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Abstract  Original Research Article 
 

In this paper, the ( ' ,1 )G G G -expansion method is applied to carry out the integration of standard KdV and the 

Burgers-Fisher equations. The effectiveness of the ( ' ,1 )G G G -expansion method is exposed.  Choosing the 

particular values of different parameters, soliton and other periodic type traveling waves can be derived.  The method 

appears to be easier, economical, efficient and powerful by means of symbolic computation system to finding more 

new form exact solutions for various kinds of nonlinear evolution equations. 

Keywords: The standard KdV equation, Burgers-Fisher equation, the ( ' ,1 )G G G -expansion method, traveling wave 
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INTRODUCTION 

In the mathematical language, where the rate of change involves the differential equations either ordinary or 

partial or systems of them evolves. Additionally, the true laws of nature never can be linear [21]. Thus the study of 

nonlinear evolution equation (NLEE) has made a significant progress in the past few decades. Exact solutions of these 

nonlinear phenomena assist to understand the qualitative and quantitative information about the underlying behavior of 

the mathematical expression in a direct way. Therefore, active research works have emerged worldwide in diverse 

branches of scientific fields to searching the exact solutions of nonlinear partial differential equations (PDEs). But, the 

largest parts of nonlinear models of real-life problems are still very difficult to solve either analytically or numerically. 

Many assumptions have to be made needlessly to make nonlinear models solvable particularly for traveling wave 

solutions. In the literature of traveling wave solutions many types of traveling waves are exposed such as soliton, kink, 

peakon, compacton, cuspon, cnoidal wave and many others. All of these types of wave pattern arise in the field of 

mathematics, physics and engineering which are very important. In this paper, the NLEEs the standard KdV and the 

Burger-Fisher equations are going to be studied to searching further new or more general form of exact solutions by the 

( ' ,1 )G G G -expansion method.  

 

Since every nonlinear evolution equation has its own characteristics and the exact solution much more depends 

on its physical nature, no single method is suitable to handle all of these equations. Rather one has to rely on different 

techniques or necessary theories. So, researcher focuses on various methods for seeking exact solutions that are important 

for applications within and outside of mathematics, with the hope that these solutions will reflect the insight of PDE and 

clues of their origins. Moreover, the advent of modern computational technologies changes the scenario dramatically. 

Now, the nonlinear PDEs can be solved effectively by means of sophisticatedcomputers, with due attention to 

theaccuracy of the solutions. 

 

There are many traditional and newly developed methods are used to carry out the integration of NLEEs. Some 

of them are the inverse scattering method, the Hirota method, the Backlund transform method, the exp-function method, 

the Jacobi elliptic function method, sine-cosine method, tanh-coth method and so on. Numerous asymptotic methods 

have also been suggested such as the foremost Adomain decomposition method which was introduced and developed by 
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George Adomain, in 1994, the variational iteration method, which was proposed by Ji-Huan He, in 1999. All of these 

common methods are available in most of the textbooks and contemporary scientific papers [27, 20]. 

 

The  G G - expansion method was firstly proposed by Wang et al. in 2008 [25]. Since then, this ( )G G

extension method is one of the most efficient methods and applied to many NLEEs to construct new exact traveling wave 

solutions. Many researchers also worked on this )/( GG -expansion method to improve and enhance this expansion 

method [9, 10]. Different modification and extensions have also been proposed by severals e.g. Zhang et al. [28], 

extended the method to deal with evolution equations with variable coefficients. A remarkable work was also done by 

Zhang [29], to some special nonlinear equations where the balance numbers are not integer. Akbar et al. modified as well 

as applied this method and derived abundant traveling wave solutions of different celebrated NLEEs [1-5]. 

 

In 2010, Li et al. firstly introduced the (G′/G, 1/G)-expansion method which can be thought of as an extension 

of the (G′/G)-expansion method [26]. They applied this extension method to the Zakharov equations and the traveling 

wave solutions are successfully obtained. The principle idea of this expansion method is that the exact traveling wave 

solutions of NLEEs can be expressed in the form a polynomial in two variables )/( GG  and )/1( G where 

 G G  satisfies a second order linear ordinary differential equation (LODE). Recently, Demirayet al. have also 

applied this method to the Boussinesq type equations for searching the exact solutions [7-8]. The ( ,1 )G G G -method 

is also applied to various nonlinear PDEs such as Phi-Four equation, Boussinesq type equations, Gardner-KP equation 

[6-8], for analytical solutions. Very recently, Akbar et al. applied both the ( / )G G and ( ,1 )G G G  expansion 

methods to the various nonlinear PDEs [13-16]. However, still this method is of little use to different nonlinear evolution 

equations due to an extra variable (1/ )G , compared to ( / )G G expansion method.  

 

In this work, we apply the  (G′/G, 1/G)-expansion method to check the effectiveness in study of NLEEs and 

searching the new or more general form of exact solutions NLEEs the standard KdV and the Burger-Fisher equations. 

 

The rest of the paper is organized as follows: In Section 2, we define the concept of ( ,1 )G G G -expansion 

method briefly. In Sections 3, we have applied this extension method to the standard KdV and to the Burger-Fisher 

equations. Graphical representations of the obtaining results are presented in section 4. Results and discussions are 

pointed out in section 5. In section 6, the concluding remarks are given. 

 

Outline of the ( ,1 )G G G -expansion method  

In this section, we briefly discuss the ( ,1 )G G G -expansion method. In 2010, Li et al. firstly proposed this 

( ,1 )G G G -expansion method which is summarized as follows [26]: 

 

Consider, the second order liner ordinary differential equation (LODE) 

 ( ) ( )G G       (1) 

 

where, G denotes the second order ordinary derivative,   is the independent variable and ,   are arbitrary constants.  

Now, consider two rational functions  

 , 1G G G    (2) 

 

where, G  denotes the first derivative and G  is the solution of the Eq. (1). With a little effort from (1) and (2), we can 

obtain the following relation 

 
2 ,             (3) 

 

The general solution of the LODE (1) depends on the value of the parameter   whether 0, 0 or 0     . 

Case1: when 0,   the general solution of the LODE (1) is, 

 1 2( ) sinh( ) cosh( )G C C


  


      (4) 

and we can obtain the following relation easily 
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2 2

2 2
( 2 )


   

  


  


 (5) 

 

where
1C  and 

2C are two arbitrary constants and 
2 2

1 2 .C C    

 

Case2: when 0,  the general solution of Eq. (1) has the form 

 1 2( ) sin( ) cos( )G C C


  


    (6) 

 

and again we can deduce the following relation  

 
2 2

2 2
( 2 )


   

  
  


 (7) 

 

where
1C  and 

2C are two arbitrary constants and 
2 2

1 2 .C C    

 

 

Case3: when 0,   then the general solution of the Eq. (1) is of the form 

 
2

1 2( )
2

G C C


      (8)  

and by some calculations, it can be deduced  

 
2 2

2

1 2

( 2 )
2C C


  


 


 (9) 

where
1C  and 

2C are two arbitrary constants.  

 

Suppose that a nonlinear evolution equation in two independent variables x  and t  is given by, 

 ( , , , , , , ...) 0t x tt xt xxF u u u u u u   (10) 

 

where ( , )u u x t  is an unknown function, F  is a polynomial in  ( , )u u x t and its various partial derivatives. The 

polynomial also consists of highest order derivatives and nonlinear terms. In the followings, we outline the main steps of 

the ( ,1 )G G G -expansion method to solve Eq.(10).  

 

Step 1: Use the traveling wave variable transformation 

 ( , ) ( ),u x t u x Vt     (11) 

where V  is a constant to be determined latter? This transformation reduces the PDE (10) into an ODE for 

( )u u   in the form  

 
2( , , , , , , ...) 0P u Vu u V u u Vu        (12) 

 

where the primed denotes the ordinary derivatives of u  with different order. Next, integrate the Eq. (12) as many 

times as possible and set the arbitrary constants of integration to be zero for simplicity. 

 

Step 2: Suppose that the general solution of the ordinary differential equation (12) can be expressed by a 

polynomial in two rational functions   and   as, 

 
1

0 1

( )
m m

i i

i i

i i

u a b   

 

    (13) 

where G G  , 1 G  and  G G  satisfies the second order LODE (1), 

( 0,1,2,..., ), ( 1,2,..., ), ,i ia i m b i m V    and  are arbitrary constants which will be determined in latter. The 
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degree m  of the polynomial (13) can be determined using the principality by homogenous balance between the highest 

order derivatives and the nonlinear terms appearing in Eq.(12). 

 

Step 3: Now substituting the value of ( )u  of(13) into (12), using (3) and (5) (or using (3), (7) and (3), (9)) the 

left side of Eq. (12) transforms into a polynomial in   and .  It is noted that applying the relations (5), (7) and (9), the 

degree of   will never be larger than 1. Equating each coefficient of the polynomial in ,   to zero yields a system of 

algebraic equations in ( 0,1,2,..., ), ( 1,2,..., ),i ia i m b i m  1, , ,V C   and 
2.C  

 

Step 4: Solving the system of algebraic solutions arise in Step 3 with the mathematical graphing utility Maple or 

Mathematica and substituting the obtained values of ( 0,1,2,..., ),ia i m ( 1,2,..., ),ib i m
1, , ,V C   and 

2C into 

(13), we can finally obtain the traveling wave solutions expressed by the hyperbolic functions of Eq. (12) (or can be 

expressed by trigonometric function if 0   and rational function if 0  ). 

 

Some application of the ( ,1 )G G G -expansion method 

 

The standard KdV equation 

In 1895, two Dutch physicists DiederickKorteweg and his student Gustav de Vries (KdV) [27] derived a 

nonlinear partial differential equation now which bears their name and the standard form is given by 

 6 0,t x xxxu uu u    (14) 

where  ,u x t  is a function of space variable x  and time variable .t This equation models a variety of nonlinear 

phenomena such as plasma waves, shallow water waves and so on. Eq. (14) shows that the rate of change of the wave’s 

height in time is governed by the sum of two terms, one is nonlinear terms that have the amplitude effect and the other is 

dispersive terms that have effect on waves of different wavelengths to travel with different velocities. The derivative tu  

describes the time evolution of the wave propagation in one direction. The nonlinear term 
xuu  characterizes the 

steepening of the wave, whereas the linear term xxxu  accounts for the spreading or dispersion of the wave. This equation 

is the simplest nonlinear partial differential equation embodying two effects: nonlinearity represented by 
xuu  and linear 

dispersion represented by .x x xu The fragile balance between the weak nonlinearity and the linear dispersion defines the 

formulation of soliton type travelling wave that consists of single humped wave. 

 

Making use the traveling wave transform ( , ) ( ),u x t u x ct    , into eq. (14) and integrating, we obtain an ODE 

 
23 0Vu u u    . (15) 

 

Balancing the terms 
2u  with u  we obtain 2m  . So the ansatz polynomial solution is in the form: 

 
2

0 1 2 1 2( ) ,u a a a b b          (16)  

where, 0 1 2 1 2, , , ,a a a b b  are arbitrary constants, which are to be determined.   

 

Case 1: When 0   (hyperbolic function solutions)  

Substituting the value of ( )u  , into (15) alongside with (3) and (5), and equating the coefficient of   and   

to zero yields to a system of algebraic equations (for brevity a few of them are given).  
4 2 2 2 2 2 4 2 4 2 2 3 2 2 2 2 4

2 2 2 2 2 2 2 2: 6 12 6 3 3 3 3 6a a a a b b a a                        

3 4 4 2 4 2 2 2 4 2 2

2 2 2 2 2 2 2 2 2: 6 6 6 12 6 12a b b a b b b a b                   

3 4 4 2 3 3 2 2 2 2 4 2

1 1 2 1 2 2 1 1 2 1

3 4

2 1 2

: 2 6 6 6 4 12 2

6 6

a a a b b b a a a a

b a a

               

 

     

   

 

Solving this system of equations with the help of Maple, we get: 



 

    
Md. Azmol Huda et al., Sch J Phys Math Stat, February, 2019; 6 (2): 16–25 

© 2019 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          20 

 

 

 

2 2

0 1 2 1 2

( )
, 0, 1, , ,a a a b b V

  
  



 
        . (17) 

 

Now, substituting these values in Eq. (16), we achieve 

    

   

      

   

   

2
2 2

1 2 1 2

2 2

1 2 1 2

1 2

cosh sinh cosh sinh
( )

sinh cosh sinh cosh

.

sinh cosh

C C C C
u

C C C C

C C

        


 
    

 





 



         
 
   

          
   

 

   

 (18) 

 

Setting up the particular values 
1 20,C C    and 0  , we obtain the traveling wave solution as: 

 
2( ) tanh ( ) tanh( )sec ( ) .u i h                (19) 

 

Now, substituting x Vt   , we finally obtain the solution of the standard KdV equation as 

 
2( , ) tanh ( ( )) tanh( ( ))sec ( ( )) .u x t x Vt i x Vt h x Vt               (20) 

 

Similarly, if we set up 
1 2, 0C C  and 0  , we extract another wave solution as: 

 
2( , ) coth ( ( )) coth( ( ))csc ( ( )) .u x t x Vt x Vt h x Vt               (21) 

 

Case 2: When 0   (trigonometric function solutions) 

Stepping similar to case1, substituting the value of ( )u  , into (14) along with (3) and (7), and equating the 

coefficient of  and  to be zero yields to a system of algebraic equations.   

 

Equating each coefficient of equation to zero yields a system of algebraic equations (Herein, for conciseness and 

simplicity the algebraic equations are not given) and solving them by Maple the values of the arbitrary constants are 

obtained as follows: 

 

2 2

0 1 2 1 2

( )
, 0, 1, , ,a a a b b V

  
  




        . (22) 

While, we set 
1 2, 0C C  and 0  , then we have 

 
2( , ) cot ( ( )) cot( ( ))csc( ( ))u x t x Vt x Vt x Vt            .  (23) 

 

In particular, if 
1 20,C C   and 0  , we obtain the periodic wave solution 

 
2( , ) tan ( ( )) tan( ( ))sec( ( ))u x t x Vt x Vt x Vt            . (24) 

 

Case 3: When 0   (rational function solutions) 

Again following the similar to case 1 or case 2, substituting the value of ( )u  , into (15) along with (3) and (9), 

we get the solution set as: 

 0 1 2 1 22 , 0, 2, 0, 0, 4 , 0a a a b b c            . (25) 

 

This solution in turn provides the rational solution as: 

 

2

1

2

1 2

2
( , ) 2

( ( ) )

C
u x t

C x Vt C
  

 
, (26) 

where
1C  and 

2C are two arbitrary constants and ( )x Vt   . 
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Burgers-Fisher equation 

The Burgers-Fisher equation arises in field of applied mathematics and physics applications such as gas 

dynamics, traffic flow and financial mathematics and so on. This describes the interaction between the reaction 

mechanisms, convection effect, and diffusion transport. The Burgers-Fisher equation reads as [20]: 

 (1 )t xx xu u uu u u    . (27) 

 

By substituting the wave variable ( , ) ( ),u x t u x Vt    , the Burgers-Fisher equation is converted to the 

ODE  

 (1 ) 0Vu uu u u u       . (28) 

 

Balancing the nonlinear term 
2u  with the highest order derivative u gives again 2m  , that does not lead to 

any solution. However, balancing uuwith u , gives 1m  . Therefore, the ansatz polynomial solution comes in the 

form: 

 0 1 1( )u a a b     ,  (29) 

 

where, 0 1 1, ,a a b  are arbitrary constants, which are to be determined.   

 

Case 1: When 0   (hyperbolic function solutions)  

In the same way, as stated in case 1 of standard KdV equation, substituting Eq. (29), along with Eqs. (3) and (5) 

into (28), the left hand side of (28) becomes a polynomial in   and  . Again, setting each coefficient of this 

polynomial to zero, we find a set of algebraic equations for 
0 1 1, , , ,V a a b  and . For minimalism, the equations are 

not given herein. Solving these algebraic equations by Maple, the following values are obtained: 

 
2

0 1 1

1 1 5 1
, 1, 16 , ,

2 2 2 4
a a b V          . (30) 

 

Considering, the particular values if 
1 20,C C    and 0  , we obtain the traveling wave solution as: 

 
1 1 1 1 1

( , ) tanh ( sec (
2 2 2 2 2

u x t x Vt i h x Vt
   

       
   

.  (31) 

 

Similarly, setting 
1 2, 0C C  and 0  , we extract another wave solution as: 

 
1 1 1 1 1

( , ) coth ( csc (
2 2 2 2 2

u x t x Vt h x Vt
   

       
   

. (32) 

 

Case 2: When 0   (trigonometric function solutions) 

In a similar procedure, of case 2 of standard KdV equation, substituting Eq. (29), along with Eqs. (3) and (7) 

into (28), the left hand side of (28) becomes a polynomial in   and  . Solving the system of algebraic equations for 

0 1 1, , , , ,V a a a b   and  we get (for shortness equations are not given):  

 
2

0 1 1

1 1 5 1
, 1, 16 , ,

2 2 2 4
a a b c          . (33) 

 

It is interesting to note that for the case of 0  , the Burgers-Fisher equation provides the same solution as 

0  , i.e., same as Eqs. (31) and (32).  

 

Case 3: When 0   (rational function solutions) 

Following the previous steps, when 0  , the Burgers-Fisher equation provides solution as: 

 

2

1
0 0 1 1 1

2

1
, , 0,

2

C
a a a a b

C


 
    

 
. (34) 
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which in turn gives 

 

2

1
1

2

02 2

1
1 2

2

1

2
( , )

1

4

C
C

C
u x t a

C
C C

C






 
 

  
 

  
 

 (35) 

 

where, 
1C  and 2C  are arbitrary constants and x Vt   . 

 

Graphical representation of the obtaining results 

In this section, we discuss the graphical explanation of the exact traveling wave solutions which are derived by 

the ( / ,1/ )G G G  -expansion method, particularly, to the exact solutions of the standard KdV equation. For briefness, 

we have only plotted the graphs of Eq. (20), (21) and (23)  of the exact solution of the standard KdV equation in the 

figure (1), (2) and (3) respectively. 

 

Taking, the absolute value of Eq. (20) and simplification, we get 

 
2( , ) sec ( )u x t h x Vt   (36) 

 

 

Fig-1: Shape of the solution Eq. (20) in the domain 2 , 2 , 1, 1x t V       
 

 

The shape of Fig. 1 is called the soliton solution which was named by Korteweg and de Vries during the 

investigation of water wave problem. The general form of soliton is either 
2sech -bell shape or in the form of a kink in 

tanh -mathematical form. Alternate form of soliton may appear  in the mathematical form as sech  or arctan( )xe . 

The Fig.1 looks like a single humped wave. Generally, this is a solitary wave of permanent form which is localized. Both 

wings of the graph decays and approaches a constant at infinity. Mathematically, the transition of the wave from the 

asymptotic state at     to the other asymptotic state    is localized in  , where x ct   , and c  is the 

wave speed. Fig.1 is clearly characterized by infinite wings or infinite tails. The wave is spatially localized and hence 

( ), ( )u u    and ( ) 0u   as , x ct    . It is noticeable that the wave disturbance moving in the 

positive x -direction as the value of 0V  . If we chose the negative value of V , the wave disturbance will moved 

towards the negative x -direction. From the standard KdV Eq.(14), the nonlinear term 
2( )xu  tends to steeping the wave 
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whereas the dispersion term 
xxxu  spreads the wave out. The delicate balance between the weak nonlinearity of 

2( )xu and 

the linear dispersion of xxxu  defines the formulation of soliton that consist of single humped wave.  

 

 

Fig-2: Graph of the solution Eq. (21) in the domain 2 , 2x t     

 

 

Fig-3: Graph of the solution Eq. (23) in the domain 2 , 2x t     

 

We have also depicted the traveling wave (21) of the standard KdV equation in the figure 2  The graph is plotted 

within the range of 2 , 2x t     and the traveling wave velocity 1.V   From the Fig.2, it is seen that the wave is 

highly peaked and vanishes from the one asymptotic state at     to the other asymptotic state    .The Fig.3 

is depicted in the domain 2 , 2x t    . The Fig. 3 shows the periodic traveling wave nature of the standard KdV 

equation.  

 

RESULTS AND DISCUSSIONS 

In this section, we discuss the advantages and disadvantages of ( ,1 )G G G -expansion method. The 

( ,1 )G G G -expansion method is mainly an extension of ( )G G  method. The ( )G G -method is based on the 

assumptions that the solution of the nonlinear evolution equations can be expressed by a polynomial in ( )G G , where 

( )G G   satisfies the second order linear ordinary differential equation (LODE) ( ) ( ) ( ) 0G G G         where 



 

    
Md. Azmol Huda et al., Sch J Phys Math Stat, February, 2019; 6 (2): 16–25 

© 2019 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          24 

 

 

  and   are arbitrary constants.  Alike to the ( )G G -method, the principle of ( ,1 )G G G -expansion method is that 

the exact traveling wave solutions of NLEEs can be expressed by a polynomial in two variables ( )G G and (1/ G)  

where ( )G G  satisfies a second order linear ordinary differential Eq.(1). Making a homogeneous balance between 

the nonlinear term and highest order derivatives appear in a given NLEE we can determine the degree of the polynomial. 

Besides, the coefficients of the polynomial can be determined by solving a set of algebraic equations equating to zero 

resulting from the process of using the method. When 0   in Eq. (1) and  0ib   in Eq. (13), the ( ,1 )G G G

expansion method transforms into ( )G G -expansion method. Moreover, if we take the special values of two parameters 

1C and 
2C , soliton type of wave solution can be derived. Many techniques are available to searching the analytical 

solution of NLEEs and each of them have some advantages and disadvantages. Some methods provide solutions in a 

series form.  In this case burning question arises to investigate the convergence of approximation series. For instance, 

Adomian decomposition method, variational iteration method [27], depends only on the initial conditions and converges 

to the exact solution of the problem. Some methods need linearization or to convert the inhomogenous boundary 

conditions to homogeneous, and so on [20]. In addition to, all numerical methods e.g. finite difference or finite element 

methods it is necessary to must have boundary and initial conditions. The main advantages of ( ,1 )G G G -expansion 

method over other methods are it can be applied directly without using linearization, perturbation or any other restrictive 

assumption. 

 

CONCLUSION 

In this paper, we tested the applicability of the ( ,1 )G G G -expansion method to the standard KdV and the 

Burgers-Fisher nonlinear evolution equations. There are several solutions are found by this ansatz method. We observe 

that when the parameters take certain special values, the soliton type and other trigonometric periodic traveling wave 

solutions are found. It is important to note that wave solutions to the standard KdV and the Burgers-Fisher that are 

obtained here were not found in the earlier studies. The above solutions might be fruitful to investigate the shallow water 

waves. The established results show that the ( ,1 )G G G -expansion method is effective and powerful to searching new 

or more general form of traveling wave solutions.  
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