) 

Chromatograp

hy–MS (LC-

MS, GC-MS) 

Chromatogra

ms; MS1 

isotope 

patterns; 

MS/MS 

spectra; peak 

tables 

Peak 

detection/deconvo

lution; retention 

time prediction; 

compound 

annotation; 

molecular 

networking 

RT; peak 

identity; 

formula/ 

structure 

candidates; 

class labels 

Gradient 

boosting; deep 

embeddings for 

spectra; graph 

models; kernel 

methods 

High 

specificity 

when models 

use 

fragmentation 

rules and RT 

Domain shift 

across 

columns/meth

ods; false 

annotation 

confidence; 

missingness 

and batch 

effects 

Physics/chemistry 

rules (isotopes, 

adducts); RT 

constraints; 

uncertainty-aware 

ranking; 

community 

curation 

Electrochemis

try 

(voltammetry, 

EIS) 

Current–

potential 

curves; 

Nyquist/Bode; 

time series 

Denoise; 

state/parameter 

estimation; 

equivalent-circuit 

identification; 

inverse modeling 

Circuit 

topology; R,C, 

diffusion 

params; state-

of-health 

Feature + tree 

models; 1D 

CNN; 

probabilistic 

inference; 

Bayesian 

methods 

Strong for 

parameter 

inference; 

supports 

principled UQ 

Non-

uniqueness of 

circuit fits; 

overfitting to 

geometry; 

drift with 

aging 

Conservation and 

monotonicity 

constraints; 

Bayesian 

inference for 

circuits 

(AutoEIS) 

Chemical 

imaging 

(hyperspectral

, MSI, 

microscopy) 

2D/3D 

images; 

hyperspectral 

cubes; MSI 

maps 

Segmentation; 

unmixing; super-

resolution/ 

deconvolution; 

spatial 

quantification 

Chemical 

maps; class 

masks; spatial 

distributions 

U-Net; 

transformers; 

NMF/ 

unmixing; 

physics-

informed 

deconvolution 

Captures 

spatial 

heterogeneity 

and 

microstructure 

Illumination 

and 

instrument 

transfer 

issues; 

shortcut 

learning via 

background 

Non-negativity 

and abundance 

constraints; PSF / 

instrument 

response models; 

spatial 

smoothness priors 

Cross-

modality 

fusion 

Aligned 

blocks across 

modalities 

Joint 

representation 

learning; decision 

fusion; OOD 

detection; 

calibration 

transfer 

Robust 

predictions 

across 

instruments 

and labs 

Multiblock 

methods; deep 

multimodal 

fusion; 

probabilistic 

stacking 

Better 

robustness if 

modalities 

complement 

Fusion can 

amplify 

confounding 

if alignment is 

wrong 

Grouped 

validation; drift 

monitoring; 

physics interface 

as shared latent 

state 
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Representative anchors: non-negativity 

foundations (Lee & Seung, 1999); instrument line shape 

concept (IUPAC, 2025); IR instrument-response 

deconvolution (Liu et al., 2024); retention-time 

generalization challenges and methods (Zhang et al., 

2024); MS community curation and networking (Wang 

et al., 2016); EIS deep learning and automated modeling 

(Doonyapisut et al., 2023; Sadeghi et al., 2025). 

 

6. Validation, metrology, and uncertainty (the 

analytical chemistry backbone) 

Multimodal data fusion becomes analytical 

chemistry only when it is treated as a measurement 

procedure: the measurand is defined, calibration 

establishes traceability, validation demonstrates fitness 

for intended use, and uncertainty is stated and propagated 

to decisions (JCGM, 2008; JCGM, 2012a; De Bièvre et 

al., 2011). In this framing, “AI performance” is not 

enough; reviewers increasingly expect the same 

discipline used for analytical procedures, including 

validation characteristics and lifecycle thinking (ICH, 

2023a; ICH, 2023b). 

 

6.1 Calibration strategies across modalities (external, 

internal standard, standard addition) 

Calibration connects instrument response to a 

quantity value that can be compared across time, 

instruments, and laboratories, so it is the first place where 

multimodal workflows either become trustworthy or 

become irreproducible (De Bièvre et al., 2011; JCGM, 

2012b). External calibration is straightforward and 

supports linearity/range claims, but it is vulnerable to 

matrix effects and drift when the calibration environment 

differs from real samples (ICH, 2023a; Thompson et al., 

2002). Internal standardization improves robustness 

when an internal standard tracks losses, injection 

variability, or signal fluctuations and is particularly 

important in workflows where instrument response is 

sensitive to sample composition (Thompson et al., 2002). 

Standard addition is often the most defensible approach 

in severe matrix-effect regimes because the calibration is 

performed inside the sample matrix, reducing bias from 

suppression/enhancement and other matrix-dependent 

behavior (Thompson et al., 2002; Ellison & Williams, 

2012). 

 

In multimodal studies, reviewers will look for 

an explicit calibration hierarchy: which modality 

provides the traceable anchor (often a separation–MS 

method or a certified reference method), how other 

modalities are cross-calibrated to it, and whether transfer 

is re-checked when instruments, operators, or batches 

change (De Bièvre et al., 2011; ICH, 2023b). Whenever 

reference materials are used, good practice is to 

document how they were selected, handled, and applied 

to maintain comparability and traceability across runs 

(ISO, 2015; ISO, 2017a). 

 

 

6.2 Figures of merit: selectivity, sensitivity, 

LOD/LOQ, precision, accuracy, robustness 

Analytical figures of merit must be reported in 

a way that maps to established validation language. ICH 

validation guidance explicitly requires characterizing 

performance with core attributes such as 

specificity/selectivity, accuracy, precision, detection 

limit, quantitation limit, linearity, range, and robustness 

(ICH, 2023a). For detection and quantification, it is 

important to use consistent definitions. The classic 

statistical treatment of detection capability in analytical 

chemistry is often traced to Currie’s framework, which 

clarifies how detection decisions depend on error 

probabilities and distributional assumptions (Currie, 

1968). Later work discusses practical pitfalls and 

interpretation issues around IUPAC-aligned LOD 

definitions, highlighting how inconsistent practice can 

produce misleading comparability (Long & 

Winefordner, 1983). Related international terminology 

and guidance for detection capability are also covered in 

ISO standards (ISO, 1997). 

 

Precision should be stated under clearly 

described conditions (repeatability vs intermediate 

precision), and accuracy should be treated as trueness 

plus precision rather than a single “error” number (ICH, 

2023a; ISO/IEC, 2017). In fusion papers, the minimum 

expectation is to report figures of merit per modality and 

for the fused output, and to state whether fusion 

improved sensitivity/selectivity at the expense of 

robustness or interpretability (Westad & Marini, 2015; 

Lopez et al., 2023). 

 

6.3 Cross-modality consistency checks (does the fused 

result obey chemistry/physics?) 

A unique advantage of multimodal chemistry is 

that different instruments constrain the same underlying 

chemical state through different physics. That advantage 

only becomes credible when authors explicitly show that 

the fused result obeys chemical and physical constraints 

and that modalities do not contradict each other beyond 

stated uncertainty (JCGM, 2008; Smolinska et al., 2019). 

Practically, reviewers expect evidence of (i) scale 

consistency (units and calibration compatibility), (ii) 

constraint consistency (non-negativity for 

concentrations, mass or charge balance where relevant), 

and (iii) agreement diagnostics (residual plots and 

disagreement metrics showing when modalities diverge) 

(De Bièvre et al., 2011; JCGM, 2008). 

 

A simple but powerful pattern is to treat each 

modality as an independent measurement model and then 

test whether they converge on the same measurand 

within uncertainty. When they do not, the paper should 

explain whether the discrepancy is attributable to 

sampling, matrix effects, model bias, or instrument drift, 

rather than silently averaging disagreements through 

fusion (Ellison & Williams, 2012; Westad & Marini, 

2015). 
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6.4 Uncertainty decomposition: sampling, 

instrument, model, fusion 

Uncertainty is what converts a fused estimate 

into a defensible measurement result. The GUM 

framework formalizes uncertainty through a 

measurement model and propagation from input 

quantities to the output, using either analytical 

propagation or Monte Carlo methods when linear 

approximations are not appropriate (JCGM, 2008; 

JCGM, 2008a). In chemistry labs, Eurachem guidance 

operationalizes this into practical uncertainty budgets 

and emphasizes that uncertainty evaluation must be tied 

to fitness-for-purpose rather than theoretical 

completeness (Ellison & Williams, 2012; Bettencourt da 

Silva & Williams, 2015). 

 

For multimodal fusion, a practical uncertainty 

budget should separate at least four components: 

sampling uncertainty, instrument/calibration uncertainty 

(per modality), model uncertainty (chemometrics/ML), 

and fusion uncertainty (introduced by combining 

modalities and any cross-calibration). Sampling 

uncertainty can dominate in real-world settings, and 

Eurachem guidance treats sampling as part of the 

measurement process rather than a pre-analytical 

footnote (Eurachem et al., 2019). For compliance or 

pass/fail decisions, uncertainty must be connected to 

decision rules and statements of conformity; this is 

addressed both by metrology guidance on conformity 

assessment and by laboratory accreditation guidance 

used in ISO/IEC 17025 contexts (JCGM, 2012b; ILAC, 

2019; ISO/IEC, 2017). 

 

6.5 Reporting standards and reproducibility (what 

reviewers expect now) 

Reviewers increasingly judge multimodal 

fusion manuscripts as method papers: they expect 

enough detail to reproduce the pipeline and to evaluate 

whether performance is real or inflated. At minimum, 

this means reporting calibration and validation elements 

aligned with analytical procedure guidance (ICH, 2023a; 

Thompson et al., 2002) and describing model validation 

in a way that avoids leakage and respects grouping 

(batch, day, instrument, site) (Westad & Marini, 2015; 

Lopez et al., 2023). For long-running or field-deployed 

systems, reviewers also expect drift control (QC 

samples, monitoring logic, recalibration triggers) 

because stability over time is part of “robustness” in 

practice (Thompson & Wood, 1995; ISO/IEC, 2017). 

 

Reproducibility expectations now commonly 

extend beyond narrative description to structured sharing 

of data and metadata. FAIR principles are frequently 

used as the standard reference for how scientific data 

should be made reusable, and they are especially 

important in multimodal studies where hidden metadata 

debt prevents independent replication (Wilkinson et al., 

2016). 

 

Table 6: Multimodal Validation Checklist: Minimum Reporting Requirements for Reproducible Fusion Studies 
Checklist domain Minimum reporting requirements Key guidance anchor 

Measurand definition Measurand, units, matrix definition, operating conditions, and 

how “ground truth” is established 

JCGM (2008); De Bièvre et al., (2011) 

Sampling and 

handling 

Sampling design, replicates, holding times, storage, transport, 

contamination controls 

Eurachem et al., (2019) 

Sample preparation Full workflow, blanks, spike recovery strategy, internal 

standards/standard addition if used 

Thompson et al., (2002); ICH (2023a) 

Instrument settings Instrument model/configuration, acquisition parameters, 

environment, QC schedule 

ISO/IEC (2017) 

Calibration strategy External/internal standard/standard addition; model form; 

range; recalibration frequency 

ICH (2023a); Ellison & Williams (2012) 

Figures of merit Selectivity, sensitivity, LOD/LOQ, precision, accuracy, 

robustness per modality + fused output 

ICH (2023a); Currie (1968); ISO (1997) 

Preprocessing Exact preprocessing steps, parameters, software versions; 

alignment/normalization rules 

Westad & Marini (2015) 

Data splits and 

validation 

Grouped splitting rules; nested CV if tuning; truly external test 

set when claiming transfer 

Westad & Marini (2015); Lopez et al., 

(2023) 

Fusion description Fusion level (data/feature/decision), rationale, ablation tests 

(drop-modality) 

Smolinska et al., (2019) 

Drift control Drift indicators, control charts/QC logic, recalibration triggers, 

versioning 

Thompson & Wood (1995); ISO/IEC 

(2017) 

Cross-modality 

consistency 

Chemical/physical plausibility checks, disagreement metrics, 

residual analysis 

JCGM (2008); De Bièvre et al., (2011) 

Uncertainty budget Sampling + instrument + model + fusion components; 

propagation method; coverage statement 

JCGM (2008); Ellison & Williams 

(2012); Eurachem et al., (2019) 

Decision rules Guard bands/decision rule for compliance, statement of 

conformity, risk rationale 

ILAC (2019); JCGM (2012b) 

Data and code 

availability 

Raw data, metadata schema, code/workflows, versioning; 

FAIR alignment 

Wilkinson et al., (2016) 
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7. Representative application case studies (show 

power across many fields) 

This section is designed to prove a single point: 

multimodal chemical measurement is not “more 

instruments,” it is a way to remove ambiguity by 

combining orthogonal physical principles (separation, 

spectral fingerprints, electrochemical kinetics, and 

spatially resolved imaging) and then fusing the evidence 

with validation strategies that prevent overconfident 

failures. A useful framing is to decide, for each problem, 

whether you need low level fusion (combine aligned 

signals), mid-level fusion (combine engineered features 

or latent variables), or high-level fusion (combine 

decisions from separate models), and then to choose 

validation splits that reflect the real deployment scenario 

rather than random splits that leak information. 

(Smolinska et al., 2019; Lopez et al., 2023; Westad & 

Marini, 2015).  

 

7.1 Pharmaceutical and biomedical: identity plus 

quantification in complex matrices (LC-MS plus 

spectroscopy plus ML) 

In pharma and biomedical analysis, the central 

challenge is that complex matrices (plasma, serum, urine, 

tissue, formulated products) can distort signals at 

multiple stages, especially in mass spectrometry where 

ion suppression or enhancement changes the apparent 

analyte response. A dedicated matrix effects review 

emphasizes that these effects can arise throughout 

sample preparation and in GC-MS and LC-MS 

workflows, and they directly threaten accuracy, 

sensitivity, and reproducibility if not assessed and 

controlled. (Williams et al., 2023).  

 

For quantitative claims to be credible in 

regulated contexts, the method must be validated against 

recognized expectations for accuracy, precision, 

selectivity, and stability, and the study sample analysis 

must follow disciplined procedures. Regulatory 

guidance documents (FDA and ICH M10 related 

guidance) explicitly define validation elements and 

expectations for bioanalytical methods used for 

regulatory decisions, which is why this case study is ideal 

for showing how “AI plus multimodal” has to be paired 

with traceable validation and documentation. (FDA, 

2024; FDA, 2018; EMA, 2022).  

 

A strong multimodal strategy here uses LC-MS 

as the quantitative anchor while spectroscopy provides 

speed and non-destructive screening. Portable and 

handheld Raman and NIR are widely reviewed for in-

process and quality-control testing of pharmaceutical 

products, typically relying on chemometrics for 

classification and prediction rather than single peak 

rules. (Deidda et al., 2019). Process Analytical 

Technology reviews further explain how PAT supports 

quality-by-design style manufacturing by monitoring 

critical attributes in unit operations such as blending, 

granulation, tableting, and coating, which naturally 

creates a multimodal setting where signals must be 

integrated to support control decisions. (Kim et al., 

2021).  

 

In writing this case study, emphasize the 

“reference to deployment” chain. LC-MS provides 

identity and quantification, spectroscopy provides rapid 

screening and process monitoring, and AI primarily 

functions as a calibration and transfer tool across 

batches, instruments, and sites. The most defensible 

fusion pattern is often mid-level fusion, where you 

combine LC-MS peak table features with spectroscopic 

latent variables, then validate using batch-wise or 

instrument-wise splits, aligned with predictive-model 

validation guidance for real-world generalization. 

(Smolinska et al., 2019; Lopez et al., 2023).  

 

7.2 Environmental and food: trace contaminants and 

field deployable fusion (electrochemistry plus 

spectroscopy) 

Environmental and food settings stress the 

system in different ways: targets can be trace level, 

samples are diverse and messy, and measurement may 

need to happen outside the lab. Reviews of 

electrochemical biosensors for on-site food safety 

emphasize the promise of rapid and low-cost detection, 

but they also highlight that complex matrices and 

minimal sample preparation make sensitivity and 

selectivity difficult, which is exactly where orthogonal 

sensing and fusion become valuable. (Hosseinikebria et 

al., 2025). A complementary review on smart 

electrochemical sensors for foodborne hazards similarly 

frames the field around design strategies and persistent 

performance challenges in real matrices. (Dong et al., 

2025).  

 

The multimodal argument is strongest when 

you show how electrochemistry and spectroscopy 

compensate for each other. Electrochemical sensors are 

excellent for fast response and portable deployment, 

while infrared or Raman-based approaches add a 

chemical fingerprint that can reduce false positives and 

improve specificity. A recent RSC review explicitly 

evaluates electrochemical sensing, infrared 

spectroscopy, hyperspectral imaging, SERS, and 

fluorescence sensing for food safety, highlighting that 

different technologies dominate under different 

constraints and that validation milestones matter. (Feng 

et al., 2025).  

 

Data fusion becomes the mechanism to turn 

“two imperfect sensors” into one reliable decision. A 

recent review dedicated to multi-source data fusion for 

food contaminant detection surveys how data from 

spectroscopy, imaging, and other modalities are 

combined and why the choice of fusion level and 

preprocessing determines whether performance transfers 

across sample types. (Adade et al., 2024). In your 

narrative, you can motivate high level fusion for field 

programs, because it tolerates missing modalities and 

supports calibrated decision thresholds, while still 
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allowing a lab confirmatory test (for example LC-MS) to 

close the loop when needed. This mapping from 

modality to fusion choice aligns with general data-fusion 

frameworks used across life science analytics. 

(Smolinska et al., 2019).  

 

7.3 Catalysis and surface chemistry (operando): 

intermediates and structure activity links 

(spectroscopy plus electrochemistry plus imaging) 

Catalysis is the showcase domain for why 

multimodal must be “physics guided.” Surface 

intermediates are transient, spatially heterogeneous, and 

strongly dependent on operating conditions, so 

conclusions drawn from a single probe are often 

underdetermined. A recent Chemical Reviews 

perspective on operando and in situ studies emphasizes 

that operando approaches are central for linking catalyst 

structure and reactivity, and it situates modern catalysis 

research around integrated characterization under 

working conditions. (Roldán Cuenya et al., 2024).  

 

The practical problem is that operando 

experiments can produce misleading certainty if the cell 

design, synchronization, or interpretation is weak. A 

best-practices article in Nature Communications makes 

this point directly, arguing that execution and 

interpretation determine how strong mechanistic 

conclusions can be and what uncertainties remain, which 

is why this article is ideal to cite when you justify design 

choices for fusion and validation. (Prajapati et al., 2025).  

 

A compelling multimodal template for this case 

study is to treat spectroscopy as the “intermediate and 

state” channel, electrochemistry as the “kinetics and 

transport” channel, and imaging as the “heterogeneity 

and structure” channel. When you describe fusion, 

emphasize that the goal is not to stack raw signals, but to 

fuse mechanistically meaningful descriptors (for 

example, spectral proxies for adsorbate coverage, 

electrochemical descriptors of charge transfer and mass 

transport, and image-derived activity hotspot metrics). 

This is a natural fit for mid-level fusion, followed by 

perturbation-based validation such as potential steps or 

reactant switching that must produce consistent cross-

modal narratives, as recommended by operando best-

practice guidance. (Prajapati et al., 2025).  

 

7.4 Energy materials and devices: batteries and 

corrosion (EIS plus imaging plus spectroscopy) 

Energy devices highlight a different failure 

mode: standard electrochemical measurements provide 

global averages, but degradation is driven by local 

inhomogeneities, interfaces, and evolving 

microstructure. Electrochemical impedance 

spectroscopy is widely used because it can separate 

contributions from different processes in frequency 

space, but a major tutorial also stresses that interpretation 

must be physically grounded and that poor modeling can 

create convincing but incorrect parameter stories. 

(Lazanas & Prodromidis, 2023).  

 

This is why imaging and spectroscopy matter. 

A recent review on operando imaging for batteries 

frames operando imaging as a way to connect micro and 

mesoscale evolution to macroscopic device 

performance, which directly supports the multimodal 

promise of linking structure, composition, and 

performance in real time rather than post-mortem 

inference. (Zhang et al., 2024). Complementary research 

and reviews on local imaging in batteries further 

reinforce that spatially varying transport and reaction 

rates can self-amplify, making local observation 

essential for diagnosing and mitigating degradation. 

(Pollok et al., 2025).  

 

For corrosion, the same measurement logic 

applies, but the deployment context can be field 

structures and longtime horizons. A recent review 

focused on corrosion in reinforced concrete explains that 

EIS has expanded beyond laboratory studies toward field 

assessment, while still facing challenges that motivate 

improved analysis and interpretation. (Alexander et al., 

2025). In writing the case study, emphasize that fusion is 

not optional: EIS helps infer interfacial and transport 

behavior, imaging helps localize damage evolution, and 

spectroscopy helps identify chemical state changes and 

reaction products. The most defensible fusion here is 

often hybrid and physics guided: you use physically 

meaningful constraints for impedance interpretation and 

you validate across cells, temperatures, protocols, or 

exposure environments using validation strategies 

known to prevent optimistic leakage. (Lazanas & 

Prodromidis, 2023; Lopez et al., 2023).  

 

7.5 Polymer and materials QC: composition to 

morphology coupling (spectroscopy plus imaging 

plus chemometrics) 

Polymers and formulated materials are an ideal 

“bridging” domain because the same chemical 

composition can yield different properties depending on 

morphology, phase separation, and spatial distribution of 

additives. A polymer characterization review focused on 

vibrational spectroscopy and chemical imaging 

summarizes how Raman, NIR, and mid-IR based 

approaches are used to characterize polymers in diverse 

forms and to capture behavior that is not visible to bulk 

assays. (Mukherjee & Gowen, 2015).  

 

Chemical imaging is particularly important 

because morphology is often the hidden variable that 

drives performance. A classic Analytical Chemistry 

paper on Raman chemical imaging demonstrates 

noninvasive visualization of polymer blend architecture, 

providing a foundational reference for why spatially 

resolved spectroscopy is central for polymer QC and 

structure-property links. (Schaeberle et al., 1995).  

 

To make the topic modern, connect polymer QC 

to hyperspectral imaging and advanced chemometrics, 

where data volume and dimensionality demand learning-
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based analysis. A recent critical review positions 

hyperspectral imaging as a step beyond classical 

spectroscopic PAT tools by combining spatial and 

chemical information, while emphasizing that powerful 

data analysis is required for interpretation and industrial 

implementation. (de Juan & Rocha de Oliveira, 2025). In 

this case study, show that mid level fusion can combine 

spectral latent variables with spatial texture and 

morphology descriptors to predict QC endpoints, and 

that validation must hold out entire lots or production 

runs rather than pixels to avoid inflated performance, 

consistent with general chemometric validation 

guidance. (Westad & Marini, 2015).  

 
Table 7: Application-to-Workflow Map: Recommended multimodal stacks for common chemical questions (concise) 

Application area Primary question Recommended multimodal 

stack 

Fusion level 

(typical) 

Key validation step 

Pharmaceutical & 

biomedical 

Identity + accurate 

quant in complex 

matrices 

LC–MS/MS (anchor) + 

Raman/NIR (rapid screen) ± 

NMR (structure) 

Mid-level Split/hold-out by batch or 

site; matrix-effect checks; 

external test set 

Environmental & food Trace contaminants 

with field-ready 

decisions 

Electrochemical sensor + 

portable IR/Raman ± lab LC–

MS confirm 

High-level Stress-test across matrix 

types and conditions; 

calibrated decision 

thresholds 

Catalysis & surface 

chemistry (operando) 

Intermediates + 

structure–activity 

links 

Operando 

IR/Raman/XAS/EPR + 

electrochemistry + operando 

imaging 

Mid-level 

(physics-

guided) 

Synchronization + 

perturbation tests 

(switching/steps); cross-

modality consistency 

Energy devices 

(batteries/supercaps) 

Degradation 

diagnosis during 

operation 

EIS + operando spectroscopy 

(Raman/XAS/IR) + operando 

imaging 

Hybrid / Mid-

level 

Hold-out by cell/batch; test 

across temperature & 

protocol; drift monitoring 

Corrosion monitoring State and 

progression under 

real exposure 

EIS + metadata (T, humidity, 

chloride) ± surface 

spectroscopy/imaging 

High-level 

(deploy) / 

Mid-level 

(lab) 

Time-split validation 

(past→future); field 

validation; recalibration plan 

Polymers & materials 

QC 

Blend ratio, phase 

separation, defects 

IR/Raman + 

hyperspectral/Raman imaging 

+ chemometrics 

Mid-level Hold-out by lot/run (not 

pixels); cross-instrument 

transfer test 

Semiconductors & thin 

films 

Surface state, 

contamination, 

uniformity 

XPS/Raman + 

mapping/imaging ± MS for 

trace contaminants 

Mid-level Replicate locations; inter-

operator reproducibility; 

registration error reporting 

Bioprocess/PAT Real-time CQAs 

and process control 

Inline NIR/Raman + process 

sensors ± periodic 

LC/HPLC/LC–MS reference 

High-level 

(control) / 

Mid-level 

(build) 

Time-based splits 

(early→late); site transfer; 

drift alarms & recalibration 

 

 
Figure 5: End-to-End Operando Multimodal Case Study: Fusing Spectroscopy, Electrochemistry, and Chemical Imaging to 

Track Structure–Composition–Performance in a Working System 
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8. Challenges and future directions 

8.1 Standardized multimodal datasets and 

benchmark tasks 

A major barrier to multimodal chemical 

intelligence is the lack of fusion-ready datasets where the 

same samples are measured across multiple modalities 

with consistent identifiers, raw data availability, and rich 

metadata. Without this, models often learn lab- or 

instrument-specific signatures instead of chemistry, and 

results become hard to reproduce or transfer. The FAIR 

principles (Findable, Accessible, Interoperable, 

Reusable) are widely used guidance for making datasets 

machine-actionable and reusable, which is exactly what 

multimodal benchmarking needs (Wilkinson et al., 

2016).  

 

Community benchmarking already works well 

in sub-areas and can be extended to multimodal fusion. 

For example, the CASMI challenges created shared 

evaluation settings for small-molecule identification and 

exposed realistic failure modes that are hidden when 

studies use non-comparable metrics (Schymanski et al., 

2017). Likewise, open community platforms such as 

GNPS enable large-scale sharing and curation of MS/MS 

data and libraries, supporting reproducible comparisons 

of annotation pipelines (Wang et al., 2016).  

 

For “chemistry-wide” multimodal benchmarks, 

the next step is paired and synchronized repositories 

where raw data and metadata are preserved across 

techniques. Metabolomics infrastructure shows what is 

possible: MetaboLights explicitly archives raw 

experimental data and associated metadata (Haug et al., 

2013; Haug et al., 2020). For imaging mass 

spectrometry, METASPACE supports metabolite 

annotation workflows and hosts large public collections 

that can be used to stress-test generalization (Palmer et 

al., 2017; METASPACE, n.d.).  

 

A modern direction is to define benchmark 

tasks that reflect real deployment: calibration transfer, 

drift-robust quantification, operando state estimation, 

and uncertainty-calibrated decisions across labs and 

instruments (not only average accuracy within one 

dataset). (Wilkinson et al., 2016).  

 

8.2 Interoperability: metadata, FAIR data, 

instrument formats and ontologies 

Multimodal fusion often fails for simple 

reasons: missing metadata, inconsistent units, unknown 

preprocessing, and unclear provenance. FAIR explicitly 

elevates interoperability and reuse, implying that 

multimodal studies must capture enough structured 

context for both humans and machines (Wilkinson et al., 

2016).  

 

Several communities already provide strong 

building blocks. In mass spectrometry, mzML is a widely 

adopted community standard for vendor-neutral MS data 

exchange (Martens et al., 2011). In NMR, nmrML 

provides a vendor-agnostic open format designed for 

long-term archiving and reuse of NMR data (Schober et 

al., 2018).  

 

Beyond file formats, multimodal chemistry 

needs structured descriptions of the experiment itself. 

The ISA software suite was designed to support 

standards-compliant experimental annotation, including 

multi-technology studies and ontology-backed checklists 

(Rocca-Serra et al., 2010). Complementary perspectives 

on interoperable bioscience data and “data commoning” 

further emphasize shared frameworks and incentives for 

standardized metadata (Sansone et al., 2012).  

 

For regulated and industrial workflows, 

enterprise-level interoperability efforts are also growing. 

The Allotrope Framework describes a standardized 

approach to storing analytical data plus instrument 

settings and contextual metadata to support integrity and 

downstream analytics (Allotrope Foundation, n.d.; 

Kayser & Lau, 2024). For cross-technique interchange 

and archiving, AnIML is an ASTM-linked 

standardization effort for analytical result data and 

metadata (ASTM International, n.d.).  

 

A practical “future direction” message for your 

review is: treat interoperability as a design constraint, 

meaning minimum metadata fields, standard formats 

when available, controlled vocabularies for instrument 

and sample descriptors, and explicit provenance of 

preprocessing and calibration. (Wilkinson et al., 2016; 

Rocca-Serra et al., 2010).  

 

8.3 Real-time fusion and closed-loop experimentation  

The frontier is moving from offline data fusion 

to real-time inference that guides what the lab does next. 

Self-driving laboratories combine automation, online 

analytics, and algorithmic experiment selection to 

accelerate discovery and optimization (Tom et al., 2024). 

In this setting, multimodal fusion becomes a control 

problem: each modality constrains a latent chemical 

state, and the system chooses the next action to reduce 

uncertainty or optimize objectives (Tom et al., 2024).  

 

Demonstrations show why these matters: a self-

driving laboratory can efficiently explore trade-offs and 

move toward a Pareto front when multiple objectives 

compete (MacLeod et al., 2022). For multimodal 

chemistry, the key research direction is “measurement-

aware autonomy,” where the platform selects the next 

measurement because it is maximally informative for the 

fused estimate (for example, spectroscopy for specificity, 

electrochemistry for kinetics, imaging for 

heterogeneity), rather than simply collecting everything 

all the time (Tom et al., 2024).  

 

8.4 Green and miniaturized analytics (portable 

multimodal platforms) 

Sustainable measurement is increasingly a 

design requirement, not an optional add-on. The 12 
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principles of green analytical chemistry explicitly 

promote miniaturization, automation, and reducing 

reagent use, waste, and energy demand (Gałuszka et al., 

2013).  

 

Portable spectroscopy is a strong example 

because it can reduce sampling logistics and enable in 

situ decisions when coupled to robust chemometrics. 

Reviews discuss how portable NIR supports 

nondestructive, online, or in situ analyses and highlight 

the central role of chemometrics for extracting reliable 

information from compact instruments (Gullifa et al., 

2023; Yan et al., 2023). Portable Raman instrumentation 

is also expanding rapidly; reviews emphasize 

performance limits and the importance of careful 

validation and preprocessing for field deployment 

(Jehlička et al., 2022).  

 

Miniaturization at the platform level has deep 

roots in micro total analysis systems. The classic concept 

of miniaturized “total chemical analysis systems” 

proposed integrating analytical operations to reduce 

transport time and reagent consumption while enabling 

faster workflows (Manz et al., 1990). The modern future 

direction is portable multimodal stacks (for example 

handheld spectroscopy plus electrochemical sensing) 

with on-device fusion that reports not only a prediction, 

but also uncertainty and an “out-of-scope” warning 

(Gałuszka et al., 2013; Gullifa et al., 2023).  

 

8.5 Trustworthy AI: uncertainty, explainability, and 

regulatory acceptance 

As multimodal AI shifts from papers to 

regulated or safety-relevant decisions, “trustworthy AI” 

must be operationalized as governance, evaluation, 

monitoring, and lifecycle management. The NIST AI 

Risk Management Framework (AI RMF 1.0) provides a 

lifecycle structure for managing AI risks and emphasizes 

continuous monitoring and governance rather than one-

time model building (NIST, 2023).  

 

Regulatory expectations around AI lifecycle 

documentation are becoming more explicit, especially 

for medical-device software. FDA’s SaMD pages 

highlight ongoing guidance activity for AI-enabled 

device software functions and lifecycle considerations 

(FDA, 2025a; FDA, 2025b). In parallel, Good Machine 

Learning Practice principles (referenced by FDA and 

published by IMDRF) emphasize total product lifecycle 

thinking, transparency, and quality systems alignment 

(FDA, 2025c; IMDRF, 2025).  

 

For chemistry and pharmaceutical analysis, 

method validation and lifecycle concepts provide strong 

analogies for multimodal AI validation. ICH Q2(R2) sets 

expectations for analytical procedure validation, and 

Q14 frames science- and risk-based analytical procedure 

development and maintenance (ICH, 2023a; ICH, 

2023b). A clean future direction is “audit-ready 

multimodal AI”: clearly defined intended use, locked 

preprocessing, uncertainty calibration, external 

validation under domain shift (new instruments, labs, 

matrices), and drift monitoring with controlled update 

pathways (NIST, 2023; ICH, 2023a).  

 

CONCLUSION  
Multimodal chemical measurement is 

becoming a practical unifying layer across chemistry and 

physics because it links orthogonal signals to a common 

chemical reality: identity, concentration, structure/state, 

kinetics, and spatial heterogeneity. When designed well, 

fusion does not merely increase accuracy; it reduces 

ambiguity by forcing agreement between independent 

physical principles, so the final output is more robust to 

interference, drift, and instrument changes than any 

single modality alone. The strongest workflows therefore 

treat fusion as a measurement strategy, not a post-

processing trick: the modalities are chosen to be 

complementary, the fusion level is kept as simple as 

possible, and models are built around a clearly defined 

decision (screening vs quantification vs mechanistic 

inference vs control). 

 

A key message of this review is that the field 

will not achieve real-world impact without the analytical 

chemistry backbone. Multimodal AI must be calibrated, 

validated, and reported like an analytical procedure, 

including figures of merit per modality and for the fused 

output, explicit cross-modality consistency checks, and 

uncertainty budgets that separate sampling, instrument, 

model, and fusion components. Only then can fused 

results be compared across labs and time, used in 

conformity decisions, and trusted in regulated or safety-

relevant settings. In parallel, physics-guided modeling 

and probabilistic inference are shifting multimodal AI 

from “high performance on a dataset” to transferable and 

uncertainty-aware predictions, enabling reliable 

deployment and safer automation. 

 

Looking forward, the most exciting trajectory is 

the convergence of multimodal sensing, interoperability, 

and autonomy: standardized datasets and benchmark 

tasks will make comparisons fair; FAIR-aligned 

metadata and instrument formats will make fusion 

reproducible; real-time fusion will power closed-loop 

experimentation and self-driving labs; and miniaturized 

green platforms will move multimodal analytics from 

centralized facilities to field and production 

environments. The practical decision framework is: 

select an anchor modality for traceable quantification, 

add orthogonal modalities that constrain ambiguity, fuse 

at the simplest level that achieves robustness, and 

validate under realistic domain shift with uncertainty 

reporting. If this discipline becomes standard, the next 

decade will see multimodal workflows evolve from 

descriptive measurements into quantitative, uncertainty-

aware, and deployable chemical intelligence. 
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