## **Scholars Journal of Medical Case Reports**

Abbreviated Key Title: Sch J Med Case Rep ISSN 2347-9507 (Print) | ISSN 2347-6559 (Online) Journal homepage: https://saspublishers.com **3** OPEN ACCESS

**Psychiatry** 

# Impact of Physical Activity on Metabolic Syndrome in Patients with Schizophrenia

N. Ait Bensaid<sup>1\*</sup>, A. Korchi<sup>1</sup>, F. Laboudi<sup>1</sup>

<sup>1</sup>Arrazi University Psychiatric Hospital in Salé, Faculty of Medicine and Pharmacy - Mohammed V University in Rabat

**DOI:** https://doi.org/10.36347/sjmcr.2025.v13i10.034 | **Received:** 29.08.2025 | **Accepted:** 10.10.2025 | **Published:** 14.10.2025

\*Corresponding author: N. Ait Bensaid

Arrazi University Psychiatric Hospital in Salé, Faculty of Medicine and Pharmacy - Mohammed V University in Rabat

Abstract Review Article

Schizophrenia is a chronic psychotic disorder associated with high rates of sedentary behavior, metabolic syndrome, and cognitive impairment. Physical activity (PA) has been shown to improve psychiatric symptoms, cognitive function, and overall quality of life, yet few patients engage in regular PA. This study evaluated PA levels in 124 outpatients with schizophrenia using the short-form IPAQ and examined associations with sociodemographic, clinical, and metabolic factors. The majority of patients (86.3%) were classified as physically inactive, while 11.3% engaged in moderate PA and 2.4% in vigorous PA. Low PA was associated with older age, female sex, unemployment, and social isolation, whereas higher PA levels were linked to fewer hospitalizations and absence of metabolic syndrome. These findings highlight the importance of incorporating structured PA into therapeutic and psychosocial interventions for patients with schizophrenia.

**Keywords:** Schizophrenia, physical activity, metabolic syndrome, antipsychotics.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

## Introduction

Psychotic disorders constitute a group of severe and chronic mental illnesses characterized by the presence of psychotic symptoms such as hallucinations, delusional ideas, disorganized speech or behavior, and cognitive disturbances. These disorders profoundly affect individuals' daily functioning, both personally, socially, and professionally [1]. They are also associated with a significant clinical impact, with a high risk of disability, as well as negative outcomes for physical health, including heart disease, back problems, and headaches [2]. Schizophrenia is the most well-known disabling psychotic disorder. It affects approximately 24 million people worldwide, or about 1 in 300 individuals (WHO, 2022) [1]. Its prognosis and life expectancy are also among the least favorable [8,9]. Metabolic syndrome (a cluster of risk factors for heart disease), physical inactivity, smoking, diet, alcohol and drug use, and suicide partially explain this situation [3].

Compared to the general population, individuals with schizophrenia are at increased risk of low physical activity levels and spend more time engaged in sedentary behaviors [4].

In addition to its effects on physical health, recent evidence indicates that physical activity and exercise interventions have positive effects on both the negative and positive symptoms of psychosis, as well as on quality of life [5]. Research conducted in the general population has shown that regular physical activity is associated with improved cognitive functioning, reduced negative affect, delayed age-related cognitive decline, and slower neurodegeneration [12].

Little is known about the practice of physical activity among patients with schizophrenia in Morocco. The objective of this study was to assess the amount of physical activity among individuals with schizophrenia and its impact on metabolic syndrome and overall health.

## **METHODOLOGY**

## Type of study:

This is a prospective study conducted using a questionnaire that included sociodemographic and clinical criteria, as well as the short version of the International Physical Activity Questionnaire (IPAQ). Data collection took place from October 2024 to January 2025, allowing for a representative assessment of physical activity levels over several months.

#### **Inclusion criteria:**

The study included participants of both sexes, aged 18 years or older, with a diagnosis of schizophrenia established according to DSM-5-TR criteria. Participants were required to be regularly followed up in outpatient psychiatric care and to be in a clinically stable condition at the time of inclusion. These criteria ensured the reliability of responses and the stability of behaviors related to physical activity.

#### **Exclusion criteria:**

Patients in the acute phase of the illness were excluded, as their clinical condition would not allow for a reliable evaluation of physical activity. Likewise, individuals with associated intellectual disabilities were excluded to avoid biases related to comprehension and the reliability of questionnaire responses.

#### **Assessment tools:**

The main assessment tool used was the International Physical Activity Questionnaire (IPAQ, short version (Craig et al., 2003). The data collected from this instrument were classified into three levels of physical activity: low, moderate, and high. Physical activity (PA) was expressed as a continuous measure corresponding to the amount of energy expended (in METs) over a seven-day period. The intensity of activity was also measured, generating distinct scores for walking, moderate-intensity activities, and vigorous-intensity activities.

IPAQ results were presented both in categorical form (low, moderate, or high activity) and continuous form, allowing for a detailed analysis of the amount and intensity of physical activity practiced by participants.

#### Statistical analysis:

Statistical analysis was performed using IBM SPSS software, ensuring rigorous data management and reliable interpretation of results. Variables were classified into two main categories: quantitative variables (e.g., age, scale scores) and qualitative

variables (e.g., sex, medical history, intervention group). This distinction made it possible to apply appropriate statistical methods according to the nature of the data analyzed.

For descriptive statistics, quantitative variables were summarized using the mean and standard deviation, or, in cases of non-normal distribution, using the median and interquartile range. Qualitative variables were presented as absolute and relative frequencies (percentages) to describe the sample characteristics.

For statistical tests, the normality of quantitative data distributions was first verified using the Kolmogorov-Smirnov test or the Shapiro-Wilk test, depending on the sample size. When the distribution was normal, the student's t-test was used to compare means between two groups. In the absence of normality, the nonparametric Mann-Whitney test was applied. Associations between qualitative variables were analyzed using the Chi-square test ( $\chi^2$ ).

Finally, a multivariate analysis (such as logistic or linear regression, depending on the nature of the main dependent variable) was performed to identify independent factors associated with this variable. This step allowed control for potential confounding effects and ensured statistically robust results. The threshold for statistical significance was set at p < 0.01

## RESULTS

#### a. Sociodemographic data:

The mean age of the participants was 39.50 years (SD = 33.46), with the majority being male (87.9%). Approximately 62.1% of the participants had a modest socioeconomic status, 96% lived with their families, and 71.8% were single. Regarding education, almost 60% had dropped out of school at the secondary level, and only 10.6% were employed at the time of the study (see Table 1).

**Table 1: Sociodemographic characteristics** 

|                     | Frequency (n) | Percentage (%) |
|---------------------|---------------|----------------|
| Sex                 |               |                |
| Male                | 109           | 87,9           |
| Female              | 15            | 12,1           |
| Socioeconomic level |               |                |
| High                | 10            | 8,1            |
| Moderate            | 77            | 62,1           |
| Low                 | 37            | 29,8           |
| Place of residence  |               |                |
| With family         | 119           | 96             |
| Alone               | 4             | 3,2            |
| Social center       | 1             | 0,8            |
| Marital status      |               |                |
| Single              | 89            | 71,8           |
| Married             | 19            | 15,3           |
| Divorced            | 16            | 12,9           |

|                        | Frequency (n) | Percentage (%) |
|------------------------|---------------|----------------|
| <b>Education level</b> |               |                |
| Unschooled             | 5             | 4              |
| Primary                | 19            | 15,3           |
| Middle school          | 74            | 59,7           |
| High school            | 16            | 12,9           |
| University             | 10            | 8,1            |
| Employment             |               |                |
| Unemployed             | 110           | 89,4           |
| Employed               | 14            | 10,6           |

## **B. CLINICAL DATA**

All participants had a diagnosis of schizophrenia according to DSM-5-TR criteria. The

duration of illness was over 10 years in 53.2% of participants, with positive insight observed in 66.1% (see Table 2).

**Table 2: Clinical characteristics:** 

|                                | Frequency (n) | Pourcentage % |
|--------------------------------|---------------|---------------|
| Duration of schizophrenia      | • • • • •     |               |
| Less than 1 year               | 4             | 3,2           |
| Between 1 and 5 years          | 18            | 14,5          |
| Between 5 and 10 years         | 36            | 29            |
| More than 10 years             | 66            | 53,2          |
| Insight                        |               |               |
| Positive                       | 82            | 66,1          |
| Negative                       | 42            | 33,9          |
| Adherence to antipsychotics    |               |               |
| Good                           | 91            | 73,4          |
| Poor                           | 33            | 26,6          |
| Types of antipsychotics        |               |               |
| Olanzapine                     | 42            | 33,9          |
| Haloperidol                    | 30            | 24,2          |
| Risperidone                    | 27            | 21,8          |
| Amisulpride                    | 11            | 8,9           |
| Long-acting antipsychotic      | 10            | 8,1           |
| Aripiprazole                   | 2             | 1,6           |
| Clozapine                      | 2             | 1,6           |
| Use of psychoactive substances | 85            | 69,1          |
| Tobacco                        | 84            | 97,7          |
| Cannabis                       | 44            | 51,2          |
| Alcohol                        | 7             | 8,1           |
| Benzodiazepines                | 1             | 1,2           |
| Ecstasy                        | 1             | 1,2           |

## C. METABOLIC PARAMETERS

The evaluation of metabolic parameters in patients was based on the assessment of body mass index (BMI), the presence of diabetes, hypercholesterolemia, and hypertension (HTN).

The total number of patients with metabolic syndrome, according to the defined criteria, was 15 (12.1%) (see Table 3).

**Table 3: Metabolic parameters** 

|            | Frequency(n) | Pourcentage % |
|------------|--------------|---------------|
| BMI        |              |               |
| Normal     | 82           | 66,1          |
| Overweight | 30           | 24,2          |
| Obesity    | 12           | 9,7           |
| Diabetes   |              |               |
| Yes        | 10           | 8,1           |
| No         | 106          | 85,5          |
| Unknown    | 8            | 6,5           |

|                      | Frequency(n) | Pourcentage % |
|----------------------|--------------|---------------|
| Hypercholesterolemia |              |               |
| Yes                  | 16           | 13            |
| No                   | 79           | 64,2          |
| Unknown              | 28           | 22,8          |
| Hypertension (HTN)   |              |               |
| Yes                  | 4            | 3,2           |
| No                   | 110          | 88,7          |
| Unknown              | 10           | 8,1           |

#### d. Physical activity:

Participants were classified into low, moderate, or high activity groups according to their MET score. Low PA included participants with a MET score below 600 MET-minutes/week or those with no activity.

Moderate PA included participants achieving at least 600 MET-minutes/week, and high PA included participants achieving at least 1500 MET-minutes/week (see Figure 1).

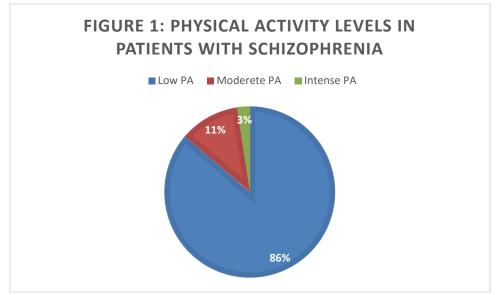



Figure 1: Presents the levels of physical activity (PA), classified into low, moderate, or high activity groups based on IPAQ scores for the entire sample. The results show that 11% of patients engage in moderate physical activity, and only 3% engage in vigorous PA, while 86% have a low level of physical activity.

Table 4: Comparison of sociodemographic characteristics and variables in patients with schizophrenia according to low versus moderate-to-high physical activity levels on the IPAO

| Variables           | Total n=124  | Low Physical activity | Moderate to high physical activity | P value |
|---------------------|--------------|-----------------------|------------------------------------|---------|
|                     |              | N=107                 | N=17                               |         |
| Age                 | 39,5 (33-46) | 40 (34-48)            | 36 (23,5-41,5)                     | 0,026   |
| Sex                 |              |                       |                                    | 0,4     |
| Male                | 109 (87,9)   | 93 (86,9)             | 16 (94,1)                          |         |
| Female              | 15 (12,1)    | 14 (13,1)             | 1 (5,9)                            |         |
| Socioeconomic level |              |                       |                                    | 0,21    |
| Low                 | 37 (29,8)    | 29 (27,1)             | 8 (47,1)                           |         |
| Medium              | 77 (62,1)    | 69 (64,5)             | 8 (47,1)                           |         |
| High                | 10 (8,1)     | 9 (8,4)               | 1 (5,9)                            |         |
| Place of residence  |              |                       |                                    | 0,068   |
| Alone               | 4 (3,2)      | 4 (3,7)               | 0                                  |         |
| With family         | 119 (96)     | 103 (96,3)            | 16 (94,1)                          |         |
| Social center       | 1 (0,8)      | 0                     | 1 (5,9)                            |         |
| Marital status      |              |                       |                                    | 0,213   |
| Single              | 89 (71,8)    | 75 (70,1)             | 14 (82,4)                          |         |
| Married             | 19 (15,)     | 16 (15)               | 3 (17,6)                           |         |
| Divorced            | 16 (12,9)    | 16 (15)               | 0                                  |         |

| Variables              | Total n=124 | Low Physical activity | Moderate to high physical activity | P value |
|------------------------|-------------|-----------------------|------------------------------------|---------|
|                        |             | N=107                 | N=17                               |         |
| <b>Education level</b> |             |                       |                                    | 0,437   |
| Unschooled             | 5 (4)       | 5 (4,7)               | 0                                  |         |
| Primary                | 19 (15,3)   | 16 (15)               | 3 (17,6)                           |         |
| Middle school          | 74 (59,7)   | 65 (60,7)             | 9 (52,9)                           |         |
| High school            | 16 (12,9)   | 13 (12,1)             | 3 (17,6)                           |         |
| University             | 10 (8,1)    | 8 (7,5)               | 2 (11,8)                           |         |
| Employment             |             |                       |                                    | 0,007   |
| Employed               | 13 (10,5)   | 8 (7,5)               | 5 (29,4)                           |         |
| Unemployed             | 111 (88,7)  | 99 (91,6)             | 12 (70,6)                          |         |

Table 5: Comparison of clinical characteristics and variables in patients with schizophrenia according to low versus moderate-to-high physical activity levels on the IPAO

| Variables                       | Total n=124 | Low physical      | Moderate to high          | P value |
|---------------------------------|-------------|-------------------|---------------------------|---------|
|                                 |             | activity<br>N=107 | physical activity<br>N=17 |         |
| Duration of schizophrenia (SCZ) |             |                   |                           | 0,183   |
| < 1 year                        | 4 (3,2)     | 3 (2,8)           | 1 (5,9)                   |         |
| 1 to 5 years                    | 18 (14,5)   | 12 (11,2)         | 6 (35,3)                  |         |
| 5 to 10 years                   | 36 (29)     | 34 (31,8)         | 2 (11,8)                  |         |
| >10 years                       | 66 (53,2)   | 58 (54,2)         | 8 (47,1)                  |         |
| Insight                         |             |                   |                           | 0,49    |
| Positive                        | 82 (66,1)   | 72 (67,3)         | 10 (58,8)                 |         |
| Negative                        | 42 (33,9)   | 35 (23,7)         | 7 (41,2)                  |         |
| Adherence to antipsychotics     | 91 (73,4)   | 81 (75,7)         | 10 (58,8)                 | 0,145   |
| **Types of antipsychotics**     |             |                   |                           | 0,39    |
| Olanzapine                      | 41 (33,9)   | 38 (45,5)         | 4 (23,5)                  |         |
| Risperidone                     | 27 (21,8)   | 23 (21,5)         | 4 (23,5)                  |         |
| Amisulpride                     | 11 (8,9)    | 10 (9,3)          | 1 (5,9)                   |         |
| Haloperidol                     | 30 (24,2)   | 23 (21,5)         | 7 (41,2)                  |         |
| Long-acting antipsychotic       | 10 (8,1)    | 10 (9,3)          | 0                         |         |
| Clozapine                       | 2 (1,6)     | 2 (1,9)           | 0                         |         |
| Aripiprazole                    | 2 (1,6)     | 1 (0,9)           | 1 (5,9)                   |         |
| Number of hospitalizations      | 1 (0-2)     | 1 (0-2)           | 0 (0-0)                   | <0,001  |
| Use of psychoactive substances  | 85 (68,5)   | 72 (67,3)         | 13 (76,5)                 | 0,481   |
| Ecstasy                         | 1 (0,8)     | 0                 | 1 (5,9)                   | 0, 012  |
| Alcohol                         | 7 (5,6)     | 6 (5,6)           | 1 (5,9)                   | 0,96    |
| Cannabis                        | 44 (35,5)   | 34 (31,8)         | 10 (58,8)                 | 0,031   |
| Tobacco                         | 84 (67,7)   | 71 (66,4)         | 13 (76,5)                 | 0,4     |
| Anxiolytic medications          | 1 (0,8)     | 0                 | 1 (5,9)                   | 0,012   |

Table 6: Metabolic syndrome and level of physical activity

|                      | Total n=124 | Low physical activity N=107 | Moderate to high physical activity N=17 | P value |
|----------------------|-------------|-----------------------------|-----------------------------------------|---------|
| Metabolic syndrome   | 15 (12,1)   | 15 (14)                     | 0(0)                                    | <0,01   |
| BMI                  |             |                             |                                         | 0,143   |
| Normal               | 82 (66,1)   | 68 (63,6)                   | 14 (82,4)                               |         |
| Overweight           | 30 (24,2)   | 28 (26,2)                   | 2 (11,8)                                |         |
| Obesity              | 12 (9,7)    | 11 (10,3)                   | 1 (5,9)                                 |         |
| Diabetes             | 10 (8,1)    | 10 (9,3)                    | 0                                       | 0,84    |
| Hypercholesterolemia | 16 (12,9)   | 15 (14)                     | 1 (5,9)                                 | 0,20    |
| Hypertension         | 4 (3,2)     | 4 (3,7)                     | 0                                       | 0,5     |

## **DISCUSSION**

In our study, we evaluated the physical activity levels of patients with schizophrenia using the IPAQ

scale and identified the clinical and sociodemographic factors associated with their physical activity. The majority (86.3%) of patients in this study were classified as inactive according to the IPAQ scoring protocol

(participants with a MET score below 600 MET-minutes/week or with no activity), while 11.3% engaged in moderate activity and only 2.4% engaged in vigorous physical activity. This is similar to the study by Snethen [8], where most patients with schizophrenia performed no physical activity and exhibited predominantly sedentary behavior, followed by moderate activity, with only 4 patients engaging in vigorous activity. Other studies [9-12] have also shown that patients treated for schizophrenia spend most of their week in sedentary behaviors, and a very small proportion rarely engage in low physical activity.

In another study conducted in South Korea by Lee SH [13], approximately 26% of patients engaged in moderate PA (1300 MET-minutes/week), higher figures than those found in our study. Research [14,15] has found that walking is the preferred form of physical activity among people with psychotic disorders.

In a study by Rosenbaum et al.,[16], regarding vigorous PA, individuals with schizophrenia reportedly engage in only 2.4 minutes per day on average. They observed interesting differences between moderate and vigorous PA levels depending on the context and assessment method. Significantly higher levels of moderate PA were observed in outpatient settings and with objective assessment methods, whereas the opposite was true for vigorous PA, meaning lower levels were recorded in outpatients and with objective methods. These data suggest that individuals with schizophrenia tend to underestimate their moderate PA levels and overestimate their vigorous PA levels.

In our study, we observed that several factors could influence the physical activity (PA) of patients with schizophrenia. Age is an important factor; PA decreases with age. This decline in physical activity with age is also observed in the general population. In individuals with schizophrenia, this reduction is often more pronounced due to disease-specific factors. In this study, we noted that male patients had higher moderateto-vigorous activity levels compared to female patients, which is consistent with a study [17] that examined PA by sex. Another study observed the opposite and suggested that this could be due to the generally earlier onset of the illness in men, the greater burden of negative symptoms, substance use disorders, and lower remission and recovery rates [18]. These higher levels of inactivity may also partially explain the increased risk of cardiovascular diseases and premature mortality, particularly in men with psychosis [19,20].

Another predictive factor for low physical activity in this study is the absence of employment. This aligns with a study [21] showing that unemployment or social isolation due to low social functioning in patients with schizophrenia is correlated with reduced physical activity and increased sedentary behavior. Other studies [22,23] have shown that social withdrawal and

unemployment, which may result from positive or negative symptoms, can lead to decreased PA in patients with schizophrenia.

Several studies, including Kramer et al., [24], emphasize that the presence of depressive symptoms can represent a major barrier to engaging in physical activity. These symptoms can affect mood, energy, and general interest, making it difficult to take action. Moreover, lack of motivation and willpower is also a key factor limiting regular exercise. These two elements, interconnected, play a crucial role in an individual's ability to maintain a consistent physical activity routine [22]. Additionally, it has been noted that physically inactive patients exhibit higher levels of medicationinduced extrapyramidal symptoms compared to patients with some or high levels of PA [13]. Another study found that antipsychotic medication use is associated with lower physical activity and poorer physical health [25], and Pérez-Cruzado et al.,[26] confirmed that higher doses of antipsychotic medications are linked to lower levels of physical activity and fitness.

In our study, cannabis use was a significant factor. Studies exploring the relationships between physical activity, schizophrenia, and cannabis use are limited. However, a recent 2024 study by Merrill [27] examined the association between cannabis use and physical activity, showing that cannabis users were more likely to engage in physical activity than non-users, which aligns with our findings.

We also observed that higher levels of physical activity were associated with fewer hospitalizations and relapses (p < 0.01). This is comparable to the literature [28], which demonstrates that physical exercise can improve the physical health of patients with schizophrenia, acting as an effective adjunct therapy. The study by Lee SH  $et\ al.$ ,[13] confirmed that physically inactive patients had significantly higher levels of affective, positive, and negative symptoms, with higher BPRS scores.

Numerous randomized controlled trials have demonstrated that regular physical activity leads to a significant reduction in the severity of both positive and negative symptoms in patients with schizophrenia. These studies have also shown a marked decrease in anxiety and depressive symptoms, as well as notable improvements in quality of life and overall functioning of the individuals concerned. These clinical benefits have been confirmed in patients at an early stage of the illness as well as in those at more advanced stages [29, 30]. Indeed, engaging in physical activity alongside standard treatments can improve certain cognitive functions impaired in schizophrenia, such as working memory, attention, and social cognition [31].

The literature also reports that regular physical activity can increase the expression of certain

neurotrophic growth factors, such as brain-derived neurotrophic factor (BDNF), in the central nervous system [32, 33], which are known to be decreased in patients with schizophrenia. The PA-mediated increase in BDNF has been positively correlated with improvements in specific cognitive domains (composite score of the MATRICS Consensus Cognitive Battery) [34] and cardiorespiratory fitness [35]. Thus, the BDNF increase may promote neurogenesis, synaptogenesis, and gliogenesis, suggesting that physical activity supports neuroplasticity [36].

Furthermore, regular physical activity reduces the risk of developing metabolic syndrome and also modulates the peripheral inflammatory response [37].

In our sample, 15 participants met the criteria for metabolic syndrome, all of whom had low or absent physical activity. Conversely, all patients who engaged in moderate-to-vigorous PA did not present with metabolic syndrome. In a study [38], among lifestyle domains, appropriate physical activity, weight control, dietary habits, medication adherence, and health management were shown to reduce the incidence of metabolic syndrome.

Patients with schizophrenia often have a lifestyle that increases their risk of developing metabolic syndrome: a sedentary lifestyle, lack of regular physical activity, poor diet, substance use, and high rates of smoking [39-41]. Some of these lifestyle factors are influenced by disease aspects, such as negative symptoms and stress vulnerability.

Body mass index (BMI) is a key indicator of metabolic syndrome and is easily measurable and quantifiable [42]. A high BMI indicates obesity, which is not only associated with an increased risk of metabolic syndrome but is also a major risk factor for chronic comorbid conditions such as hypertension, cerebrovascular disease, and diabetes [43]. In particular, compared to the general population, individuals with schizophrenia tend to have higher BMI and a threefold higher risk of obesity [44].

Interventions combining tailored dietary programs with physical exercise for individuals living with schizophrenia have been effective in reducing body weight, BMI, and abdominal circumference. These approaches also help prevent metabolic syndrome and reduce risks associated with its complications [44]. Sun et al.,[38] demonstrated that regular medication use and health check-ups were associated with a reduced risk of metabolic syndrome in people with schizophrenia. A previous study reported that disease awareness through health examinations motivates individuals to modify their lifestyle [45].

## **CONCLUSION**

Sports play a key role in the management of schizophrenia. Low levels of sports participation and physical activity are associated with advanced age, female sex, unemployment, and social isolation, whereas regular engagement in sports improves symptoms, reduces hospitalizations, and lowers metabolic risk. These findings support the importance of integrating sports into therapeutic and psychosocial rehabilitation strategies, while considering individual and contextual barriers.

## REFERENCES

- 1. Organisation Mondiale de la Santé (OMS). (2022). Schizophrenia. World Health Organization.
- 2. Oh, H.; Devylder, J. Psychotic symptoms predict health outcomes even after adjusting for substance use, smoking and co-occurring psychiatric disorders: Findings from the NCS-R and NLAAS. World Psychiatry 2015, 14, 101–102
- 3. McEvoy, J. P., Meyer, J. M., Goff, D. C., Nasrallah, H. A., Davis, S. M., Sullivan, L., Meltzer, H. Y., Hsiao, J., Scott Stroup, T., & Lieberman, J. A. (2005). Prevalence of the metabolic syndrome in patients with schizophrenia: Baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III. Schizophrenia Research, 80(1), 19-32. https://doi.org/10.1016/j.schres.2005.07.014
- Vancampfort, D.; Rosenbaum, S.; Schuch, F.; Ward, P.B.; Richards, J.; Mugisha, J.; Probst, M.; Stubbs, B. Cardiorespiratory fitness in severe mental illness: A systematic review and meta-analysis. Sports Med. 2017, 47, 343–352.
- Dauwan, M.; Begemann, M.J.H.; Heringa, S.M.; Sommer, I.E. Exercise improves clinical symptoms, quality of life, global functioning, and depression in schizophrenia: A systematic review and metaanalysis. Schizophr. Bull. 2016, 42, 588–599.
- Craig, C. L., Marshall, A. L., Sjöström, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., ... & Oja, P. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine and Science in Sports and Exercise, 35(8), 1381–1395.
  https://doi.org/10.1249/01.MSS.0000078924.61453
  - https://doi.org/10.1249/01.MSS.0000078924.61453 .FB
- Ainsworth, B. E., Haskell, W. L., Whitt, M. C., Irwin, M. L., Swartz, A. M., Strath, S. J., ... & Leon, A. S. (2000). Compendium of physical activities: an update of activity codes and MET intensities. Medicine and Science in Sports and Exercise, 32(9 Suppl), S498–S504. https://doi.org/10.1097/00005768-200009001-00009
- 8. Snethen, G.A. Snethen, G.A., McCormick, B.P., Lysaker, P.H., 2014. Physical activity and psychiatric symptoms in adults with schizophrenia

- spectrum disorders. J. Nerv. Ment. Dis. 202, 845-852.
- 9. Lindamer; Lindamer LA, McKibbin C, Norman GJ, Jordan L, Harrison K, Abeyesinhe S et al (2008) Assessment of physical activity in middle aged and older adults with schizophrenia. Schizophr Res 104(1–3): 294–301
- Scheewe TW (2009) Physical activity and cardiovascular fitness in patients with schizophrenia
  In: The Fourth European Congress of Psychomotricity. The Netherlands; Amsterdam. Body, Move Dance Psychother: An Int J Theory Res Prac 4(1): 67–71
- 11. Vancampfort D, Probst M, Knapen J, Carraro A, De Hert M (2012a) Associations between sedentary behavior and metabolic parameters in patients with schizophrenia. Psychiatry Res 200(2–3): 73–8
- 12. Yamamoto H, Yamamoto K, Miyaji S, Yukawa-Inui M, Hori T, Tatematsu S *et al.*, (2011) Daily physical activity in patients with schizophrenia. Kitasato Med J 41: 145–53
- 13. Lee SH, Kim G, Kim CE Ryu S. Physical Activity of Patients with Chronic Schizophrenia and Related Clinical Factors. Psychiatry Investig. (2018) 15:811–7. doi: 10.30773/pi.2018.04.15.1
- Chapman, J.J., Brown, W.J., Whiteford, H.A., Burton, N.W., 2015. Physical activity attitudes and preferences among inpatient adults with mental illness. Int. J. Ment. Health Nurs. 24, 413–420.
- Vancampfort, D., Probst, M., Scheewe, T., Maurissen, K., Sweers, K., Knapen, J., De Hert, M.,2011. Lack of physical activity during leisure time contributes to an impaired health related quality of life in patients with schizophrenia. Schizophr. Res. 129, 122–127
- Rosenbaum, S., & Ward, P. B. (2016). The Simple Physical Activity Questionnaire. The Lancet Psychiatry, 3(1), e1. https://doi.org/10.1016/S2215-0366(15)00496-7
- 17. Caspersen, C.J., Pereira, M.A., Curran, K.M., 2000. Changes in physical activity patterns in the United States, by sex and cross-sectional age. Med. Sci. Sports Exerc. 32, 1601–1609.
- Ochoa S, Usall J, Cobo J, Labad X, Kulkarni J. Gender differences in schizophrenia and firstepisode psychosis: a comprehensive literature review. Schizophr Res Treatment. 2012; 2012:916198.
- 19. Goff DC, Sullivan LM, McEvoy JP, *et al.*, A comparison of ten-year cardiac risk estimates in schizophrenia patients from the CATIE study and matched controls. Schizophr Res. 2005; 80:45–53
- 20. Brown S, Kim M, Mitchell C, Inskip H. Twenty-five-year mortality of a community cohort with schizophrenia. Br J Psychiatry. 2010; 196:116–121.
- 21. Soundy, A., Freeman, P., Stubbs, B., Probst, M., Coffee, P., Vancampfort, D., 2014a. The transcending benefits of physical activity for individuals with schizophrenia: a systematic review and meta-ethnography. Psychiatry Res

- 22. Vancampfort, D., De Hert, M., Stubbs, B., Ward, P.B., Rosenbaum, S., Soundy, A., Probst, M., 2014. Negative symptoms are associated with lower autonomous motivation towards physical activity in people with schizophrenia. Compr. Psychiatry.
- 23. Shin S, Yeom CW, Shin C, Shin JH, Jeong JH, Shin JU, *et al.*, Activity monitoring using a mHealth device and correlations with psychopathology in patients with chronic schizophrenia. Psychiatry Res. 2016;246:712–718. doi: 10.1016/j.psychres.2016.10.059
- Kramer, L.V., Helmes, A.W., Seelig, H., Fuchs, R., Bengel, J., 2014. Correlates of reduced exercise behaviour in depression: the role of motivational and volitional deficits. Psychol. Health 29, 1206–1225.
- Vancampfort, D., Firth, J., Schuch, F. B., Rosenbaum, S., Mugisha, J., Hallgren, M., ... & Stubbs, B. (2016). Physical activity and sedentary behavior in people with major depressive disorder: A systematic review and meta-analysis. Jaffray, D. (Ed.), JAMA Psychiatry, 73(7), 711–718. https://doi.org/10.1001/jamapsychiatry.2016.1165
- Pérez-Cruzado, D., Cuesta-Vargas, A. I., Vera-Garcia, E., & Mayoral-Cleries, F. (2018).
  Medication and physical activity and physical fitness in severe mental illness. Health & Social Care in the Community, 26(6), e789–e797. https://doi.org/10.1111/hsc.12621
- 27. Merrill, R. M., Ashton-Hwang, K., & Gallegos, L. (2024). Association between cannabis use and physical activity in the United States based on legalization and health status. Journal of Cannabis Research, 6(1), Article 39. https://doi.org/10.1186/s42238-024-00248-6
- 28. Tréhout M, Dollfus S. L'activité physique chez les patients atteints de schizophrénie : de la neurobiologie aux bénéfices cliniques [Physical activity in patients with schizophrenia: From neurobiology to clinical benefits]. Encephale. 2018 Dec;44(6):538-547. French. doi: 10.1016/j.encep.2018.05.005. Epub 2018 Jul 6. PMID: 29983176.
- 29. Bernard P, Ninot G. Benefits of exercise for people with schizophrenia: a systematic review. Encéphale 2012;38(4):280–7
- Dauwan M, Begemann MJH, Heringa SM, et al., Exercise improves clinical symptoms, quality of life global functioning, and depression in schizophrenia: a systematic review and meta-analysis. Schizophr Bull 2016;42(3):588–99.
- 31. Firth J, Stubbs B, Rosenbaum S, *et al.*, Aerobic exercise improves cognitive functioning in people with schizophrenia: a systematic review and meta-analysis. Schizophr Bull 2017;43(3):546–56
- 32. Vakhrusheva J, Marino B, Stroup TS, *et al.*, Aerobic exercise in people with schizophrenia: neural and neurocognitive benefits. Curr Behav Neurosci Rep 2016;3(2):165–75
- 33. Sanada K, Zorrilla I, Iwata Y, *et al.*, The efficacy of non-pharmacological interventions on brain-derived

- neurotrophic factor in schizophrenia: a systematic review and meta-analysis. Int J Mol Sci 2016;17(10)
- 34. Kimhy D, Vakhrusheva J, Bartels MN, *et al.*, The Impact of aerobic exercise on brain-derived neurotrophic factor and neurocognition in individuals with schizophrenia: a single-blind, randomized clinical trial. Schizophr Bull2015;41(4):859
- 35. Kim H, Song B, So B, *et al.*, Increase of circulating BDNF levels and its relation to improvement of physical fitness following 12 weeks of combined exercise in chronic patients with schizophrenia: a pilot study. Psychiatry Res 2014;220(3):792–6.
- 36. Campos C, Rocha NB, Nardi AE, *et al.*, Exercise induced neuroplasticity to enhance therapeutic outcomes of cognitive remediation in schizophrenia: analyzing the role of brain-derived neurotrophic factor. CNS Neurol Disord Drug Targets 2017;16(6):638–51.
- 37. Cronin O, Keohane DM, Molloy MG, *et al.*, The effect of exercise interventions on inflammatory biomarkers in healthy, physically inactive subjects: a systematic review. QJM 2017;110(10):629–37.
- 38. Sun, M. J., & Jang, M. H. (2021). Risk factors of metabolic syndrome in community-dwelling people with schizophrenia. Healthcare, 9(5), 543. https://doi.org/10.3390/healthcare9050543

- 39. Newcomer JW. Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS Drugs. 2005; 19:1–93. doi: 10.2165/00023210-200519001-00001.
- 40. Scheen AJ, De Hert M. Drug induced diabetes mellitus: the example of atypical antipsychotics. Rev Med Liege. 2005; 60:455–460.
- 41. Scheen A, De Hert M. Abnormal glucose metabolism in patients treated with antipsychotics. Diabetes Metabolism. 2007; 33:169–175. doi: 10.1016/j.diabet.2007.01.003.
- 42. Han, T.S.; Lean, M.E. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc. Dis. 2016, 5, 1–13.
- 43. Annamalai, A.; Kosir, U.; Tek, C. Prevalence of obesity and diabetes in patients with schizophrenia. World J. Diabetes 2017, 8, 390–396.
- 44. Singh, R.; Zimmet, P.; Shaw, J. Mental health, antipsychotics and hyperglycemia. Diabetes Metab. Syndr. Clin. Res. Rev. 2007, 3, 209–224
- Chang, S.J.; Choi, S.; Kim, S.A.; Song, M. Intervention strategies based on informationmotivation-behavioral skills model for health behavior ophrenia Research, vol. 170, no. 1, pp. 177–183, 2016.