Vertex Distinguishing General-total Coloring of $K_{2,5, p}$

ZHANG Shuang*, CHEN Xiang’en

College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China

DOI: 10.36347/sjpms.2020.v07i01.001 | Received: 06.10.2019 | Accepted: 15.10.2019 | Published: 08.01.2020

*Corresponding author: ZHANG Shuang

Abstract

With the wide application of graph coloring in real life, it has gradually become one of the important fields studied by many scholars. A general total coloring of graph G refers to mapping $f : V(G) \cup E(G) \rightarrow \{1, k\}$. For any $x \in V(G)$, let $C_x(x)$ or $C(x)$ be the set of colors of vertex x and edges incident with x under f, which is called the color set of point x under f. For any $u, v \in V(G)$, if $C(u) \neq C(v)$, then f is called a k-vertex distinguishing general-total coloring of graph G (k-GVDTC). The minimum number of colors required for a VDT coloring of G is denoted by $\chi_{gvt}(G)$. The vertex distinguishing general-total chromatic number of graph G is discussed in this paper by using the methods of distributing the color sets in advance, constructing the colorings and contradiction. The vertex distinguishing general-total chromatic numbers of $K_{2,5,p}$ are determined.

Keywords: complete tripartite graphs; general-total coloring; vertex distinguishing general-total coloring; vertex distinguishing general-total chromatic number.

Copyright © 2020: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source are credited.

AMS Subject Classification (2010): 05C15

INTRODUCTION

The point distinguishing general edge coloring of graphs are raised by Harary F in [1] and then be studied in [1-6] deeply. For a total coloring (proper or not) f of G and a vertex x of G, let $C_x(x)$ be the set of colors of vertex x and edges incident with x under f. For a proper total coloring, if $C(u) \neq C(v)$ for any two distinct vertices u and v, then the coloring is called a vertex distinguishing (proper) total coloring, or a VDT coloring of G for short. The minimum number of colors required for a VDT coloring of G is denoted by $\chi_{vt}(G)$. The vertex distinguishing (proper) total coloring of graph was introduced and studied in [7]. In the following we consider not necessarily proper general total coloring which are vertex distinguishing. A general total coloring f of G is an assignment of some colors to the vertices and edges of G, for any $u, v \in V(G)$, $u \neq v$, we have $C(u) \neq C(v)$, then f is called a vertex distinguishing general total coloring or a GVDTC briefly. Vertex distinguishing general-total coloring was presented in [8]. The minimum number of colors required for a GVDTC of graph G is denoted by $\chi_{gvt}(G)$.

In this paper, we consider vertex distinguishing general coloring of $K_{2,5,p}$, its general vertex distinguishing chromatic of $K_{2,5,p}$ will be determined as well. Let $X = \{x_1,x_2,...,x_n\}, Y = \{y_1,y_2,...,y_n\}, Z = \{z_1,z_2,...,z_p\}, V(K_{m,n,p}) = X \cup Y \cup Z$, and $E(K_{m,n,p}) = \{x_iy_j | i = 1,2,...,m, j = 1,2,...,n\} \cup \{y_iz_t | j = 1,2,...,n, t = 1,2,...,p\} \cup \{x_iz_t | i = 1,2,...,m, t = 1,2,...,p\}$.

For convenience of description, we make the following agreements: When an l-GVDTC of a graph is mentioned or is to be given herein, we always think that the l color used is $1,2,...,l$; An i-subset of $\{1,2,...,l\}$ is a subset of $\{1,2,...,l\}$ containing i elements; If A is a subset of $\{1,2,...,l\}$, then \overline{A} is used to denote the complement set of A.

© 2020 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India
Preliminaries

Lemma 1: If \(k \geq 11 \) and \(p > \frac{k}{m} \left(k \right) \), then \(K_{2,5,p} \) has no \((k-1)\)-GVDTC.

Proof: Suppose \(K_{2,5,p} \) has a \((k-1)\)-GVDTC coloring \(f \).

Claim 1: Any 1-subset of \{1,2,\ldots,k\} cannot be the color sets of vertices in \(X \cup Y \). Otherwise, if \(\{1\} \) is the color sets of the vertices in \(X \) then the subsets of all vertices in \(Z \) contain color "1". The number of the subsets of \{1,2,\ldots,k\} which may become the color sets of vertices in \(Z \) is \(\binom{k-1}{1} + \binom{k-2}{2} + \cdots + \binom{k-2}{7} \). However, \(p > \frac{k}{m} \left(k \right) \). This is a contradiction.

Claim 2: There are at least three 1-subsets of \{1,2,\ldots,k\}, which cannot be the color sets of vertices in \(Z \).

Otherwise, without loss of generality, we may assume that \{3\}, \{4\}, \ldots, \{k\} are all the color sets of vertices in \(Z \). That is to say, \(C(X) \cap C(Y) \supseteq \{3,4,\ldots,k\} \). Thus, the color sets of vertices in \(X \cup Y \) can only be \{3,4,\ldots,k\}, \{1,3,4,\ldots,k\}, \{2,3,4,\ldots,k\} or \{1,2,\ldots,k\}, which cannot distinguish the 7 vertices in \(X \cup Y \). This is a contradiction.

From Claim 2, we can assume that \{1\}, \{2\} or \{3\} cannot be the color sets of vertices in \(Z \). Combining Claim 1, we know \{1\}, \{2\} or \{3\} are not available for any vertex in the graph. Because \(C(X) \) and \(f(i) = 1,2,3,4,5 \), the 7 subsets are different, and at least 3 of them are not \(\emptyset \), \{1\}, \{2\} or \{3\}. We can assume that \(C(Y) \), \(C(Y)_3 \) or \(C(Y)_4 \) are all not \(\emptyset \) in \{1\}, \{2\}, \{3\}.

(i) When \(|C(Y)_j| \geq 3 \), j = 3, 4, 5, we know that \(\{1\}, \{2\}, \{3\}, C(Y)_3 \), \(C(Y)_4 \) and \(C(Y)_5 \) cannot be the color sets of vertices in \(Z \).

Then the available color sets of vertices in \(Z \) are the 1-subset, 2-subset, \ldots, 8-subset of \{1,2,\ldots,k\}, except for \{1\}, \{2\}, \{3\}, \(C(Y)_3 \), \(C(Y)_4 \) and \(C(Y)_5 \). So \(p > \frac{k}{m} \left(k \right) \), a contradiction.

(ii) \(|C(Y)_j| \geq 4 \) for \(j \in \{3,4,5\} \), we know that 1-subset, 2-subset, 3-subset and 4-subset of \(C(Y)_j \) cannot be the color sets of vertices in \(Z \). So \(p > \frac{k}{m} \left(k \right) \), a contradiction.

Lemma 2: If \(k \geq 11 \) and \(p > \frac{k}{m} \left(k \right) \), then \(K_{2,5,p} \) exist a \(k \)-GVDTC.

Proof: If the first, we distribute subsets of \{1,2,\ldots,k\} to the vertices of \(K_{2,5,p} \). Put \(D(x) = D(x) \cup \{2\} \), \(D(y) = D(y) \cup \{1\} \), \(D(y) = D(x) \cup \{3\} \), \(D(Y) = D(x) \cup \{4\} \), \(D(Y) = D(x) \cup \{5\} \), \(D(y) = D(x) \cup \{1\} \), \(D(y) = D(x) \cup \{3\} \), \(D(y) = D(x) \cup \{4\} \), \(D(y) = D(x) \cup \{5\} \). Let \(\mathbb{R} \) be the sequence, which is consist of the subsets of \{1,2,\ldots,k\} with cardinal numbers between 2 and 8, except for \{1\}, \{2\}, \{3\}, \{4\}, \{6\} and \{5,6\}, noticing that \(|\mathbb{R}| = \binom{k-2}{2} + \binom{k-3}{3} + \binom{k-4}{4} + \cdots + \binom{k-8}{8} \), a contradiction.

In the following, we give a \(k \)-GVDTC coloring \(f \) of \(K_{2,5,p} \) using colors 1,2,\ldots,k. Put \(g(x) = g(x) = 1, i = 1,2, g(y) = 1, j = 1,2,\ldots, g(z) = \text{max}(D(z)) \), \(t = 1,2,\ldots, p \) and \(g(x,y) \in X \cup Y \). Let \(g(x,y) = \min[D(x) \cup D(y)] \). When \(u \in X \cup Y \) \(D(z) = 2 \), let \(g(u) = \min[D(u) \cup D(z)] \). When \(|D(z)| = 3 \), we assume that \(D(z) = \{a,b,c\} \) and \(a < b < c \). Color edges \(x_1z_1 \), \(y_1z_1 \) and \(x_2z_2 \) with \(a, b \) and \(c \). When \(u \in \{y_2, y_3, y_4, z_1\} \), \(g(u) = \min[D(u) \cup D(z)] \). When \(|D(z)| = 4 \), we assume that \(D(z) = \{a,b,c,d\} \) and \(a < b < c < d \). Color edges \(x_1z_1 \), \(y_1z_1 \) and \(x_2z_2 \) with \(a, b, c \) and \(d \). When \(u \in \{y_3, y_4, z_2, y_5, z_3\} \), \(g(u) = \min[D(u) \cup D(z)] \). When \(|D(z)| = 5 \), we assume that \(D(z) = \{a,b,c,d,e\} \) and \(a < b < c < d < e \). Color edges \(x_1z_1 \), \(y_1z_1 \), \(x_2z_2 \), \(y_2z_2 \) and \(y_2z_3 \) with \(a, b, c, d \) and \(e \). Then \(u \in \{y_5, z_3\} \), \(g(u) = \min[D(u) \cup D(z)] \). When \(|D(z)| = 6 \), we assume that \(D(z) = \{a_1, a_2, a_3, a_4, a_5, a_6\} \) and \(a_1 < a_2 < a_3 < a_4 < a_5 < a_6 \). Color edges \(x_1z_1 \), \(y_1z_1 \), \(x_2z_2 \), \(y_2z_2 \), \(y_3z_3 \) and \(y_4z_4 \) with \(a_1, a_2, a_3, a_4, a_5 \) and \(a_6 \). Let \(g(z) = \min[D(y)] \).
So and \(y \) \(x \) \(y \) \(x \). From Claim 2 in Lemma 1, when \(y \) \(x \) \(y \), and at least 6 color sets of vertices in \(y \) \(j \) \(i \) \(y \) \(j \) \(i \) \(y \) \(j \), with \(a_1, a_2, a_3, a_4, a_5, a_6 \) and \(a_7 \).

It is not hard to see that \(C(v) = D(v), \forall v \in V(K_{2,5,p}) \). Therefore our coloring \(g \) is a vertex distinguishing general-total coloring.

MAIN RESULTS AND ITS PROOFS

Theorem 1: For any positive integer \(p \geq 5 \), we have:

\[
\chi_{gt}(K_{2,5,p}) = \begin{cases}
5, & \text{when } 5 \leq p \leq 18; \\
6, & \text{when } 19 \leq p \leq 50; \\
7, & \text{when } 51 \leq p \leq 114; \\
8, & \text{when } 115 \leq p \leq 242; \\
9, & \text{when } 243 \leq p \leq 498; \\
10, & \text{when } 499 \leq p \leq 1006; \\
\end{cases}
\]

\[
\begin{aligned}
&k, & \text{when } & \frac{3}{11}(k-1) - 6 \leq p \leq \frac{3}{11}(k) - 6, k \geq 11
\end{aligned}
\]

Proof: From Lemma 1 and Lemma 2, we know that if \(l \geq 11 \) and \(\sum_{i=1}^{t} \left(\frac{k}{i} \right) - 6 < p \leq \sum_{i=1}^{t} \left(\frac{k}{i} \right) - 6, \) then the conclusion is true. Now we consider the other 6 cases.

Case 1: If \(499 \leq p \leq 1006 \), then \(\chi_{gt}(K_{2,5,p}) = 10 \).

Assume that \(K_{2,5,p} \) has a 9-GVDTC. From Claim 1 in Lemma 1, when \(l = 10 \), we know that any 1-subset of \(\{1,2,\ldots,9\} \) cannot be the color sets of vertices in \(X \cup Y \). From Claim 2 in Lemma 1, when \(l = 10 \), we know that at least three 1-subsets of \(\{1,2,\ldots,9\} \) cannot be any color set of vertex in \(Z \). So we can assume that \{1,2\} or {3} cannot be the color sets of vertices in the graph. Because \(C(x_i) \) and \(C(y_j) \), \(i = 1,2,3,4,5 \), the 7 subsets are different, and at least 3 of them are not \(\emptyset \), \{1\}, \{2\} or \{3\}. We can assume that \(C(Y_3) \), \(C(Y_4) \) or \(C(Y_5) \) are all not \(\emptyset \), \{1\}, \{2\}, \{3\}.

(i) When \(|C(Y_j)| \leq 3, j = 3,4,5 \), the available color sets of vertices in \(Z \) are the 1-subset, 2-subset, \ldots, 8-subset of \(\{1,2,\ldots,9\} \), except for \{1\}, \{2\}, \{3\}, \(C(Y_j) \), \(C(Y_4) \) and \(C(Y_5) \), and at least 6 color sets of vertices in \(X \cup Y \). So \(p \leq \sum_{i=1}^{t} \left(\frac{k}{i} \right) - 12 = 498 \), a contradiction.

(ii) \(|C(Y_j)| \leq 4 \) for \(j = 3,4,5 \). We know that 1-subset, 2-subset, 3-subset and 4-subset of \(C(Y_j) \) cannot be the color set of any vertex in \(Z \). So \(p \leq \sum_{i=1}^{t} \left(\frac{k}{i} \right) - 15 = 496 \), a contradiction.

A 10-GVDTC of \(K_{2,5,p} \) can be obtained by 10-GVDTC of \(K_{2,5,1006} \), which is limited by \(\{x_1,x_2,y_1,\ldots,y_{11},z_1,z_2,\ldots,z_5\} \). Then we give a 10-GVDTC of \(K_{2,5,1006} \). Put \(D(x_1) = \{1,2,\ldots,10\} \), \(D(x_2) = D(x_3) \), \(D(x_4) = D(x_5) \), \(D(y_1) = D(y_2) = D(y_3) \), \(D(y_4) = D(y_5) \), \(D(y_6) = D(y_7) \), \(D(y_8) = D(y_9) \), \(D(y_{10}) = D(y_{11}) \), \(D(z_1) = D(z_2) = D(z_3) \), \(D(z_4) = D(z_5) \), \(D(z_6) = D(z_7) \), \(D(z_8) = D(z_9) \), \(D(z_{10}) = D(z_{11}) \). Put 1-subset, 2-subset, \ldots, 8-subset of \(\{1,2,\ldots,10\} \), except for \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,3\}, \{1,5\}, \{1,7\}, \{1,9\}, \{1,10\}, \{2,4\}, \{2,8\}, \{2,10\}, \{3,5\}, \{3,9\}, \{3,10\}, \{4,6\}, \{4,8\}, \{4,10\}, \{5,7\}, \{5,9\}, \{5,10\}, \{6,8\}, \{6,10\}, \{7,9\}, \{7,10\}, \{8,9\}, \{8,10\}, \{9,10\} \), as the color sets of vertices in \(Z \). By the second paragraph of Lemma 2, we could get the specific coloring method of \(K_{2,5,1006} \).

Case 2: If \(243 \leq p \leq 498 \), then \(\chi_{gt}(K_{2,5,p}) = 9 \).

Assume that \(K_{2,5,p} \) has a 8-GVDTC. From Claim 1 in Lemma 1, when \(l = 9 \), we know that any 1-subset of \(\{1,2,\ldots,8\} \) cannot be the color set of vertices in \(X \cup Y \). From Claim 2 in Lemma 1, when \(l = 9 \), we know that at least three 1-subset of \(\{1,2,\ldots,8\} \) cannot be any color set of vertex in \(Z \). So we can assume that \{1\}, \{2\} or \{3\} are not the color sets of vertices in the graph. Because \(C(x_i) \) and \(C(y_j) \), \(i = 1,2,3,4 \),
5, the 7 subsets are different, and at least 3 of them are not $\emptyset, \{1\}, \{2\}$ or $\{3\}$. We can assume that $\overline{C(y_j)}$, $C(y_4)$ or $\overline{C(y_3)}$ are all not $\emptyset, \{1\}, \{2\}, \{3\}$.

(i) When $|\overline{C(y_j)}| \leq 3, j=3,4,5$, the available color set of vertices in Z are the 1-subset, 2-subset, ..., 8-subset of $\{1,2,..,8\}$, except for $\{1\}, \{2\}, \{3\}, \overline{C(Y_3)}, C(Y_4)$ and $\overline{C(Y_3)}$, and all color sets of vertices in $X \cup Y$. So $p \leq \sum_{i=1}^{8} \binom{8}{i} - 13 = 242$, a contradiction.

(ii) $|\overline{C(y_j)}| \leq 4$ for $j \in \{3,4,5\}$, we know that 1-subset, 2-subset, 3-subset and 4-subset of $\overline{C(y_j)}$ cannot be the color set of any vertex in Z. So $p \leq \sum_{i=1}^{8} \binom{8}{i} - 15 = 240$, a contradiction.

A 9-GVDTC of $K_{2,5,\phi}$ can be obtained by 9-GVDTC of $K_{2,5,498}$, which is limited by $\{x_1, y_2, x_3, \ldots, y_5, z_1, z_2, \ldots, z_\phi\}$. Then we give a 9-GVDTC of $K_{2,5,498}$. Put $D(x_1) = \{1,2, \ldots, 9\}$, $D(x_2) = D(x_1) \setminus \{2\}$, $D(x_3) = D(x_1) \setminus \{1\}$, $D(y_2) = D(x_1) \setminus \{3\}$, $D(y_3) = D(x_1) \setminus \{4\}, D(y_4) = D(x_1) \setminus \{5\}, D(y_5) = D(x_1) \setminus \{1,3\}$. Put 1-subset, 2-subset, ..., 8-subset of $\{1,2,..,9\}$, except for $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,3\}$, we know that the color sets of vertices in Z. By the second paragraph of Lemma 2, we can get the specific coloring method of $K_{2,5,498}$.

Case 3: If 1155p≤242, then $\chi_C(K_{2,5,\phi})=8$.

Assume that $K_{2,5,\phi}$ has a 7-GVDTC \mathcal{C}. From Claim 1 and Claim 2 in Lemma 1, when $l=8$, we can assume that $\{1\}, \{2\}$ or $\{3\}$ are not the color sets of vertices in the graph. Because $\overline{C(x_i)}$ and $\overline{C(Y_j)}, i=1,2, j=1,2,3,4,5$, the 7 subsets are different, and at least 3 of them are not $\emptyset, \{1\}, \{2\}$ or $\{3\}$. We can assume that $\overline{C(Y_3)}, C(Y_4)$ or $\overline{C(Y_3)}$ are all not $\emptyset, \{1\}, \{2\}, \{3\}$.

(i) When $|\overline{C(y_j)}| \leq 3, j=3,4,5$, the available color set of vertices in Z are the 1-subset, 2-subset, ..., 7-subset of $\{1,2,..,7\}$, except for $\{1\}, \{2\}, \{3\}, \overline{C(Y_3)}, C(Y_4)$ and $\overline{C(Y_3)}$, and all color sets of vertices in $X \cup Y$. So $p \leq \sum_{i=1}^{7} \binom{7}{i} - 13 = 114$, a contradiction.

(ii) $|\overline{C(y_j)}| \leq 4$ for $j \in \{3,4,5\}$, we know that 1-subset, 2-subset, 3-subset and 4-subset of $\overline{C(y_j)}$ cannot be the color set of any vertex in Z. So $p \leq \sum_{i=1}^{7} \binom{7}{i} - 15 = 112$, a contradiction.

A 8-GVDTC of $K_{2,5,\phi}$ can be obtained by 8-GVDTC of $K_{2,5,242}$, which is limited by $\{x_1, x_2, y_1, y_2, \ldots, y_5, z_1, z_2, \ldots, z_\phi\}$. Then we give a 8-GVDTC of $K_{2,5,242}$. Put $D(x_1) = \{1,2,..,8\}$, $D(x_2) = D(x_1) \setminus \{2\}$, $D(y_2) = D(x_1) \setminus \{1\}$, $D(y_3) = D(x_1) \setminus \{4\}, D(y_4) = D(x_1) \setminus \{5\}, D(y_5) = D(x_1) \setminus \{1,3\}$. Put 1-subset, 2-subset, ..., 8-subset of $\{1,2,..,8\}$, except for $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,3\}$, as the color sets of vertices in Z. By the second paragraph of Lemma 2, we can get the specific coloring method of $K_{2,5,242}$.

Case 4: If 51\leq\phi\leq114, then $\chi_C(K_{2,5,\phi})=7$.

Assume that $K_{2,5,\phi}$ has a 6-GVDTC \mathcal{C}. From Claim 1 and Claim 2 in Lemma 1, when $l=7$, we can assume that $\{1\}, \{2\}$ or $\{3\}$ are not the color sets of vertices in the graph. Because $\overline{C(x_i)}$ and $\overline{C(Y_j)}, i=1,2, j=1,2,3,4,5$, the 7 subsets are different, and at least 3 of them are not $\emptyset, \{1\}, \{2\}$ or $\{3\}$. We can assume that $\overline{C(Y_3)}, C(Y_4)$ or $\overline{C(Y_3)}$ are all not $\emptyset, \{1\}, \{2\}, \{3\}$.

(i) When $|\overline{C(y_j)}| \leq 3, j=3,4,5$, the available color sets of vertices in Z are the 1-subset, 2-subset, ..., 6-subset of $\{1,2,..,6\}$, except for $\{1\}, \{2\}, \{3\}, \overline{C(Y_3)}, C(Y_4)$ and $\overline{C(Y_3)}$, and all color sets of vertices in $X \cup Y$. So $p \leq \sum_{i=1}^{6} \binom{6}{i} - 13 = 60$, a contradiction.
(ii) $|C(Y_j)| \leq 4$ for $j \in \{3,4,5\}$. We know that 1-subset, 2-subset, 3-subset and 4-subset of $C(Y_j)$ cannot be the color set of any vertex in Z. So $p \leq \frac{\sum_{j=1}^{5} \binom{5}{j}}{m(i)} - 15 = 48$, a contradiction.

A 7-GVDTC of $K_{2,5,\rho}$ can be obtained by 7-GVDTC of $K_{2,5,114}$, which is limited by $\{x_1, x_2, y_1, y_2, \ldots, y_5, z_1, z_2, \ldots, z_\rho\}$. Then we give a 7-GVDTC of $K_{2,5,114}$. Put $D(x_1) = \{1, \ldots, 7\}$, $D(x_2) = D(x_1) \setminus \{2\}$, $D(y_1) = D(x_1) \setminus \{1\}$, $D(y_2) = D(x_1) \setminus \{3\}$, $D(y_3) = D(x_1) \setminus \{4\}$, $D(y_4) = D(x_1) \setminus \{5\}$, $D(y_5) = D(x_1) \setminus \{1, 3\}$. Put 1-subset, 2-subset, ..., 7-subset of $\{1, 2, \ldots, 7\}$ except for $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1, 3\}$, as the color sets of vertices in Z. By the second paragraph of Lemma 2, we could get the specific coloring method of $K_{2,5,114}$.

Case 5: If $19 \leq \rho \leq 50$, then $\chi_{pet}(K_{2,5,\rho}) = 6$.

Assume that $K_{2,5,\rho}$ has a 5-GVDTC g. From Claim 1 and Claim 2 in Lemma 1, when $i = 6$, we can assume that $\{1\}, \{2\} \text{ or } \{3\}$ are not the color sets of vertices in the graph. Because $C(x_i)$ and $C(y_j)$, $i = 1, 2, 3, 4, 5$, the 7 subsets are different, and at least 3 of them are not \emptyset, $\{1\}, \{2\}$ or $\{3\}$. We can assume that $C(y_3), C(y_4), C(y_5)$ are all not \emptyset, $\{1\}, \{2\}, \{3\}$.

(i) When $|C(y_j)| \leq 3$, $j = 3, 4, 5$, the available color sets of vertices in Z are the 1-subset, 2-subset, 3-subset of $\{1, 2, \ldots, 5\}$, except for $\{1\}, \{2\}, \{3\}$, $C(y_j)$ and $C(y_3)$, and $C(y_4)$ and $C(y_5)$, and all color sets of vertices in $X \cup Y$. So $p \leq \frac{\sum_{j=3}^{5} \binom{5}{j}}{m(i)} - 13 = 18$, a contradiction.

(ii) $|C(y_j)| \leq 4$ for $j \in \{3,4,5\}$, we know that 1-subset, 2-subset, 3-subset and 4-subset of $C(y_j)$ cannot be the color set of any vertex in Z. So $p \leq \frac{\sum_{j=3}^{5} \binom{5}{j}}{m(i)} - 15 = 16$, a contradiction.

A 6-GVDTC of $K_{2,5,\rho}$ can be obtained by 6-GVDTC of $K_{2,5,50}$, which is limited by $\{x_1, x_2, y_1, y_2, \ldots, y_3, z_1, z_2, \ldots, z_\rho\}$. Then we give a 6-GVDTC of $K_{2,5,50}$. Put $D(x_1) = \{1, \ldots, 6\}$, $D(x_2) = D(x_1) \setminus \{2\}$, $D(y_1) = D(x_1) \setminus \{1\}$, $D(y_2) = D(x_1) \setminus \{3\}$, $D(y_3) = D(x_1) \setminus \{4\}$, $D(y_4) = D(x_1) \setminus \{5\}$, $D(y_5) = D(x_1) \setminus \{1, 3\}$. Put 1-subset, 2-subset, ..., 6-subset of $\{1, 2, \ldots, 6\}$, except for $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1, 3\}$, as the color sets of vertices in Z. By the second paragraph of Lemma 2, we could get the specific coloring method of $K_{2,5,50}$.

Case 6: If $5 \leq \rho \leq 18$, then $\chi_{pet}(K_{2,5,\rho}) = 5$.

Assume that $K_{2,5,\rho}$ has a 5-GVDTC g.

Claim 3: Any 1-subset of $\{1, 2, 3, 4\}$ cannot be the color sets of vertices in X.

Otherwise, we can assume that $g(x_1) = \{1\}$, then any vertex in $Y \cup Z$ contains color “1”. There are only 8 subsets which contain color “1", so they cannot distinguishing at least 11 vertices in $Y \cup Z \cup \{x_1\}$, a contradiction.

Claim 4: There are at least three 1-subsets of $\{1, 2, 3, 4\}$, which cannot be the color sets of vertices in Z.

Otherwise, we can assume that only $\{1\}$ or $\{2\}$ are not the color sets of vertices in Z. $C(x_1) \cup C(y_1) \supseteq \{3, 4\}$, so the color sets which can be assigned are $\{3, 4, 1, 3, 4, 2, 3, 4\}$ and $\{1, 2, 3, 4\}$. That 4 sets can not distinguish the 7 vertices in $X \cup Y$. This is a contradiction.

Claim 5: When $p \geq 6$, any 1-subset of $\{1, 2, 3, 4\}$ cannot be the color sets of vertices in Y.

Otherwise, we could assume $g(y_1) = 1$, then any vertex in $X \cup Z$ must contain color “1". There are only 8 subsets which contain color “1", so they cannot distinguishing at least 9 vertices in $X \cup Z \cup \{y_1\}$, a contradiction.

The following are discussed in two cases:

(i) When $p \geq 6$,

From Claim 2, we can assume \(\{1\}, \{2\}, \{3\} \) cannot be the color sets of vertices in \(Z \). Because \(\overline{C(x)} \) and \(\overline{C(y)} \), \(i=1, j=1, 2, 3, 4, 5 \), the 7 subsets are different, and at least 3 of them are not \(\emptyset, \{1\}, \{2\} \) or \(\{3\} \). We can assume that \(\overline{C(y)} \), \(\overline{C(y)} \) or \(\overline{C(y)} \) are all not \(\emptyset, \{1\}, \{2\}, \{3\} \). Then the available color sets of vertices in \(Z \) are the 1-subset, 2-subset, 3-subset, 4-subset of \(\{1, 2, 3, 4\} \), except for \(\{1\}, \{2\}, \{3\}, \overline{C(y)} \), \(\overline{C(y)} \), \(\overline{C(y)} \) and all color sets of vertices in \(X \cup \overline{Y} \). So \(p \leq \sum_{i=1}^{4} \frac{\delta(X)}{\delta(Y)} - 13 = 2 \), a contradiction.

(ii) When \(p = 5 \),

\(\{1, 2, 3, 4\} \) has 15 subsets, they could be the color sets of vertices in \(K_{2,5,5} \). There are 14 subsets except for \(\{1, 2, 3, 4\} \), which are complementary to each other. So there are 7 pairs of sets which are complementary to each other. The color sets in \(X \) and \(Y \) and \(Z \) and \(X \) must not complement each other. We consider if there are two vertices complementing to each other in \(X \); then any 1-subset cannot be the color sets of vertices in \(Z \). \(p + 7 \leq \sum_{i=1}^{4} \frac{\delta(X)}{\delta(Y)} - 4 \), \(p \leq 4 \), a contradiction. Similarly, the color sets of any two vertices in \(Y \) or \(Z \) cannot complement each other. So there are only 7 subsets which could be the color sets of vertices in \(K_{2,5,5} \), a contradiction.

A 5-GVDTC of \(K_{2,5,5} \) can be obtained by 5-GVDTC of \(K_{2,5,5} \), which is limited by \(\{x_1, x_2, y_1, y_2, \ldots, y_5, z_1, z_2, \ldots, z_p\} \). Then we give a 5-GVDTC of \(K_{2,5,5} \). Put \(D(x_1) = \{1, 2, \ldots, 5\} \), \(D(x_2) = D(x_1) \backslash \{2\} \), \(D(y_1) = D(x_1) \backslash \{1\} \), \(D(y_2) = D(x_1) \backslash \{3\} \), \(D(y_3) = D(x_1) \backslash \{4\} \), \(D(y_4) = D(x_1) \backslash \{5\} \), \(D(y_5) = D(x_1) \backslash \{1, 3\} \). Put 1-subset, 2-subset, ..., 5-subset of \(\{1, 2, \ldots, 5\} \), except for \(\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1, 3\} \), as the color sets of vertices in \(Z \). By the second paragraph of Lemma 2, we could get the specific coloring method of \(K_{2,5,5} \).

REFERENCES
5. ZAGAGLIA SALVI N. On the value of the point-distinguishing chromatic index of \(K_{n,n} \). Ars Combinatoria, 1990, 29B: 235-244.