Scholars Journal of Physics, Mathematics and Statistics

Abbreviated Key Title: Sch. J. Phys. Math. Stat. ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources) ISSN 2393-8056 (Print) ISSN 2393-8064 (Online)

Arens Regularity of Bilinear Mapping and Reflexivity

Abotaleb Sheikhali, Nader Kanzi

 $E\text{-mail}\ address:\ Abotaleb.sheikhali.20@gmail.com,\ Nad.kanzi@gmail.com$

Depatment of Mathematics, Payame Noor University (PNU), Tehran, Iran

*Corresponding author Abotaleb Sheikhali	Abstract: Let X, Y and Z be normed spaces. In this article we give a tool to investigate Arens regularity of a bounded bilinear map $f: X \times Y \rightarrow Z$. Also, under some assumptions on f^{****} and f^{r****r} , we give some new results to determine reflexivity of the spaces.
Article History	Keywords: Arens regular, bilinear map, topological center, factor, second dual.
Received: 20.12.2017	2010 Mathematics Subject Classification. 46H20, 46H25
Accepted: 20.01.2018	
Published: 30.01.2018	INTRODUCTION AND PRELIMINARIES
	Arens showed in [1] that a bounded bilinear map $f: X \times Y \rightarrow Z$ on normed
DOI:	spaces, has two natural different extensions f^{***} , $f^{r^{***r}}$ from $X^{**} \times Y^{**}$ into Z^{**} .
10.21276/sjpms.2018.5.1.3	When these extensions are equal, f is said to be Arens regular. Throughout the article,
	we identify a normed space with its canonical image in the second dual.
	We denote by X^* the topological dual of a normed space <i>X</i> . We write X^{**} for $(X^*)^*$ and so on. Let <i>X</i> , <i>Y</i> and <i>Z</i> be normed spaces and $f: X \times Y \to Z$ be a bounded bilinear mapping. The natural extensions of <i>fare</i> as following:
日に非	(i) $f^*: Z^* \times X \to Y^*$, give by $\langle f^*(z^*, x), y \rangle = \langle z^*, f(x, y) \rangle$ where $x \in X, y \in Y, z^* \in Z^*$ (f^* is said the adjoint of f).
	(ii) $f^{**} = (f^*)^* : Y^{**} \times Z^* \to X^*$, give by $< f^{**}(y^{**}, z^*), x > = <$
	$y^{**}, f^*(z^*, x) > $ where $x \in X, y^{**} \in Y^{**}, z^* \in Z^*.$
	(iii) $f^{***} = (f^{**})^* : X^{**} \times Y^{**} \to Z^{**}, \text{ give by } < f^{***}(x^{**}, y^{**}), z^* > = < x^{**}, f^{**}(y^{**}, z^*) > \text{ where } x^{**} \in X^{**}, y^{**} \in Y^{**}, z^* \in Z^*.$

Let now $f^r : Y \times X \to Z$ be the flip of f defined by $f^r (y, x) = f(x, y)$, for every $x \in X$ and $y \in Y$. Then f^r is a bounded bilinear map and it may extends as above to $f^{r***} : Y^{**} \times X^{**} \to Z^{**}$. In general, the mapping $f^{r***r} : X^{**} \times Y^{**} \to Z^{**}$ is not equal to f^{***} . When these extensions are equal, then f is Arens regular.

One may define similarly the mappings $f^{****}: Z^{***} \times X^{**} \to Y^{***}$ and $f^{*****}: Y^{****} \times Z^{***} \to X^{***}$ and the higher rank adjoints. Consider the nets $(x_{\alpha}) \subseteq X$ and $(y_{\beta}) \subseteq Y$ converge to $x^{**} \in X^{**}$ and $y^{**} \in Y^{**}$ in the *weak*^{*} –topologies, respectively, then

 $f^{***}(x^{**}, y^{**}) = w^* - \lim_{\alpha} w^* - \lim_{\beta} f(x_{\alpha}, y_{\beta}) \text{ and } f^{r***r}(x^{**}, y^{**}) = w^* - \lim_{\beta} w^* - \lim_{\alpha} f(x_{\alpha}, y_{\beta})$ So Arens regularity of f is equivalent to the following $\lim_{\alpha} \lim_{\beta} \langle z^*, f(x_{\alpha}, y_{\beta}) \rangle = \lim_{\beta} \lim_{\alpha} \langle z^*, f(x_{\alpha}, y_{\beta}) \rangle$

If the limits exit for each $z^* \in Z^*$. The map f^{***} is the unique extension of f such that $x^{**} \to f^{***}(x^{**}, y^{**}): X^{**} \to Z^{**}$ is $weak^* - weak^*$ continuous for each $y^{**} \in Y^{**}$ and $y^{**} \to f^{***}(x, y^{**}): Y^{**} \to Z^{**}$ is $weak^* - weak^*$ continuous for each $x \in X$. The left topological center of f is defined by

 $Z_1(f) = \{x^{**} \in X^{**}: y^{**} \to f^{***}(x^{**}, y^{**}): Y^{**} \to Z^{**} \text{ is weak}^* - \text{weak}^* \text{ continuous}\}.$ Since $f^{r***r}: X^{**} \times Y^{**} \to Z^{**}$ is the unique extension of f such that the map $y^{**} \to f^{r***r}(x^{**}, y^{**}): Y^{**} \to Z^{**}$ is weak^{*} - weak^{*} continuous for each $x^{**} \in X^{**}$, we can set

$$Z_{l}(f) = \{x^{**} \in X^{**}: f^{***}(x^{**}, y^{**}) = f^{r^{***r}}(x^{**}, y^{**}), (y^{**} \in Y^{**})\}.$$

The right topological center of f may therefore be defined as

 $Z_{r}(f) = \{y^{**} \in Y^{**}: x^{**} \to f^{r***r}(x^{**}, y^{**}): X^{**} \to Z^{**} \text{ is weak}^{*} - \text{weak}^{*} \text{ continuous}\}.$ Again since the map $x^{**} \to f^{***}(x^{**}, y^{**}): X^{**} \to Z^{**} \text{ is weak}^{*} - \text{weak}^{*} \text{ continuous for each } y^{**} \in Y^{**}, \text{ we have } Z_{r}(f) = \{y^{**} \in Y^{**}: f^{***}(x^{**}, y^{**}) = f^{r**r}(x^{**}, y^{**}), (x^{**} \in X^{**})\}.$ A bounded bilinear mapping f is Arens regular if and only if $Z_l(f) = X^{**}$ or equivalently $Z_r(f) = Y^{**}$. It is clear that $X \subseteq Z_l(f)$. If $X = Z_l(f)$ then the map f is said to be left strongly irregular. Also $Y \subseteq Z_r(f)$ and if $Y = Z_r(f)$ then the map f is said to be right strongly irregular. A bounded bilinear mapping $f: X \times Y \to Z$ is said to factor if it is onto.

Investigate Arens regularity of bounded bilinear maps

S. Mohammadzadeh and Vishki H.R proved in [6] acriterion concerning to the regularity of a bounded bilinear map. They showed that f is Arens regular if and only if $f^{****}(Z^*, X^{**}) \subseteq Y^*$. In the section we provide the same conditions of Arens regularity. First, we give a similar lemma to the [6, *Theorem* 2.1].

Lemma 2.1. For a bounded bilinear map f from $X \times Y$ into Z the following statements are equivalent:

(i)
$$f$$
 is Arens regular;
(ii) $f^{r****r} = f^{*****};$
(iii) $f^{****} = f^{r****r}.$

Proof. If (i) hold then f^r is Arens regular. Therefor $f^{r***} = f^{***r}$. For every $x^{**} \in X^{**}$, $y^{**} \in Y^{**}$ and $z^{***} \in Z^{***}$ we have

$$< f^{r****r}(y^{**}, z^{***}), x^{**} > = < f^{r****}(z^{***}, y^{**}), x^{**} > = < z^{***}, f^{r***}(y^{**}, x^{**}) > \\ = < z^{***}, f^{***r}(y^{**}, x^{**}) > = < z^{***}, f^{***}(x^{**}, y^{**}) > \\ = < f^{****}(z^{***}, x^{**}), y^{**} > = < f^{*****}(y^{**}, z^{***}), x^{**} > \\ = < f^{****}(z^{***}, x^{**}), y^{**} > = < f^{*****}(y^{**}, z^{***}), x^{**} > \\ = < f^{****}(z^{***}, x^{**}), y^{**} > = < f^{****}(y^{**}, z^{***}), x^{**} > \\ = < f^{****}(z^{***}, x^{**}), y^{**} > = < f^{****}(y^{**}, z^{***}), x^{**} > \\ = < f^{****}(z^{***}, x^{**}), y^{**} > \\ = < f^{****}(z^{**}, x^{**}), y^{**} > \\ = < f^{****}(z^{**}, x^{**}), y^{**} > \\ = < f^{****}(z^{***}, x^{**}), y^{**} > \\ = < f^{***}(z^{**}, x^{**}), y^{**} > \\ = < f^{****}(z^{**}, x^{**}), y^{**} > \\ = < f^{***}(z^{**}, x^{**}), y^{**} > \\ = < f^{***}(z^{**}, x^{**}), y^{**} > \\ = < f^{***}(z^{**}, x^{**}), y^{**} > \\ = < f^{**}(z^{**}, x^{**}), y^{**} > \\ = < f^{*}(z^{**}, x^{**}), y^{**} > \\ = < f^{*}(z^{**}, x^{**}), y^{**} > \\ = < f^{*}(z^{**}, x^{**}), y^{**} > \\ = < f^{*}(z^{*}, x^{**}), y^{**} > \\ = < f^{*}(z^{*}, x^{**}), y^{*}(z^{*}, x^{**}), y^{*}(z^{*}, x^{**}), y^{**} > \\ = < f^{*}(z^{*}, x^{**}), y^{*}(z^{*}, x^{*}), y^{*}(z^{*}, x^{*}),$$

Therefore $f^{r****r} = f^{*****}$.

$$\begin{array}{ll} (ii) \Rightarrow (iii) \quad \text{Let} \quad x^{**} \in X^{**}, y^{**} \in Y^{**} \text{ and } z^{***} \in Z^{***} \text{ we have} \\ < f^{r****r}(z^{***}, x^{**}), y^{**} > = < f^{r****r}(x^{**}, z^{***}), y^{**} > = < x^{**}, f^{r****r}(z^{***}, y^{**}) > \\ = < x^{**}, f^{r****r}(y^{**}, z^{***}) > = < x^{**}, f^{*****r}(y^{**}, z^{***}) > \\ = < f^{****}(z^{***}, x^{**}), y^{**} > \\ (iii) \Rightarrow (i) \text{ Let } f^{****} = f^{r****r}. \text{ For every } x^{**} \in X^{**}, y^{**} \in Y^{**} \text{ and } z^{*} \in Z^{*} \text{ we have} \\ < f^{r***r}(x^{**}, y^{**}), z^{*} > = < f^{r***r}(y^{**}, x^{**}), z^{*} > = < f^{r****r}(z^{*}, x^{**}), y^{**} > \\ = < f^{r****r}(x^{**}, z^{*}), y^{**} > = < f^{r****r}(z^{*}, x^{**}), y^{**} > \\ = < f^{****r}(z^{*}, x^{**}), y^{**} > = < f^{***}(x^{**}, y^{**}), z^{*} >. \end{array}$$

It follows that f is Arens regular and this completes the proof

Theorem 2.2. Bounded bilinear map f from $X \times Y$ into Z is Arens regular if and only if $f^{r****r}(Y^{**}, Z^*) \subseteq X^*$.

Proof. Let $y^{**} \in Y^{**}$ and $z^* \in Z^*$ be arbitrary. If f is Arens regular Then $f^{r****r} = f^{*****}$ Therefore $f^{r****r}(y^{**}, z^*) = f^{*****}(y^{**}, z^*) = f^{*****}|_{Y^{**} \times Z^*}(y^{**}, z^*) = f^{**}(y^{**}, z^*) \in X^*$.

Conversely, suppose $f^{r***r}(Y^{**}, Z^*) \subseteq X^*$ and let $(x_{\alpha}) \subseteq X$ and $(y_{\beta}) \subseteq Y$ be two nets that are converge to x^{**} and y^{**} in the weak*-topologies, respectively. Then

$$< f^{r***r}(x^{**}, y^{**}), z^{*} > = < f^{r****}(y^{**}, x^{**}), z^{*} > = < f^{r****}(z^{*}, y^{**}), x^{**} > = \lim_{\alpha} < f^{r****}(z^{*}, y^{**}), x_{\alpha} > = \lim_{\alpha} < z^{*}, f^{r***}(y^{**}, x_{\alpha}) > = \lim_{\alpha} < y^{**}, f^{r**}(x_{\alpha}, z^{*}) > = \lim_{\alpha} \lim_{\beta} < f^{r**}(x_{\alpha}, z^{*}), y_{\beta} > = \lim_{\alpha} \lim_{\beta} < x_{\alpha}, f^{r*}(z^{*}, y_{\beta}) > = \lim_{\alpha} \lim_{\beta} < z^{*}, f^{r}(y_{\beta}, x_{\alpha}) > = \lim_{\alpha} \lim_{\beta} < f(x_{\alpha}, y_{\beta}), z^{*} > = < f^{***}(x^{**}, y^{**}), z^{*} >$$

Therefore f is Arens regular and this completes the proof

Corollary 2.3. For a bounded bilinear map $f: X \times Y \rightarrow Z$, the following statements are equivalent:

(i)
$$f^{r****r}(Y^{**}, Z^{***}) \subseteq X^*;$$

(ii) f and f^* are Arens regular;

(iii)
$$f^{*r***r} = f^{r***r*}$$
.

Proof. The implication (i) \Rightarrow (ii) follows from the fact that $f^{r****r}(Y^{**}, Z^*) \subseteq f^{r****r}(Y^{**}, Z^{***}) \subseteq X^*$. Now Theorem 2.2 implies the Arens regularity of f, or equivalenty $f^{*****r} = f^{r****}$. From which $(f^{*r})^{r****r}(Z^{***}, Y^{**}) = f^{r****r}(Z^{***}, Y^{**}) = f^{r****r}(Y^{**}, Z^{***}) \subseteq X^*$

Available Online: http://saspjournals.com/sjpms

Therefore the Arens regularity of f^{*r} follows again by Theorem 2.2. Thus f^* is Arens regular. (ii) \Rightarrow (iii) If f is Arens regular. Then $f^{***} = f^{r***r} \Rightarrow f^{****} = f^{r***r*}$ (2 - 1) Now if f^* is Arens regular. Then we have $f^{****} = f^{*r***r}$ (2 - 2)

The equalities (2-1) and (2-2) together establish the assertion. (iii) \Rightarrow (i) First we show that $f^{r****r} = f^{*r**r}$. For every $x^{**} \in X^{**}$, $y^{**} \in Y^{**}$ and $z^{***} \in Z^{***}$

$$< f^{r****r}(y^{**}, z^{***}), x^{**} > = < f^{r****r}(z^{***}, y^{**}), x^{**} > = < z^{***}, f^{r***r}(y^{**}, x^{**}) > \\ = < z^{***}, f^{r***r}(x^{**}, y^{**}) > = < f^{r***r*}(z^{***}, x^{**}), y^{**} > \\ = < f^{*r***r}(z^{***}, x^{**}), y^{**} > = < f^{*r**r}(x^{**}, z^{***}), y^{**} > \\ = < x^{**}, f^{*r**r}(z^{***}, y^{**}) > = < f^{*r**r}(y^{**}, z^{***}), x^{**} > \\ As f^{*r**r}(Y^{**}, Z^{***}) \text{ lies in } X^{*} \text{ thus } f^{r***r}(Y^{**}, Z^{***}) \subseteq X^{*} \text{ and the proof } \blacksquare$$

Theorem 2.4. Let X and A be normed spaces and $g : X \times A \to X$ is a bounded bilinear map. If $g^{***}: X^{**} \times A^{**} \to X^{**}$ factor and g^* is Arens regular. Then g is Arens regular.

Proof. Let g^{***} factor. Thus for every $x^{**} \in X^{**}$ there exists $y^{**} \in X^{**}$ and $b^{**} \in A^{**}$ such that $x^{**} = g^{***}(y^{**}, b^{**})$. Suppose that $a^{**} \in A^{**}$ and $(a_{\alpha}) \subseteq A$, $(b_{\beta}) \subseteq A$ and $(y_{\gamma}) \subseteq X$ be bounded nets *weak*^{*}-converging to a^{**}, b^{**} and y^{**} respectively. For every $x^* \in X^*$ we have

$$< g^{r^{***r}}(x^{**}, a^{**}), x^* > = < g^{r^{****}}(x^{*}, a^{**}), x^{**} > = < g^{r^{****}}(x^{*}, a^{**}), g^{***}(y^{**}, b^{**}). > = < g^{*r^{****}}(g^{r^{****}}(x^{*}, a^{**}), y^{**}), b^{**} > = < < g^{r^{****r}}(g^{r^{****}}(x^{*}, a^{**}), y^{**}), b^{**} > = \lim_{\beta} < g^{*r^{***r}}(g^{r^{****}}(x^{*}, a^{**}), y^{**}), b_{\beta} >$$

$$= \lim_{\beta} < g^{*r^{***r}}(y^{*r}, g^{r^{****}}(x^{*}, a^{**}), b_{\beta}), b_{\beta} > = \lim_{\beta} < y^{*r}, g^{*r^{**r}}(g^{r^{****}}(x^{*}, a^{**}), b_{\beta}) >$$

$$= \lim_{\beta} \lim_{\gamma} < g^{*r^{**r}}(g^{r^{****r}}(x^{*}, a^{**}), b_{\beta}), y_{\gamma} > = \lim_{\beta} \lim_{\gamma} < g^{r^{***r}}(g^{r^{***r}}(x^{*}, a^{**}), b_{\beta}) >$$

$$= \lim_{\beta} \lim_{\gamma} < g^{*r^{**r}}(g^{r^{***r}}(x^{*}, a^{**}), b_{\beta}), y_{\gamma} > = \lim_{\beta} \lim_{\gamma} < g^{*r^{**r}}(g^{r^{**r}}(b_{\beta}, y_{\gamma}), x^{*}) >$$

$$= \lim_{\beta} \lim_{\gamma} \int a^{r^{**r}}(g^{r^{**r}}(a^{**}, g^{*r^{*r}}(b_{\beta}, y_{\gamma})) > = \lim_{\beta} \lim_{\gamma} \lim_{\alpha} < g^{*r^{*r}}(g^{*r^{*r}}(b_{\beta}, y_{\gamma}), g^{r^{*r}}(x^{*}, a_{\alpha})) >$$

$$= \lim_{\beta} \lim_{\gamma} \lim_{\alpha} < g^{r^{*r}}(g^{r^{*r}}(x^{*}, a_{\alpha})) > = \lim_{\beta} \lim_{\gamma} \lim_{\alpha} < g^{*r^{*r}}(b_{\beta}, y_{\gamma}), g^{r^{*r}}(x^{*}, a_{\alpha}) >$$

$$= \lim_{\beta} \lim_{\gamma} \lim_{\alpha} < g^{r^{*r}}(y^{*}, g^{r^{*r}}(x^{*}, a_{\alpha})) > = \lim_{\beta} \lim_{\gamma} \lim_{\alpha} < g^{*r}(a_{\alpha}, g(y_{\gamma}, b_{\beta})) >$$

$$= \lim_{\beta} \lim_{\gamma} \lim_{\alpha} < g^{r^{*r}}(x^{*}, a_{\alpha}), g(y_{\gamma}, b_{\beta}) > = \lim_{\beta} \lim_{\gamma} \lim_{\alpha} < x^{*}, g^{r}(a_{\alpha}, g(y_{\gamma}, b_{\beta})), a_{\alpha} >$$

$$= \lim_{\beta} \lim_{\gamma} \lim_{\alpha} < g^{*}(g^{*r}(x^{*}, g(y_{\gamma}, b_{\beta})) > = \lim_{\beta} \lim_{\gamma} \lim_{\alpha} < g^{**}(x^{*}, x^{*}), g(y_{\gamma}, b_{\beta}) >$$

$$= \lim_{\beta} \lim_{\gamma} \int g^{*r}(g^{**}(a^{**}, x^{*}), y_{\gamma}), b_{\beta} > = \lim_{\beta} \lim_{\gamma} \int g^{**}(g^{**}(a^{**}, x^{*})), y_{\gamma} >$$

$$= \lim_{\beta} < g^{**}(g^{**}(a^{**}, x^{*}), g^{***}(y^{**}, b_{\beta}) > = \lim_{\beta} (g^{***}(x^{**}, x^{*}), y^{**}), b_{\beta} >$$

$$= \lim_{\beta} < g^{**}(a^{**}, x^{*}), g^{***}(y^{**}, b_{\beta}) > = \lim_{\beta} (g^{***}(g^{**}, x^{*}), y^{**}), b_{\beta} >$$

$$= \lim_{\beta} < g^{**}(a^{**}, x^{*}), g^{***}(y^{**}, b_{\beta}) > = \lim_{\beta} (g^{***}(g^{**}, x^{*}), y^{**}), b_{\beta} >$$

$$= \lim_{\beta} < g^{**}(a^{**}, x^{*}), y^{**}), b^{**} >$$

$$= < g^{***}(g^{**}(a^{**}, x^{*}), y$$

It follows that g is Arens regular

As an cosequnce of this theorem we have the following result:

Corollary 2.5. Let *X* and *A* be normed spaces and $g : A \times X \to X$ is a bounded bilinear map. If $g^{r***r}: A^{**} \times X^{**} \to X^{**}$ factor and g^{r*} is Arens regular. Then *g* is Arens regular.

Arens regularity and reflexivity

In this section, we show that with which assumptions left strongly irregular property is equivalent to the right strongly irregular property.

Theorem 3.1. For a bounded bilinear map $f: X \times Y \rightarrow Z$,

Available Online: http://saspjournals.com/sjpms

- (i) If f^{****} factor then both f and f^{r*} are Arens regular if and only if Y is reflexive.
- (ii) If f^{r****r} factor then both f and f^* are Arens regular if and only if X is reflexive.

Proof. We only give a proof for (ii), A similar proof applies for (i). Let f and f^* are Arens regular by Corollary 2.3 $f^{r****r}(Y^{**}, Z^{***}) \subseteq X^*$. On the other hand f^{r****r} factors, So $f^{r****r}(Y^{**} \times Z^{***}) = X^{***}$. Therefore $X^{***} \subseteq X^*$. Conversely, using [8,2.3] is obvious

As an immediate consequece of Theorem 3.1 and [8,2.4], we have the next Corollary.

Corollary 3.2. If one of the two following statement is assumed:

- (i) f and f^* are Arens regular and f^{r****r} factor;
- (ii) f and f^{r*} are Arens regular and f^{****} factor;

Then every adjoint map and every flip map of f is Arens regular.

Corollary 3.3. Let f and f^* are Arens regular and f^{r****r} factor. Then f is left strongly irregular if and only it is right strongly irregular.

Proof. The follows by applying Theorem 3.1 and [8, *Theorem* 2.5] ■

If X is reflexive. Then obviously bounded bilinear map f from $X \times Y$ into Z is Arens regular. But from Arens regularity f does not imply the reflexivity of X. The next Theorem, we use the Theorem 2.2 and show that if $f^{r*}(z^*, Y) = X^*$. Then X is reflexive.

Theorem 3.4. Let bounded bilinear map f from $X \times Y$ into Z is Arens regular and let Y is a Banach space. If $f^{r*}(z^*, Y) = X^*$ for some $z^* \in Z^*$. Then X is reflexive.

Proof. Let $h: Y \to X^*$ define by $h(y) = f^{r*}(z^*, y)$ for every $y \in Y$. Obviously $h^*(x^{**}) = f^{r**}(x^{**}, z^*)$ for every $x^{**} \in X^{**}$. We have

 $< h^{**}(y^{**}), x^{**} > = < y^{**}, h^{*}(x^{**}) > = < y^{**}, f^{r**}(x^{**}, z^{*}) > \\ = < f^{r***}(y^{**}, x^{**}), z^{*} > = < f^{r****}(z^{*}, y^{**}), x^{**} > = < f^{r****r}(y^{**}, z^{*}), x^{**} > .$

Therefore $h^{**}(y^{**}) = f^{r****r}(y^{**}, z^*)$ for every $y^{**} \in Y^{**}$. Now Theorem 2.2 implies that $f^{r****r}(Y^{**}, Z^*) \subseteq X^*$. Since $f^{r*}(z^*, Y) = X^*$ thus *h* is onto. Therefore h^{**} from Y^{**} into X^{***} is onto. Let $x^{***} \in X^{***}$ so there exists $y^{**} \in Y^{**}$ such that $x^{***} = h^{**}(y^{**}) = f^{r****r}(y^{**}, z^*) \in X^*$. Thus *X* is reflexive

REFERENCES

- 1. Arens A, The adjoint of a bilinear operation, Proc. Amer. Math. Soc, 2 (1951), 839-848.
- 2. Barootkoob S, Mohammadzadeh S and Vishki H.R, Topological centers of certain Banach module action, bulletin of the Iranian Mathematical Society, Vol. 35 No. 2 (2009), 25-36.
- 3. Dales H.G, Banach algebras and automatic continuity, London Math. Soc. Monographs 24 (Clarendon Press, Oxford,2000)
- 4. Dales H.G, Rodrigues-Palacios A, and Velasco M.V, The second transpose of a derivation, J. London Math. Soc. 64(2) (2001), 707-721.
- 5. Eshaghi Gordji M and Filali M, Arens regularity of module actions, Studia Math. 181 (3) (2007), 237-254.
- 6. Mohammadzadeh S and Vishki H.R, Arens regularity of module actions and the second adjoint of a derivation, Bull Austral. Mat. Soc. 77 (2008), 465-476.
- 7. Ulger A, Weakly compact bilinear forms and Arens regularity, Proc. Amer. Math. Soc. 101 (1978), 697-701.
- 8. Sheikhali A, Sheikhali A, Akhlaghi N, Arens regularity of Banach module actions and the strongly irregular property, J. Math. Computer Sci, 13 (2014), 41-46.