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Abstract: We present an anisotropic charged analogue of Heinzman‟s [1] solution  of the general relativistic field 

equations in curvature coordinates by using simple form of electric intensity E and pressure anisotropy factor  that 
involve charge parameter K and anisotropy parameter α respectively. Our solution is well behaved in all respects for all 

values of X lying in the range 0< X ≤ 0.3, α lying in the range 0 ≤ α ≤5.5, K lying in the range 0< K ≤ 8.6 and 

Schwarzschild compactness parameter  “u” lying in the range 0< u ≤ 0.379. Since our solution is well behaved for  a 

wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and 

neutron stars. 
Keywords: General relativity ∙ Exact solution ∙ Curvature coordinates ∙ anisotropic fluid sphere ∙ Einstein-Maxwell ∙ 

Reissner-Nordstrom. 

INTRODUCTION 

Since the formulation of Einstein‟s field equations researchers have been searching for the exact solutions with 

certain geometry satisfying all physical constraints. Such findings are important because they enable us to find the 

distribution of matter in the interior of stellar objects in terms of simple algebraic relations.  

 

Even  the strong electric field may also cause pressure anisotropy, Usov [2]. It is well known that the presence 

of some charge may avert the gravitational collapse by counter balancing the gravitational attraction by the electric 

repulsion in addition to the pressure gradient. Thus it is desirable to study the implications of Einstein-Maxwell field 

equations with reference to the general relativistic prediction of gravitational collapse. For these purposes anisotropic and 

charged fluid ball models are required. The external field of such ball is to be matched with Reissener–Nordstrom 

solution.  
 

Dev and Gleiser [3] demonstrated that pressure anisotropy affects the physical properties, stability and structure 

of stellar matter. The stability of stellar bodies is improved for positive measure of anisotropy when compared to 

configurations of isotropic stellar objects.  

 

Many papers have been published by several authors who obtained the parametric classes of exact solutions for 

perfect fluid  with charge and neutral fluids. Few names are: Gupta and Maurya [4-6],  Pant et al.[7],Maurya and Gupta 

[8], Tolman [9], Kuchowich[10-14], Pant et al. [15], etc. Moreover, the presence of charge and   anisotropic  pressure 

which is more realistic model of a super-dense star thereby, a few authors have recently done a remarkable work  in 

curvature coordinates namely; Maharaj and Chaisi  [16], Maharaj and Maartens [17],Thirukkanesh and Maharaj[18], 

Komathiraj and Maharaj[19], Mak M K and Harko T [20], Harko T and Mak M K [21],Singh et al [22], Maurya and 

Gupta[ 23], S. D. Maharaj · M. Chaisi [24]. 
 

In our solution, we choose seed solution of Heintzman[1] and found the solution by assuming appropriate 

functional form of charge parameter [7] as well as anisotropic parameter is such a way that the obtained solution is well 

behaved in all respects. 

 

CONDITIONS FOR WELL BEHAVED SOLUTIONS 

For well behaved nature of the solutions for anisotropic fluid sphere should satisfy the following conditions: 

1) The solution should be free from physical and geometric singularities, i.e. it should yield finite and positive values of 

the central pressure, central density and nonzero positive value of  (𝑒𝜈 )𝑟=0    and   (𝑒𝜆)𝑟=0 = 1. 
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2) The solution should have positive value of ratio trace of energy stress tensor to energy density, (𝑃𝑟 + 2𝑃⏊)/ and 

less than 1(weak energy condition) and less than 1/3 (strong energy condition) throughout within the star, 

monotonically decreasing as well, Esculpi et al. [25]. 

3) The causality condition should be obeyed i.e. velocity of sound should be less than that of light throughout the 

model. In addition to the above the velocity of sound should be decreasing towards the surface i.e.
𝑑

𝑑𝑟
 
𝑑𝑝𝑟

𝑑𝜌
<

0  or  
𝑑2𝑝𝑟

𝑑𝜌2 > 0   and 
𝑑

𝑑𝑟
 
𝑑𝑝⏊

𝑑𝜌
< 0  or  

𝑑2𝑝⏊

𝑑𝜌2 > 0   for 0 ≤ 𝑟 ≤ 𝑟𝑏  i.e. the velocity of sound is increasing with the 

increase of density and it should be decreasing outward. 

4) 
𝑑𝑝

𝑑𝜌
≥

𝑝

𝜌
  should be satisfy everywhere within the ball.  The adiabatic index,  𝛾 =

𝑑𝑝

𝑑𝜌
/

𝑝

𝜌
  for realistic matter should 

be  𝛾 ≥ 1. 

5) The red shift 𝑧 should be positive, finite and monotonically decreasing in nature with the increase of  𝑟. 

6)  Electric field intensity  𝐸, such that 𝐸𝑟=0 =  0, is taken to be monotonically increasing. 

7) The anisotropy factor  should be zero at the center and increasing towards the surface. 

 

EINSTEIN-MAXWELL FIELD EQUATIONS OF ANISOTROPIC CHARGE FLUID DISTRIBUTION  

The interior metric of a static spherically symmetric matter distribution in curvature coordinates is given by,    

ds2 = −eλ  dr2 − r2   dθ
2 + sin2θ dϕ

2   + c2  eν dt2                                                                                         (1) 

where λ and ν are functions of r only.  

 

Einstein-Maxwell field equations of gravitation for a non empty space-time are 

Rj
i −

1

2
R δj

i =  − 
8πG

c4
Tj

i        

                    = − 
8πG

c4     p⏊ + ρc2  vi  vj − p⏊ δj
i +  pr − p⏊  χ

j
 χi +

1

4π
   −F im  Fjm +

1

4
δj

i  Fmn  Fmn                            

                                                                                                                   (2) 

Where 𝑅𝑖𝑗   is Ricci tensor, 𝑇𝑖𝑗  is energy-momentum tensor, 𝑅 the scalar curvature, 𝐹𝑖𝑗   is the electromagnetic field tensor, 

𝑝𝑟  and 𝑝⏊ denotes radial and transverse pressure, 𝜌 the density distribution , vi   the four velocity and χ
j
  is the unit space-

like vector in radial direction. 

 

For the metric eq. (1) the Einstein-Maxwell‟s field equations (2) of gravitation for a nonempty space-time 

reduces to the following set of relevant equations 
8𝜋𝐺

𝑐4  
 𝑝𝑟 =

𝜈 ′

𝑟
 𝑒−𝜆 −

1−𝑒−𝜆

𝑟2 +
𝑞2

𝑟4   
                                                                                                                                   (3) 

8𝜋𝐺

𝑐4  
 𝑝⏊ = 𝑒−𝜆  

𝜈 ′′

2
 –

𝜆 ′ 𝜈 ′

4
+

𝜈 ′2

4
+

𝜈 ′−𝜆 ′ 

2𝑟
 −

𝑞2

𝑟4   
                                                                                                         (4) 

8𝜋𝐺

𝑐2  
 𝜌 =

𝜆 ′

𝑟
 𝑒−𝜆 +

1−𝑒−𝜆

𝑟2 −
𝑞2

𝑟4   
                                                                                                                                       (5) 

 

Where prime ( ′ ) denotes the differentiation with  respect to 𝑟 and 𝑞 the charge inside the radius r. 

substracting (3) from (4) we get 

02
1

)
2

1

4
(.)

1

242
( 2

22

2











  E

rr
e

rr
e




 
                       (6) 

Where  𝛥 =  
8𝜋𝐺

𝑐4  
 (𝑝⏊ − 𝑝𝑟 ) defined as anisotropy factor and E=

𝑞

𝑟2   
 is the electric field intensity 

With the substitutions 
2Crx  and

 ey eqn (6) reduces to 

0
21

)
1

2()1(
2

2 



C

E

Cx
y

x
xx

dx

dy
x 

&&&&
       (7) 

Where
dx

d
 
&

and 
2

2

dx

d 
 

&&

 

   

Our task is to explore the solutions of eqn (7) and obtain a physically meaningful matter distribution.  

 

A New Class of Solution 

To solve the above equation (7), we assume Heintzman[1] type metric potential 
3)1( xBe 

 
and we  also consider Δ and E of the following form: 

𝛥 =  
𝐶𝛼𝑥

1+𝑥
         and          

2𝐸2

𝐶
=  

2𝐶𝑞2

𝑥2 =
𝐾𝑥

(1+𝑥)
                                                                                 (8) 
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Where 𝑘, 𝛼, 𝐶, 𝐵 are non-zero positive constants. The anisotropy and electric intensity are so assumed that the model is 

physically significant and well behaved i.e. 𝛥 and 𝐸 remains regular and positive throughout the sphere. In addition, both 

vanish at the center of the star and increase towards the boundary. 

Substituting (8) in (7) we get, 
𝑑𝑦

𝑑𝑥
+

2𝑥2−2𝑥−1

𝑥 1+𝑥  (1+4𝑥)
 𝑦 +

1+𝑥−𝑥2(𝛼+𝑘) 

 𝑥(1+4𝑥)
= 0                                 (9) 

 

which yields the following solution, 

𝑦 = 𝑒−𝜆 =
12+𝑥(5𝑘+5−6)+2𝑥2 𝛼+𝑘 

12(1+𝑥)
+

𝐴 𝑥

(1+𝑥) x41
                                        (10) 

 where 𝐴 is an arbitrary constant.    

Now the expressions for density and pressures are given by 

 
1

𝐶 
 

8𝜋𝐺

𝑐2  
  =  

54+18𝑥−(15+15𝑥+6𝑥2)−𝐾 15+21𝑥+12𝑥2 

12 1+𝑥 2 −
 (3+9𝑥)

 1+𝑥 2 1+4𝑥 
3
2

𝐴                            (11) 

1

𝐶 
 

8𝜋𝐺

𝑐4  
 𝑝𝑟 =

54−54𝑥+𝛼(5+37𝑥+14𝑥2)+𝐾 5+43𝑥+20𝑥2 

12 1+𝑥 2  +
 (1+7𝑥)

 1+𝑥 2 1+4𝑥 1/2    
𝐴            (12) 

1

𝐶 
 

8𝜋𝐺

𝑐4  
 𝑝⏊ =

54−54𝑥+𝛼(5+49𝑥+26𝑥2)+𝐾 5+43𝑥+20𝑥2 

12 1+𝑥 2  +
𝐴 (1+7𝑥)

 1+𝑥 2 1+4𝑥 1/2    
𝐴               (13) 

 

PROPERTIES OF THE NEW SOLUTIONS 

The central values of the pressures and density is given by 

  
1

𝐶 
 

8𝜋𝐺

𝑐4  
 𝑝𝑟 

𝑟=0
=   

1

𝐶 
 

8𝜋𝐺

𝑐4  
 𝑝⏊ 

𝑟=0
 =

54+5𝐾+5𝛼+12𝐴

12
> 0 or  𝐴 > −

9

2
−

5(𝐾+𝛼)

12
                                        (14) 

 
1

𝐶 
 

8𝜋𝐺

𝑐2  
 𝜌 

𝑟=0
=

54−15𝐾−15𝛼−36𝐴

12
> 0                   for 𝐴 <

3

2
−

5(𝐾+𝛼)

12
           (15) 

 

To satisfy  the Zeldovich‟s condition    𝑝/𝜌𝑐2 𝑟=0 ≤ 1    , we have 
54+5𝐾+5𝛼+12𝐴

54−15𝐾−15𝛼−36𝐴
≤ 1   or    𝐴 ≤ −

5(𝐾+𝛼)

12
                                                                                                             (16) 

 

Differentiating (14), (15) and (16) w.r.t. x, we get 

1

𝐶 
 

8𝜋𝐺

𝑐2  
 
𝑑𝜌

𝑑𝑥
=

1

 1+𝑥 3   
 −90−18𝑥+𝛼 15+3𝑥 +𝐾 9+21𝑥  

12
+

15+69𝑥+90𝑥2

 1+4𝑥 
5
2

𝐴                                                              (17) 

1

𝐶 
 

8𝜋𝐺

𝑐4  
 
𝑑𝑝𝑟

𝑑𝑥
=

1

 1+𝑥 3   
 −162+54𝑥+𝛼 27−9𝑥 +𝐾 33−3𝑥  

12
+

3−3𝑥−42𝑥2

 1+4𝑥 
3
2

𝐴                                                       (18) 

1

𝐶 
 

8𝜋𝐺

𝑐4  
 
𝑑𝑝⏊

𝑑𝑥
=

1

 1+𝑥 3   
 −162+54𝑥+𝛼 39+3𝑥 +𝐾 33−3𝑥  

12
+

3−3𝑥−42𝑥2

 1+4𝑥 
3
2

𝐴                                            (19) 

 

Also the second-order differentiation for pressures and density are negative as 

            
1

𝐶 
 

8𝜋𝐺

𝑐4  
 
𝑑2𝑝𝑟

𝑑𝑥2
 
𝑟=0

< 0,              
1

𝐶 
 
8𝜋𝐺

𝑐4  
 
𝑑2𝑝⏊

𝑑𝑥2
 
𝑟=0

< 0,    
1

𝐶 
 

8𝜋𝐺

𝑐2  
 
𝑑2𝜌

𝑑𝑥2
 
𝑟=0

< 0                     (20) 

 

Hence both the pressures and density are maximum at the center and decreasing outward. 

In the light of (17), (18) and (19), the radial speed of sound and the transversal speed of sound  can be determined by 

𝑣𝑟
2 =

𝑑𝑝𝑟

𝑑𝑥
/𝑐2 𝑑𝜌

𝑑𝑥
    and   𝑣⏊

2 =
𝑑𝑝⏊

𝑑𝑥
/𝑐2 𝑑𝜌

𝑑𝑥
          (21) 

 

The ratio trace of energy stress tensor to energy density 

𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝑄 = (𝑝𝑟 + 2𝑝⏊)/                                   (22) 

 

Now the expression for gravitational red-shift and adiabatic index  𝛾  are given as 

𝑧 = 𝑒−
𝜈

2 − 1 =
 1+𝑥 −

3
2

 𝐵
− 1    and    𝛾 =

𝑑𝑝

𝑑𝜌
/

𝑝

𝜌
                                                                                                  (23) 

 

Since the central value of gravitational red-shift has to be non-zero, positive finite, we have  0 <  𝐵 < 1.                                                                         
Differentiating (23) w.r.t. 𝑥  we get, 

 
𝑑𝑧

𝑑𝑥
 
𝑥=0

= −
3

2 𝐵
< 0                                                                                                                                              (24) 
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The expression on (24) is negative, implying that the gravitation red-shift is maximum at the center and decreases 

outward.  

 

Similarly the derivatives of electric field and anisotropy at the center are given as 

 
𝑑

𝑑𝑥

𝐸2

𝐶
 
𝑥=0

=
𝐾

2
> 0               and                      

𝑑𝛥

𝑑𝑥
 
𝑥=0

= 𝐶𝛼 > 0                        (25)    

 

Eqn (25) signifies that electric field and anisotropy are minimum (i.e. zero) at the center and monotonically increasing 

outward.                                                                                     

 

BOUNDARY CONDITIONS  

The interior solution so obtained are matched with the exterior solution of Reissner-Nordström solution given by 

ds2 =  1 −
2𝐺𝑀

𝑐2  𝑟𝑏
+

e2

 𝑟𝑏
2   c2 dt2 −  1 −

2𝐺𝑀

𝑐2  𝑟𝑏
+

e2

 𝑟𝑏
2  

−1

 dr2 − r2( dθ
2 +  sin2θ dϕ

2)                                 (26) 

where 𝑀 is the mass of the fluid ball as determined by the external observer and  rb   is the radial coordinate of the 

exterior region. Since the eq. (26) is considered as the exterior solution, we shall arrive at the following conclusions by 

matching with (1): 

eνb =  1 −
2𝐺𝑀

𝑐2  𝑟𝑏
+

e2

 𝑟𝑏
2                                                               (27) 

  𝑞 (𝑎𝑡  𝑟 =  𝑟𝑏  )  =  𝑒                                                 (28) 

e−λb =  1 −
2𝐺𝑀

𝑐2  𝑟𝑏
+

e2

 𝑟𝑏
2                        (29) 

𝑝𝑟 (𝑟 = 𝑟𝑏) = 0                           (30) 

Using (30), the value of 𝐴 is obtained as 

𝐴 =
 1+4𝑋 

1
2    

1+7𝑋
 

54𝑋−54−𝛼 5+37𝑋+14𝑋2 −𝐾(5+43𝑋+20𝑋2)

12
                                               (31) 

Equations( 29)and (10) yield 

 1 −
2𝐺𝑀

𝑐2  𝑟𝑏
+

e2

 𝑟𝑏
2   =

1+𝑋

1+7𝑋
−

𝐾𝑋2

2 1+7𝑋 
                             (32) 

From eqns (27),(8)and (32) we get  

𝐵 =  
1+𝑋

1+7𝑋
−

𝑘 𝑋2

2 1+7𝑋 
  1 + 𝑋 −3                                                                                                                 (33) 

In the view of (32) and (8) we arrive at the expression of mass as 

𝑀 =
𝑐2𝑟𝑏

2𝐺
 

6𝑋−6𝑋2+𝑘 𝑋2(1+4𝑋)

(1+𝑋)(1+7𝑋)
                              (34) 

Where 𝑋 = 𝐶𝑟𝑏
2 

Radius rb  can be determined from  surface density 𝜌𝑏in eqn(11)as 

 𝑟𝑏
2 =

𝑋𝑐4

8𝐺𝜌𝑏  
 [

54+18𝑋−  15+15𝑋+6𝑋2 −𝐾 15+21𝑋+12𝑋2 

12 1+𝑋 2 −
  3+9𝑋 

 1+𝑋 2 1+4𝑋 
3
2

𝐴]                           (35) 

 

 Finally the equations for red shift and central red-shift are given respectively as 

𝑧 = 𝐵−
1

2 1 + 𝑥 −
3

2 − 1        𝑎𝑛𝑑 𝑧0 = 𝐵−
1

2 − 1                (36) 

 

Table 1: The effect of anisotropy and charge on the maximum mass for different values of  X. 

 

X 

 

K 

 

 
M

M
kmRb ).(

 
For  b =2 x 1014  g/cc 

M

M
kmRb ).(

 
For b=2.7 x1014    g/cc 

M

M
kmRb ).(

 
For  b =4.6888 x1014 g/cc 

 

0.1 

0 5.5 15.15 1.80 13.04 1.55 9.89 1.18 

3 3.5 15.10 1.91 12.99 1.65 9.86 1.25 

6 1.7 15.02 2.02 12.93 1.74 9.81 1.32 

8.6 0 14.97 2.11 12.89 1.81 9.78 1.38 
 

 

0.2 

0.8 2.8 16.9 2.96 14.55 2.55 11.04 1.94 

2 2 16.78 3.11 14.44 2.68 10.96 2.03 

4 0.8 16.52 3.34 14.22 2.88 10.79 2.18 

5.2 0 16.39 3.48 14.11 3.00 10.71 2.28 

         

 

0.3 

2.8 0.6 16.81 4.07 14.47 3.50 10.98 2.66 

3.6 0 16.64 4.25 14.32 3.66 10.87 2.78 
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Table 2 : March of density, pressures, pressure to density ratios, square of sound speeds, 𝒛 and 𝜸 for X=0.1, α=2.4 

and K=1. 
r

rb

 

 
𝜌𝑟𝑏

2 
 

𝑝𝑟𝑟𝑏
2 

 

𝑝⏊𝑟𝑏
2 

 

𝑝𝑟

𝑐2𝜌
 

 

𝑝⏊

𝑐2𝜌
 

 

 

Q 

𝑑𝑝𝑟

𝑐2𝑑𝜌
 

 

𝑑𝑝⏊

𝑐2𝑑𝜌
 

 

𝑧  
 

0 1.4051 0.1316 0.1316 0.0937 0.0937 0.2810 0.2632 0.2302 0.4375 2.81 

0.1 1.3979 0.1297 0.1300 0.0928 0.0930 0.2787 0.2632 0.2300 0.4353 2.84 

0.2 1.3765 0.1241 0.1250 0.0902 0.0908 0.2718 0.2631 0.2293 0.4289 2.92 

0.3 1.3419 0.1150 0.1171 0.0857 0.0873 0.2603 0.2629 0.2280 0.4183 3.07 

0.4 1.2958 0.1029 0.1067 0.0794 0.0823 0.2441 0.2622 0.2260 0.4037 3.30 

0.5 1.2399 0.0883 0.0941 0.0712 0.0759 0.2231 0.2610 0.2229 0.3852 3.66 

0.6 1.1765 0.0718 0.0802 0.0610 0.0681 0.1973 0.2588 0.2184 0.3632 4.24 

0.7 1.1076 0.0541 0.0653 0.0489 0.0590 0.1669 0.2553 0.2122 0.3380 5.22 

0.8 1.0353 0.0359 0.0503 0.0346 0.0486 0.1318 0.2503 0.2040 0.3098 7.22 

0.9 0.9612 0.0176 0.0356 0.0184 0.0371 0.0925 0.2432 0.1933 0.2790 13.25 

1 0.8871 0.0000 0.0218 0.0000 0.0246 0.0492 0.2339 0.1799 0.2460  
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Fig 1: March of density, pressures, pressure to density ratios, square of sound speeds, E, , , Z etc from center to 

boundary for X=0.1, α=2.4 and K=1 are shown below. 
 

Table 3: The variation of maximum mass and radius of the fluid ball for different values of Schwarzschild 

parameter “u” for α=2.4 and K=1. 
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  b = 2.7 x1014 g/cc 
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kmRb ).(
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= 4.6888 x 1014 g/cc 

 

 

 

Zb 

 

 

Eb 

0.03 1.637 6.923 0.142 5.958 0.122 4.521 0.093 0.032 0.073 

0.06 1.483 9.572 0.385 8.239 0.332 6.252 0.252 0.065 0.106 

0.09 1.328 11.567 0.700 9.955 0.603 7.554 0.457 0.103 0.134 

0.12 1.174 13.170 1.070 11.335 0.921 8.601 0.699 0.147 0.162 

0.15 1.031 14.408 1.456 12.400 1.253 9.410 0.951 0.193 0.187 

0.18 0.887 15.436 1.877 13.285 1.615 10.081 1.226 0.246 0.213 

 

DISCUSSIONS AND CONCLUSIONS 

From figure 1 and table 2 it is observed that the various physical parameters  

   (𝑝𝑟 , 𝑝⏊, 𝜌,
𝑝𝑟

𝑐2𝜌
,
𝑝⏊

𝑐2𝜌
,

𝑑𝑝𝑟

𝑐2𝑑𝜌
,
𝑑𝑝⏊

𝑐2𝑑𝜌
, 𝑧, 𝑄)  are positive at the centre and within the limit of realistic equation of state and 

monotonically decreasing towards the boundary. However, the anisotropy factor, electric field and adiabatic index are 

minimum at the center and increase outward. Thus, the solution is well behaved for all values of X lying in the range 0< 
X ≤ 0.3, α lying in the range 0 ≤ α ≤ 5.5, K lying in the range 0< K ≤ 8.6 and Schwarzschild compactness parameter „‟u‟‟ 

lying in the range 0< u ≤ 0.379. Since our solution is well behaved for  a wide ranges of different parameters, one can 

model many different types of ultra-cold compact stars like quark stars and neutron stars.  

 

From table 1, it is observed that increase in charge parameter results in increase in maximum mass but increase 

in anisotropy results in decrease in maximum mass. With increase in charge the extra coulombic pressure helps in 

supporting more mass while increase in anisotropy diverts more pressure away from radial direction thereby decreasing 

the mass. 

 

In table 3, we present some models of super dense quark star and neutron stars corresponding to X=0.1, α=2.4 

and K=1 for which umax=0.18. By assuming surface density 𝜌𝑏 = 4.6888 × 1014𝑔 𝑐𝑚−3   the mass and radius are  
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1.226 𝑀ʘ, 10.081 𝑘𝑚 respectively.   For    𝜌𝑏 = 2.7 × 1014𝑔 𝑐𝑚−3 the mass and radius are  1.615 𝑀ʘ, 13.285 𝑘𝑚  
respectively and for    𝜌𝑏 = 2 × 1014𝑔 𝑐𝑚−3 the mass and radius are  1.877 𝑀ʘ, 15.436 𝑘𝑚  respectively. 

 

The well behaved class of relativistic stellar models obtained in this work might have astrophysical significance 

in the study of more realistic internal structures of compact stars.  
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