Integer Points on the Hyperbola \(x^2 - 4xy + y^2 + 16x = 0 \)

M.A. Gopalan*, S. Mallika, S. Vidhyalakshmi
Department of mathematics, Shrimathi Indira Gandhi College, Trichy.620002, Tamilnadu, India

*Corresponding Author:
M.A. Gopalan
Email: mayilgopalan@gmail.com

Abstract: The binary quadratic equation \(x^2 - 4xy + y^2 + 16x = 0 \) representing hyperbola is considered. Different patterns of solutions are obtained. A few relations between the solutions are exhibited.

Keywords: Binary quadratic, Hyperbola, Integer solutions.

INTRODUCTION
There is an unlimited field of research in binary quadratic equations because of their large variety [1-5]. There are some already available literature in the field of binary quadratic equations [6-19]. This communication concerns with yet another interesting binary quadratic equation \(x^2 - 4xy + y^2 + 16x = 0 \) for determining its infinitely many non-zero integral solutions. Also a few interesting relations between the solutions are presented.

NOTATIONS
Polygonal Number of rank n with size m
\[t_{m,n} = n \left(1 + \frac{(n-1)(m-2)}{2} \right) \]

Pentagonal pyramidal number of rank n
\[P_n^5 = \frac{n^2(n+1)}{2} \]

Pronic number of rank n
\[Pr_n = n(n + 1) \]

METHOD OF ANALYSIS
The hyperbola under consideration is
\[x^2 - 4xy + y^2 + 16x = 0 \] (1)

To start with, it is seen that (1) is satisfied by the following pairs of integers \((8,8),(8,24),(-16,-64),(72,24),(-256,-64) \).

However, we have other choices of solutions satisfying (1) and they are illustrated below:
Treating (1) as a quadratic in x and solving for x, we get
\[x = (2y - 8) \pm \sqrt{3y^2 - 32y + 64} \] (2)

Let \(\alpha^2 = 3y^2 - 32y + 64 \) \nand substituting \(y = \frac{Y + 16}{3} \) \n(3)
in (3), we have \(Y^2 = 3\alpha^2 + 8^2 \) \n(4)
Consider the Pellian equation
\[Y^2 = 3\alpha^2 + 1 \]
whose general solution is given by
\[Y_n = \frac{1}{2} \left[\left(2 + \sqrt{3} \right)^{n+1} + \left(2 - \sqrt{3} \right)^{n+1} \right] \] (5)

Available Online: http://saspjournals.com/sjpms
From (4) and (5), we have the general solutions of the equation
\[y_n = \frac{4}{3} \left[\left(2 + \sqrt{3}\right)^{n+1} + \left(2 - \sqrt{3}\right)^{n+1} \right] + \frac{16}{3} \]
(8)

Substituting (7) and (8) in (2) and taking the negative sign, the corresponding integer solutions to (1) are given by
\[x_n = \frac{4}{3} \left[\left(2 + \sqrt{3}\right)^{n} + \left(2 - \sqrt{3}\right)^{n} \right] + \frac{8}{3}, \quad n=1,3,5,.... \]
\[y_n = \frac{4}{3} \left[\left(2 + \sqrt{3}\right)^{n+1} + \left(2 - \sqrt{3}\right)^{n+1} \right] + \frac{16}{3}, \quad n=1,3,5,.... \]

Some numerical examples are presented below:

<table>
<thead>
<tr>
<th>n</th>
<th>x_n</th>
<th>y_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>264</td>
</tr>
<tr>
<td>5</td>
<td>968</td>
<td>3608</td>
</tr>
<tr>
<td>7</td>
<td>13448</td>
<td>50184</td>
</tr>
</tbody>
</table>

Also, taking the positive sign in (2), the other set of solutions to (1) is given by
\[x_n = \frac{4}{3} \left[\left(2 + \sqrt{3}\right)^{n+2} + \left(2 - \sqrt{3}\right)^{n+2} \right] + \frac{8}{3}, \quad n=1,3,5,... \]
\[y_n = \frac{4}{3} \left[\left(2 + \sqrt{3}\right)^{n+1} + \left(2 - \sqrt{3}\right)^{n+1} \right] + \frac{16}{3}, \quad n=1,3,5,... \]

Properties

- \(3x_{2n}\) is a square integer
- \(x_{n+4} - 14x_{n+2} + x_n = -32\)
- \(y_{n+4} - 14y_{n+2} + y_n = -64\)

Alternatively, treating (1) as a quadratic in \(y\) and solving for \(y\), we get
\[y = 2x \pm \sqrt{3x^2 - 16x} \]
(9)

Let \(\alpha^2 = 3x^2 - 16x\)
(10)

And substituting \(x = \frac{X + 8}{3}\)
(11)

in (9), we have
\[X^2 = 3\alpha^2 + 8^2 \]
(12)

whose general solution of the pellian equation
\[X^2 = 3\alpha^2 + 1 \]

is given by
\[X_n = \frac{1}{2} \left[\left(2 + \sqrt{3}\right)^{n+1} + \left(2 - \sqrt{3}\right)^{n+1} \right] \]
(13)

\[\alpha_n = \frac{1}{2\sqrt{3}} \left[\left(2 + \sqrt{3}\right)^{n+1} - \left(2 - \sqrt{3}\right)^{n+1} \right] \]
(14)

From (10) and (12) we have
\[x_n = \frac{4}{3} \left[\left(2 + \sqrt{3}\right)^{n+2} + \left(2 - \sqrt{3}\right)^{n+2} \right] + \frac{8}{3} \]
(15)

Substituting (13) and (14) in (9) and taking the positive sign, the corresponding integer solutions to (1) are given by
\[x_n = \frac{4}{3} \left[\left(2 + \sqrt{3}\right)^{n+1} + \left(2 - \sqrt{3}\right)^{n+1} \right] + \frac{8}{3}, \quad n=0,2,4,... \]
\[y_n = \frac{4}{3} \left[\left(2 + \sqrt{3}\right)^{n+2} + \left(2 - \sqrt{3}\right)^{n+2} \right] + \frac{16}{3}, \quad n=0,2,4,.. \]
Some numerical examples are presented below:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_n)</th>
<th>(y_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>264</td>
</tr>
<tr>
<td>4</td>
<td>968</td>
<td>3608</td>
</tr>
<tr>
<td>6</td>
<td>13448</td>
<td>50184</td>
</tr>
</tbody>
</table>

Also, taking the negative sign in (9), the other set of solutions to (1) is given by

\[
x_n = \frac{4}{3} \left[(2 + \sqrt{3})^{n+1} + (2 - \sqrt{3})^{n+1} \right] + \frac{8}{3} \quad n = 0, 2, 4, \ldots
\]

\[
y_n = \frac{4}{3} \left[(2 + \sqrt{3})^{n} + (2 - \sqrt{3})^{n} \right] + \frac{16}{3} \quad n = 0, 2, 4, \ldots
\]

Properties

\(x_{n+4} - 14x_{n+2} + x_n = -32 \)

\(y_{n+4} - 14y_{n+2} + y_n = -64 \)

CONCLUSION

As the binary quadratic equations representing hyperbolas are rich in variety, one may consider other forms of hyperbolas and search for their non-trivial distinct integral solutions along with the corresponding properties.

REFERENCES

7. Gopalan MA, Vijayalakshmi R; Special Pythagorean triangles generated through the integral solutions of the equation \(y^2 = (k^2 + 1)x^2 + 1 \). Antarctica J.Math., 2010; 7(5): 503-507.
17. Gopalan MA, Sangeetha G, Somanath M; Integral points on the Hyperbola \((\alpha + 2)x^2 - \alpha y^2 = 4\alpha(\text{int} - 1) + 2\alpha^2 \). Indian Journal of Science, 2012; 1(2): 125-126.

Available Online: http://saspjournals.com/sipms