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Abstract: Both exponential smoothing and Box-Jenkins‟ ARIMA models are used in this study as time series modeling 
approaches to forecast sugarcane variety adoption in Kenya. The accuracy of the two methods are assessed and ARIMA 

(4,1,1) was found to be the best model to estimate the future prediction of adoption status.  Efforts were made to forecast 

the future adoption of sugarcane variety (KEN 83-737) for two years by fitting ARIMA(4,1,1) model to our time series 

data. The results indicated a predicted drop in adoption of KEN 83-737 in 2012 and 2013. 

Keywords: Exponential smoothing, ARIMA, Sugarcane, Forecasting, Time series. 

 

INTRODUCTION  

Sugarcane growing was introduced in Kenya in the early 1900‟s by the Indian laborers engaged in the 

construction of the Uganda Railway [1]. The Sugar Industry has grown rapidly in Kenya making sugarcane to play a 
significant role in socio-economic development of the Kenyan economy [2]. The establishment of the Kenya Sugar 

Research Foundation (KESREF) in 2002 contributed to the growth of the Kenya Sugar Industry.  Since the inception of 

KESREF, more than 21 improved varieties have been generated and released for commercial production; the latest 

release were in 2014[3]  

 

The aim of generating and releasing improved varieties is to increase performance and enhance productivity of 

sugarcane given the same environmental conditions. The improved sugarcane varieties in Kenya have a nomenclature 

with prefix “KEN” to mean Kenyan series. Their major attributes are: high yielding, early maturing, disease, pest and 

drought resistant and high sucrose. These attributes give high expectation if the KEN series at their release.  

 

Earlier studies done on adoption of improved sugarcane varieties revealed that the most adopted improved 

sugarcane variety in Nyando Sugar zone was KEN 82-808 though  the area under the improved cane varieties was in the 
decline [4]. On the other hand, a web based analysis model developed by Ong‟ala et. al [5] indicated that  the adoption of 

the KEN83-737 (released in 2002) has been on average the highest in the Kenya Sugar Industry among the improved 

varieties despite the high number of the varieties developed so far in Kenya. In this paper we assume that adoption is 

measured by the area in hectares of land covered by the variety.  

 

The adoption of KEN 83-737 seems to be increasingly having an upward trend. Based on unpublished raw data 

of a baseline study by Ong‟ala et. al [6], Kwale International Sugar Company Ltd (KISCOL) based in the Coastal region 

of Kenya has adopted the KEN 83-737 more than 50% area coverage.  

 

Currently statistical techniques of time series analysis have been widely disseminated in the literature and there 

is a great variety of circumstances of researches in which they can be used, especially in studies involving time 
dependent data.  In this paper therefore, an effort is made to forecast the adoption status of the KEN 83 - 737 for the four 

leading years. The model developed here for forecasting are; exponential smoothing [7] and an Autoregressive Integrated 

Moving Average (ARIMA) model which was introduced by Box and Jenkins in 1960 hence the name Box-Jenkins 

Model.  

 

Box-Jenkins Models  

A time series can be understood as a sequence of data at regular time intervals during a specified period. When 

analyzing time series, one must first model the studied phenomenon, which from this point can be made describing the 
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behavior of the series, their estimates and finally the evaluation of the factors that influence the behavior of the series, 

taking into view to establishing the cause and effect relationship. 

 

According to Raymond Y.C. Tse, [8], the sequence for determining the model for the ARIMA family that best 

represents the series that can be used to make predictions is:  model identification, parameter estimation and testing for 

model validity after which a forecast can be done.  It is important to note that for the application of the models of Box-

Jenkins, the time series under study must be stationary that is, not present trend or seasonality [8]. 

 
The model proposed by Box et al [9] , which will be highlighted in this paper is (1):  

𝑦𝑡 = 𝛼0 + 𝛼1𝑦𝑡−1 + ⋯+ 𝛼𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝛽1𝜀𝑡−1 + ⋯ + 𝛽𝑞𝜀𝑡−𝑞                       (1) 

Where, α0 represents a constant in the estimated model, α1 to αp  are parameters that adjust the past values of 

𝑦𝑡  from the immediately prior time to the farthest represented by p. The values of  ε  represent a sequence of random 

shocks and independent of each other, εt is a non-controlled portion of the model, is commonly referred to as white noise. 

The parameters 𝛽1  to 𝛽𝑞  are used to write the series as a function of past shocks. In general each εt   is considered to have 

normal distribution, zero mean, constant variance and non-correlation.  

 

Model (1) is stationary if for every 𝑡 and 𝑡 − 𝑠: (i) 𝐸 𝑦𝑡 = 𝐸 𝑦𝑡−𝑠 = 𝜇  (constant mean), (ii) 𝐸 𝑦𝑡 − 𝜇 2 =
𝐸 𝑦𝑡−𝑠 − 𝜇 2 = 𝜎𝑦

2 (constant variance), and  

(iii) 𝐸( 𝑦𝑡 − 𝜇  𝑦𝑡−𝑠 − 𝜇 ) =  𝐸( 𝑦𝑡−𝑗 − 𝜇  𝑦𝑡−𝑗−𝑠 − 𝜇 ) = 𝛾𝑦  (constant covariance), otherwise if not stationary, (1) 

has to be transformed to stationary using differentiation through the use of the operator  defined by 𝑗
𝑑 = (1 − 𝐿𝑗 )𝑑  and 

𝐿𝑗𝑦𝑡 = 𝑦𝑡−𝑗  (backward shift operator).  Refer to [9] for the difference version for model (1).  

 

Time series patterns can be due to; trend, seasonality and random effect. These three components have to be 

identified and decomposed and assess their effects on the time series. In terms of the three components, the time series 𝑦𝑡 

can be written as  

 𝑦𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝐸𝑡                                                                      (2) 

where yt  is the data at period t,  St  is the seasonal component at period t, Tt  is the trend component at period t 

and Et  is the remainder (or irregular or error) component at period t.  

 

When forecasting was introduced as a subject of interest, the method used most widely was the exponential 

smoothing method which was applicable in Business [10]. These exponential smoothing methods still live on today. 

Makridakis et.al [11] investigated the predictive ability of various methods of time series forecasting and reported that 

the exponential smoothing is viable, however generate correlation prediction errors that compromise the long term 

prediction. However Oliveira et al [12] stated that the simple forecasting methods can provide very satisfactory 

predictions under certain conditions and that adoption of a more complex method should be investigated.   
 

Later, more advanced methods taking seasonality and trend into account were brought forward in the 60‟s and 

70‟s [10]. As managers later understood that actions such as promotional activities, competitor action and product 

introduction would shape and create demand, these variables needed to be understood and incorporated into the forecasts. 

One method to incorporate explanatory variables was the ARIMA-model [10] .With the introduction of computers, more 

advanced forecasting measures has emerged[13]. The application of ARIMA models started as early as 1970s when the 

model was developed. To date numerous models have been fitted and used for forecasting in a wide range of fields 

finance, manufacturing and agriculture production. A few examples are discussed here.  

 

Meyler, et al. [14] considered two alternative approaches of identifying ARIMA models; the Box Jenkins 

approach and the objective penalty function methods. Their emphasis was on forecast performance that suggested more 
focus on minimizing out-of-sample forecast errors than on maximizing in-sample „goodness of fit‟. Thus, the approach 

followed is unashamedly one of „model mining‟ with the aim of optimizing forecast performance.  

 

Stergiou [15]  analyzed as 17-year record (1964–1980, 204 observations) of monthly catches of pilchard 

(Sardina pilchardus) from Greek waters using Auto Regressive Integrated Moving Average (ARIMA) techniques.  Two 

models were found to be suitable for describing the dynamics of the fishery and for forecasting up to 12 months ahead. 

He compared his forecasts with the actual data for 1981 that were not used in the estimation of the parameters of either 
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model. The results showed that the mean error was 14.6% and 12 % for the two models respectively. His results 

suggested that ARIMA procedures are capable of describing and forecasting the complex dynamics of the Greek pilchard 

fishery, which have hitherto been regarded as difficult to predict owing to the strong influence of year-to-year changes in 

oceanographic and biological conditions and socio-economic factors (low commercial value and demand, high discard 

rate). 

 

Kumar et al[16] in their paper used the time series ARIMA model technique to predict sugarcane production in 

India using a 62 sugarcane production data from 1950 to 2012. The model was able to predict an increase in production 
for the year and 2013 then a fall in 2014 and subsequent year up to 2017. Other studies that have used ARIMA  model in 

fitting and forecasting include work done by; Kaur & Dham [17], Findley et al  [18]  and Han P et al[19].  

 

MATERIALS AND METHODS 

The data for sugarcane variety adoption status was collected from July 2003 to December 2012 on a quarterly 

basis (see Table 1). The data was captured using a pre designed questionnaires which was updated from time to time for 

convenient  though not significant to change the data collected. The respondents in this study were the sugarcane milling 

factory (in this case 11 factories viz; Mumias, Nzoia, West Kenya, Butali, Kibos, Chemilil, Muhoroni, SONY, 

Transmara, Sukari  and KISCOL). Additional data was collected from randomly selected farmers around the sugar 

factory to validate the data collected from the factory.  

 
The adoption status for KEN 83-737 was then extracted for all the quarters indicated.  However, the data for 

some quarters were missing leaving the data with some gap. The gaps were filled and the data interpolated into monthly 

using an R software package called „zoo’[20] . The zoo package ensures that the gaps in a data set are filled and increases 

the number of observations without interfering with the trend behavior.  Appropriate ARIMA (p,d,q) model was then 

identified for the data, fitted for the data upto 2011. The data remaining for the one year (2012) will be used to check the 

adequacy of the forecast.  

 

RESULTS AND DISCUSSION 

Seasonal Effect on Time series forecasting  

Viewing the time series data as described in Equation (2), the results shown in figure 2 were obtained.  

 

 
Fig- 1: Decomposition of additive time series using classical approach 

 

Notice that the seasonal component changes very slowly over time (Fig- 1), so that for the consecutive years 
very similar pattern are seen, but years far apart may probably have different seasonal patterns. The remainder 

component shown in the bottom panel is the random effect. The random effect experienced more between 2009 and 

2011.  
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When the decomposition is done using the STL method, better time series plots can be obtained. , STL is a very 

versatile and robust method for decomposing time series. STL is an acronym for “Seasonal and Trend decomposition 

using Loess”, while Loess is a method for estimating nonlinear relationships. The STL method was developed by 

Cleveland et al. [21] .  

  
Fig-2: Decomposition of additive time series using STL approach 

 

The grey bars to the right of each panel show the relative scales of the components (Fig-2). Each grey bar 

represents the same length but because the plots are on different scales, the bars vary in size. The large grey bar in the 

second panel shows that the variation in the seasonal component is small compared to the variation in the data and trend 

which has a bar about one quarter the, hence the seasonal variation can be ignored.  

 

 The seasonally adjusted time series has almost the same plot as the original data (Fig-3). Using a Kolmogorov

-Sminov test  (D = 0.09, p-value = 0.8127),   there is no significant difference between the  seasonally adjusted and origin

al data. 

 
Fig-3: Season adjusted Time series 
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Fig- 4: Forecasts of the adoption of KEN 83-737 data based on a forecast of the seasonally adjusted data and the 

original time series data. 

 

On comparing and evaluating the forecast made from the two sets of data, we note that when this time series 

data is adjusted by removing the seasonal variation, the forecasting error is increased (see Table-1) hence insignificance 

of adjusting the data.  

 

Table-1: Forecast accuracy measures. 

 

ME      RMSE       MAE        MPE      MAPE       MASE       ACF1 

Forecast Adjusted  97.754 766.541 433.902 -8.246 21.373 0.190 0.354 

Forecast from Original  97.111 707.333 403.564 -0.523 13.709 0.177 0.400 

 
As discussed above, a non seasonal ARIMA model is proposed for forecasting the data. In ARIMA forecasting 

approach, it is required that the following steps are followed: (i) Model Identification, (ii) Parameter Estimation and 

Selection, and (iii) Diagnostic Checking (or Modal Validation); before we can (iv) use the Model for forecasting 

application. We, therefore, will first try to identify the model for fitness.  

 

Model Identification 

The graph in the upper panel of  Fig- 1 shows the presence of non stationary in the time series and confirmed by 

the Augmented Dickey-Fuller (ADF) test (Dickey-Fuller = -0.05, Lag order = 4, p-value = 0.99, Ha: stationary). The 

ARIMA model cannot be build until the series is made stationary. We achieved the stationary by differencing the time 

series in order to have ARIMA (p,d,q) with „d‟ as the order of differencing used. Kumar [16] explained in his paper how 

to obtain the most accurate order of differencing.  
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Fig-5: Plot of the 1

st
 difference for the time series data 

 
 In Fig-5, it is evident that the data is stationary despite the increased noise between 2009 and 2012. The (ADF

) test (Dickey-Fuller = -4.5251, Lag order = 4, p-value = 0.01, Ha: stationary).  

 

Parameter Estimation and Selection 

We examine the correlogram  and partial correlogram  in (Fig-6)of the stationary time series to find the suitable 

p in AR and q in MA in the ARIMA (p,d,q).  

 

 
Fig-6: Estimated ACF and PACF for the variety adoption data 

 

The autocorrelation at lag 1 and 3 are significant while the autocorrelation from 4 to 18 are within the limits. 
Thought at lag 12 and 15 the auctocorrelation crosses the significant lines, they are due error and happens by chance 

alone. On the other hand in PACF graph of Fig-6, partial autocorrelation at lag 1, 3,4 are significant then the rest are 

insignificant otherwise by chance.  

 

The following possible ARMA (auto regressive moving average) models for the first differenced time series data 

of KEN 83737 adoption can therefore be: ARMA(4,0), ARMA(0,3) or . An ARMA(p,q) model  with p and q both greater 

than 0 since autocorrelation and partial autocorrelation both tail off to zero. The candidate for the ARIMA model are 

therefore listed in the table below and their statistics shown.  
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Table 2: AIC and BIC values of the fitted ARIMA models 

ARIMA AIC AICc BIC 

 

ARIMA AIC AICc BIC 

0,1,0 1596.49 1596.54 1599.08 2,1,2 1562.66 1563.31 1575.59 

0,1,1 1576.52 1576.65 1581.69 2,1,3 1535.48 1536.40 1550.99 

0,1,2 1570.13 1570.38 1577.88 3,1,0 1548.56 1548.99 1558.90 

0,1,3 1543.56 1543.99 1553.90 3,1,1 1533.25 1533.90 1546.17 

1,1,0 1588.16 1588.28 1593.33 3,1,2 1533.56 1534.48 1549.07 

1,1,1 1567.10 1567.35 1574.85 3,1,3 1532.86 1534.10 1550.95 

1,1,2 1569.10 1569.53 1579.44 4,1,0 1541.63 1542.29 1554.56 

1,1,3 1545.19 1545.84 1558.12 4,1,1 1532.76 1533.68 1548.27 

2,1,0 1588.23 1588.49 1595.99 4,1,2 1534.51 1535.75 1552.60 

2,1,1 1581.34 1581.77 1591.68 4,1,3 1532.90 1534.51 1553.58 

The RMSE for models range between (540- 590) 
 

 It is observed clearly that in Table 2, ARIMA (4, 1, 1) is the best predictive model (with the lowest AICc) for 

making forecasts for future values.  The ARIMA(4,1,1) model  has RMSE of 555.4907 . The ACF plot in Fig-7 of the res

iduals from the ARIMA(4,1,1) model shows that some correlations are not within the threshold limits indicating that the r

esiduals are behaving like white noise  and Ljung-Box  test returns a large p-value (X2 = 46.46, df = 16, p-value = 0.1682

76 ), also suggesting the residuals are white noise. 

 
Fig-7: ACF plot for the residuals 

 

Forecasting  

 When the fitted ARIMA (4,1,1) model is used to forecast (in 80% and 95% confidence interval) the adoption 

status for two years, The plot in Fig-8 is obtained.  
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Fig-8: Forecast from ARIMA (4, 1, 1) 

 

 The forecasted values when compared with the original data from Nov 2011 to Oct 201, most of the actual dat
a were within the confidence interval estimates (see Table 3 ) indicating some high level of accuracy in the forecasting m

ethod.  

 

Table 3: Forecast Estimate from ARIMA(4,1,1) 

 

80% CI 95% CI  

 

 

80% CI 95% CI 

lower upper lower upper Actual  lower upper lower upper 

Nov 2011 7660.7 13058.2 6232.0 14486.8 12523.9 Nov 2012 6899.9 14041.8 5009.5 15932.2 

Dec 2011 5592.6 11592.2 4004.6 13180.2 10097.1 Dec 2012 6777.5 13944.5 4880.5 15841.4 

Jan 2012 4466.1 10819.9 2784.3 12501.7 5243.6 Jan 2013 6421.6 13646.5 4509.2 15558.9 

Feb 2012 6560.3 13157.6 4814.0 14903.8 8876.8 Feb 2013 6507.9 13746.0 4592.1 15661.8 

Mar 2012 7564.5 14191.0 5810.5 15944.9 12510.0 Mar 2013 6527.2 13783.6 4606.5 15704.3 

Apr 2012 8441.6 15112.0 6676.1 16877.6 19776.5 Apr 2013 6728.8 13990.5 4806.8 15912.6 

May 2012 7250.0 14112.9 5433.5 15929.4 15037.5 May 2013 6683.3 13965.6 4755.8 15893.1 

Jun 2012 6647.8 13597.6 4808.2 15437.1 14298.5 Jun 2013 6682.5 13981.2 4750.7 15913.0 

Jul 2012 5866.1 12965.3 3987.1 14844.4 10820.5 Jul 2013 6544.8 13873.1 4605.1 15812.8 

Aug 2012 6378.3 13477.5 4499.2 15356.6 23552.1 Aug 2013 6548.4 13894.3 4604.0 15838.6 

Sep 2012 6647.0 13751.1 4766.6 15631.5 12283.7 Sep 2013 6518.7 13885.3 4568.9 15835.1 

Oct 2012 7144.3 14249.2 5263.7 16129.8 19747.0 Oct 2013 6583.9 13963.4 4630.7 15916.6 

 

CONCLUSION    

In this study, two methods of forecasting were investigated; the exponential smoothing and the ARIMA 

methods. Results show that fitting the data using ARIMA models was the accurate than when exponential smoothing is 

used since the RMSE for ARIMA was way lower than exponential smoothing method. Further the best ARIMA 

candidate model selected for making predictions for upto 2years for the adoption of KEN 83-737 variety was ARIMA 
(4,1,1). The model was tested and validated statistically by studying the successive residuals (forecast errors) in the fitted 

ARIMA and found existence of white noise residuals.  Hence, can conclude that the ARIMA (4,1,1) provide an adequate 

predictive model for the adoption of KEN 83-737 in the Kenya Sugar Industry.  

 

The ARIMA(4,1,1) model predicted an decrease in adoption  of KEN 83-737 from  November 2011 to 2013 (Table 3). 

The prediction for 2013 is on average between 4700 Ha to 15000 Ha of the variety coverage.  This model can be used to 

predict the future adoption of sugarcane varieties. As well the method of modeling and forecasting outlined here can be 

used for any time dependent occurrences in the sugar Industry.   
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