Scholars Journal of Physics, Mathematics and Statistics

Sch. J. Phys. Math. Stat. 2015; 2(3A):308-309 ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources) ISSN 2393-8056 (Print) ISSN 2393-8064 (Online)

A Note on the Identity Element in a Function Space

Richard P. Rozek, Ph.D.

Special Consultant, National Economic Research Associates, Inc. 1255 23rd St. NW, Washington, DC 20037

*Corresponding Author: Richard P. Rozek Email: richard.p.rozek@gmail.com

Abstract: This note demonstrates that the identity element in appropriately defined function spaces is weakly compact, but not compact; and bounded, but not weakly compact. **Keywords:** Bounded, Compact, Weakly Compact

DISCUSSION

Consider the family of all bounded continuous linear functions from a Banach space X into a Banach space Y [2,3,4]. Denote this function space $\mathcal{L}(X, Y)$. If f $\in \mathcal{L}(X, Y)$, then

- i. $f(x_1 + x_2) = f(x_1) + f(x_2)$ for all x_1 and $x_2 \in X$,
- ii. f(ax) = af(x) for all $x \in X$ and $a \in \mathbf{R}$, where, **R** denotes real numbers.
- iii. $||f|| = \sup |f(x)| < \infty$ for $x \in X$
 - $|\mathbf{x}| \le 1$

The symbol $\|.\|$ denotes the norm in $\mathcal{L}(X, Y)$ and |.| denotes the norms in X and Y.

Elements of the $\mathcal{L}(X, Y)$, which are often discussed in the functional analysis literature, are characterized in the following definitions. Let $S = \{x \in X | |x| \le 1\}$:

Definition 1: A mapping $f \in \mathcal{L}(X, Y)$ is weakly compact if the weak closure of f(S) is compact in the weak topology of Y.

Definition 2: A mapping $f \in \mathcal{L}(X, Y)$ is compact if the strong closure of f(S) is compact in the strong topology of Y.

One question regarding the robustness of the above definitions concerns the existence of elements of $\mathcal{L}(X,Y)$ that are:

- i. Weakly compact, but not compact
- ii. Bounded, but not weakly compact.

The purpose of this note is to show that the identity element in the appropriately defined function space satisfies (i) and (ii) above.

EXAMPLE I: A Hilbert space H is a Banach spaces over the field of complex numbers C together with a complex function (x,y) on H x H which satisfies the following properties:

a) $(x_1 + x_2, y) = (x_1, y) + (x_2, y)$

- (ax,y) = a(x,y) for a $\in \mathbf{C}$
- b) $(x,y_1 + y_2) = (x,y_1) + (x, y_2)$ $(x,ay) = \overline{a}(x,y)$ for a $\in \mathbb{C}$ and where \overline{a} denotes the conjugate of a
- c) $(x,y) = (\overline{y,x})$
- d) $(x,x) \ge 0$, equality only for x=0.

Under these conditions $||\mathbf{x}|| = \sqrt{(\mathbf{x},\mathbf{x})}$ is the norm. Assume H is an infinite dimensional Hilbert space and consider \mathcal{L} (H,H). Let i $\in \mathcal{L}$ (H, H) denote the identity map. The following three theorems are well known results in a functional analysis, so the proof is omitted.

Theorem 1: A normed linear space is finite dimensional if and only if its closed unit ball is compact. Proof: Chapter 4 of Dunford and Schwartz [1].

Richard P. Rozek.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-3A (Jun-Aug); pp-308-309

Definition 3: The dual of a Banach space X is the function space of real-valued continuous linear functions on that space, denoted $X^* = \mathcal{L}(X, \mathbf{R})$.

Definition 4: Let X be a normed linear space, and X^{**} the dual of the Banach space X^{*}. The mapping k: $x \rightarrow \hat{x}$ of X into X^{**}, defined by \hat{x} , x^{*} is called the natural embedding of X into X^{**}.

Definition 5: A Banach space X is reflexive if the natural embedding k maps X onto X**.

Theorem 2: Any Hilbert space is reflective. Proof: Chapter 4 of Dunford and Schwartz [1].

Theorem 3: If either X or Y is reflexive, then every mapping in $\mathcal{L}(X, Y)$ is weakly compact. Proof: Chapter 6 of Dunford and Schwartz [1].

From Theorem 1, we know i: $H \rightarrow H$ is not a compact map. From Theorem 2 and Theorem 3, we conclude that i: $H \rightarrow H$ is weakly compact.

EXAMPLE II: The following results are needed to construct the second example. These theorems are also well known, so the proofs are omitted.

Theorem 4: A Banach space X is reflexive if and only if its closed unit ball is compact in the weak topology. Proof: Chapter 5 of Dunford and Schwartz [1].

Definition 6: A function f is essentially bounded if there exists a constant K such that $f(x) \le K$ almost everywhere.

Definition 7: $L\infty = \{f | f \text{ is an essentially bounded function}\}\ \text{and } ||f||_{\infty} = \inf \{K | f(x) \le K \text{ almost everywhere}\};\ \text{that is, } |f| \le ||f||_{\infty} \text{ almost everywhere.}$

We know L^{∞} is a Banach space that is not reflexive. Therefore, $\mathcal{L}(L^{\infty}, L^{\infty})$ is also a Banach space. If we let i denote the identity mapping on L^{∞} , i $\in \mathcal{L}(L^{\infty}, L^{\infty})$, then i is bounded. Furthermore, L^{∞} is not reflexive. From Theorem 4, the closure of i(S) = S is not weakly compact. Therefore, the mapping i is bounded, but not weakly compact.

REFERENCES

- 1. Dunford N, Schwartz J; Linear Operators, Interscience, New York, NY, 1958.
- 2. Fox RH; On Topologies for Function Spaces. Bulletin of the American Mathematical Society, 51, 1945.
- 3. Royden HL; Real Analysis, Third Edition, Macmillan, New York, NY, 1988.
- 4. Rozek RP; Topologies on Function Spaces, unpublished thesis, University of Minnesota, 1971.