A Case of Compound Heterozygous HbS and HbD Disease in Premarital Screening

Dr. Tulsi Jariwala (M.B.B.S D.C.P)¹*, Dr. Arpita Patel (MD Pathology)¹, Dr. Riddhi Patel (MD Pathology)¹, Dr. Aashka Shah (MD Pathology)¹, Dr. Hiral Shah (MD Pathology)¹, Dr. Tushar Kariya (DNB Pathology)²

¹Consultant at Desai Metropolis health services Pvt. Ltd, Surat, Gujarat, India
²Consultant at Desai Metropolis health services Pvt. Ltd, Vadodara, Gujarat, India

Abstract

Introduction: Among the inherited disorders of blood, haemoglobinopathy and thalassaemia constitute a major bulk of non-communicable genetic diseases in India. They cause a high degree of morbidity in affected individuals. Moderate to severe haemolytic anaemia among vulnerable segments of the society like infants and children, adolescent girls, pregnant women, etc. may result in many deaths in India. Hemoglobinopathies are a vast group of inherited disorders of hemoglobin production and function. Compound heterozygous HbSD-Punjab is an uncommon hemoglobinopathy encountered in Indians. In premarital screening, molecular testing is mostly inconvenient and diagnosis often relies on the abnormal hemoglobin analysis, family studies and epidemiological facts. We present the clinical and laboratory characteristics of hemoglobin D-Punjab with sickle cell disease found on premarital screening. Case Report: Blood sample of a 22 year old patient for high-performance liquid chromatography was received. A complete blood count (CBC) showed mild anemia with Hb of 8.3 g/dl with mild microcytic hypochromic red cell indices. The HPLC showed HbD and S-window on BIO RAD D10 machine. The high-performance liquid chromatography showed normal hemoglobin Hb F and Hb A2, which indicates presence of a Compound heterozygous for HbSD-Punjab. Conclusion: Compound heterozygous state for HbD-Punjab with S-window is a rare disorder. HbSD-Punjab has a heterogeneous clinical presentation. Anemia and sickle crises are quite common. The data obtained from the clinical findings, blood picture and electrophoresis or HPLC will help in diagnosis. Genetic counseling is advisable in patients with presence of a Compound heterozygous HbSD-Punjab.

Keywords: Compound heterozygous HbSD-Punjab, HPLC, Premarital screening.

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

Hemoglobinopathies are a group of clinical disorders caused by genetic defects that cause either an abnormal structure of hemoglobin or insufficient production.

Hemoglobinopathy can be broadly classified as disorders that result from structurally altered haemoglobin molecules (e.g. Sickle cell anemia) or disorders that arise from numerical imbalance of otherwise normal globin chain synthesis (β Thalassemia) [1]. Haemoglobinopathies may be due to deletion, insertion or substitution in the amino acid sequence in either alpha or beta globin chains leading to the formation of structurally defective haemoglobin (Hb). The first hemoglobinopathy, HbS, was discovered by Pauling et al., [2].

Many different mutations cause β Thalassemia and related disorders [3]. These mutations can affect every step in the pathway of globin gene expression: transcription, processing of the messenger ribonucleic acid (mRNA), precursor, and translation of mature mRNA and preservation of post translational integrity of β chain. More than 400 mutations have been described [4].

Hemoglobin D (Hb D) has more than a dozen variants among which Hb D-Punjab is most common [5]. Rarely, a compound heterozygous state for HbD-Punjab with S-window has been described. The variants differ at molecular level, but genetic tests are often unfeasible in premarital screening. In practice, the diagnosis and marriage guidance often rely on the results of abnormal hemoglobin analysis, family studies and epidemiological knowledge.
HbD Punjab also known as HbD Los Angeles is a β-chain variant and is characterized by a Glu→Gln substitution at codon 121 with a GAA→CAA change at the DNA level and the electrophoretic mobility at alkaline pH is similar to HbS (β6, Glu→Val) [6]. HbD-Punjab is an uncommon structural Hb variant seen in Punjabis and a higher frequency in Muslims in consanguineous marriages [7].

Compound heterozygosity for βS/βD results in a severe hemolytic anemia and a clinical syndrome similar to that of sickle cell disease. Here, we report a case of HbSD Punjab disease.

CASE REPORT

A twenty two years old male, resident of Surat (Gujarat) had taken up Abnormal haemoglobin studies test by high-performance liquid chromatography (HPLC) as a part of his premarital screening test. He was diagnosed as HbSD disease during routine Premartial screening tests, which included various tests ranging from complete blood counts to abnormal haemoglobin studies.

On performing serum electrophoresis for abnormal haemoglobin studies on this patient, patient was found to be carrying both HbD and HbS hemoglobins.

The patient was advised parental screening for abnormal haemoglobin and DNA analysis for definitive diagnosis.

Investigations:

This patient was diagnosed by Hb electrophoresis done on D10 Biorad by High performance liquid chromatography (HPLC), sickling and solubility tests.

Patient’s Hb was 8.3 g/dl and his reticulocyte count was 3.0%. Sickling and Solubility test were found to be positive.

HPLC analysis revealed the presence of both HbS and HbD (HbS-39.5%, HbD-45.5% and HbF-2.7%). The parents of the patient were also investigated. The father was found to be HbD trait while the mother was sickle cell trait.

Haematological tests including haemoglobin, hematocrit, and cell indices are as below (Table I).

<table>
<thead>
<tr>
<th>Table 1: Showing Hematological Parameters of Patient Investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Haemoglobin</td>
</tr>
<tr>
<td>RBC</td>
</tr>
<tr>
<td>Packed Cells Volume</td>
</tr>
<tr>
<td>Total Leucocyte Count</td>
</tr>
<tr>
<td>MCV</td>
</tr>
<tr>
<td>MCH</td>
</tr>
<tr>
<td>MCHC</td>
</tr>
<tr>
<td>Platelet</td>
</tr>
<tr>
<td>RDW-CV</td>
</tr>
</tbody>
</table>

High performance liquid chromatography (HPLC) was done for screening this patient for hemoglobinopathies. It was performed on the Bio Rad D10 using beta thalassemia extended program. It showed two abnormal Hb peaks, one within the D-window (as unknown) with a retention time (RT) of 3.88 min comprising 45.5% of the total Hb and the other peak within S-window with a RT of 4.12 min comprising 39.5% of the total Hb. As per Bio Rad Library of Abnormal Hemoglobin version 2, the abnormal Hb in D window is possibly HbD-Punjab and the peak within the S-window is most likely due to HbS (Figure 1).
Abnormal haemoglobin studies by high performance liquid chromatography, results were as shown:
1. Unknown window – 45.5% Hemoglobin at Retention time 3.88, where HbD elutes
2. S window – 39.5% Hb at Retention time 4.12, where HbS elutes.

Figure 1: As shown above, HbD elutes as unknown window at 3.88min (45.5%) and HbS elutes at 4.12 min window (39.5%)

7. BIO RAD’s D-10 Hemoglobin testing system; Library of chromatograms; Chapter: Compound heterozygous for Hb D and Hb S. Vol. (2), 40-41.

