Scholars Journal of Physics, Mathematics and Statistics

Abbreviated Key Title: Sch J Phys Math Stat ISSN 2393-8056 (Print) | ISSN 2393-8064 (Online) Journal homepage: <u>https://saspublishers.com</u>

The Double XLindley Distribution: Properties and Applications

Harrison O. Etaga¹, Mmesoma P. Nwankwo², Dorathy O. Oramulu³, Ifeanyi C. Anabike⁴, Okechukwu J. Obulezi^{5*}

1.2.3.4.5Department of Statistics, Faculty of Physical Sciences, Nnamdi Azikiwe University, Awka, Nigeria

DOI: <u>10.36347/sjpms.2023.v10i10.001</u>

| **Received:** 22.10.2023 | **Accepted:** 28.11.2023 | **Published:** 06.12.2023

*Corresponding author: Okechukwu J. Obulezi

Department of Statistics, Faculty of Physical Sciences, Nnamdi Azikiwe University, Awka, Nigeria

Abstract

Review Article

In this article, we have modified the XLindley distribution and called it the Double XLindley distribution. We studied the basic distributional properties and presented some theoretical results for the properties. The unknown parameter of the suggested distribution was estimated using the maximum likelihood estimation and two real data sets were deployed to illustrate its usefulness. Overall, the new distributions perform better than its competitors.

Keywords: Double XLindley distribution, Exponential distribution, Gamma distribution, XLindley distribution, Lindley Distribution.

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

1. INTRODUCTION

The quest to develop new probability distributions has increased in the past decades. This is attributed to researchers finding a good distribution that adequately fits some data, particularly on failure rate. This increasing interest can be seen in the literature since more and more distributions are developed daily. In 1958, [16] combined an exponential distribution with parameter θ and gamma distributions (2, θ). Ghitany *et* al., (2008) [13] studied the properties of the Lindley distribution and showed that it is more flexible than the exponential distribution. The Lindley distribution has undergone many transformations since it was developed. There are several literatures on modification and extension of the Lindley and related distribution amongst which are [3] who work on the extension of the Lindley distribution with increasing interest, [1] in 2015 developed the Inverse Lindley distribution as well as [32] developed the Gamma Lindley distribution [2, 5, 8-12, 14, 17-20, 22-24]. Some extensions of Lindley

distribution can be found in the following articles [4, 21, 33]. This article is motivated by the need to obtain more flexible model for lifetime data. Further modification of Lindley distribution by [7] was obtained by a mixture of exponential distribution with parameter θ given as $\theta e^{-\theta x}$ and Lindley distribution with parameter θ given as $\frac{\theta^2}{(1+\theta)}(1+\theta)e^{-\theta x}$ having a mixing proportion p1 = $p_1 = \frac{\theta}{(1+\theta)}$ and $p_2 = \frac{1}{(1+\theta)}$. This mixture generated a new distribution called the XLindley with a pdf and cdf given $\frac{\theta^2(2+\theta+x)}{(1+\theta)^2}e^{-\theta x}$ and $1 - (1 + \frac{\theta}{(1+\theta)^2})e^{-\theta x}$ respectively. as Having stated the aim of this article, The remaining part of this article will be divided into sections. In section 2, The Mathematical properties of the Double XLindley (DXL) distribution were studied. In section 3, we applied two lifetime data sets and demonstrated that the proposed distribution is useful among the Lindley class of

distributions. The article is concluded in section 5.

Let $X \sim \text{DXL}(\theta)$, then the pdf and cdf are respectively

$$f(x) = \frac{\theta^2}{(\theta+1)^3} \left[3+3\theta+\theta^2+x \right] e^{-\theta x}; \quad x > 0, \quad \theta > 0$$
⁽¹⁾

Citation: Harrison O. Etaga, Mmesoma P. Nwankwo, Dorathy O. Oramulu, Ifeanyi C. Anabike, Okechukwu J. Obulezi. The Double XLindley Distribution: Properties and Applications. Sch J Phys Math Stat, 2023 Dec 10(10): 192-202. and

$$F(x) = 1 - \left\{1 + \frac{x\theta}{(\theta+1)^3}\right\}e^{-\theta x}$$
⁽²⁾

The Double XL indley was generated from the mixture of Exponential with a parameter θ and the XL indley with a parameter θ having a mixing proportion $p_1 = \frac{\theta}{(1+\theta)}$ and $p_2 = \frac{1}{(1+\theta)}$.

The survival and hazard rate functions are respectively

$$S(x) = \left\{ 1 + \frac{x\theta}{(\theta+1)^3} \right\} e^{-\theta x}$$
(3)

and

$$hrf(x) = \frac{\theta^2 \left(1 + (3+x)\theta + 3\theta^2 + \theta^3\right)(3+x+\theta(3+\theta))}{(1+\theta)^6}$$
(4)

The limiting values of the DXL hazard function are

$$\lim_{x \to 0} hrf(x) = \frac{\theta^2 \left(1 + 3\theta + 3\theta^2 + \theta^3\right)(3 + \theta(3 + \theta))}{(1 + \theta)^6} \quad \text{and} \quad \lim_{x \to \infty} hrf(x) = \infty$$

The plots are displayed in the figures 1, 2, 3, and 4 below

2. Distributional Properties of DXL distribution

10

0

In this section, we derive the basic distributional properties of the proposed model.

50

Definition 2.1 (Moment). Let $X \sim DXL(\theta)$, r^{th} crude moment is given as

30

40

$$\mu'_{r} = \frac{\theta^{-r} \left(r + (1+\theta)^{3} \right) \Gamma[1+r]}{(1+\theta)^{3}}$$
(5)

© 2023 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India

The mean, second, third, and fourth crude moments are respectively

$$\mu = \frac{(2+\theta)(1+\theta+\theta^2)}{\theta(1+\theta)^3}; \quad \mu'_2 = \frac{6+2\theta(3+\theta(3+\theta))}{\theta^2(1+\theta)^3}; \quad \mu'_3 = \frac{6(4+\theta(3+\theta(3+\theta(3+\theta))))}{\theta^3(1+\theta)^3}; \quad \text{and} \quad \mu'_4 = \frac{24(5+\theta(3+\theta(3+\theta(3+\theta))))}{\theta^4(1+\theta)^3} \tag{6}$$

Definition 2.2 (The variance of DXL). To understand the dispersion in the observations, the variance is often used though the standard deviation is often preferred due to the measurement unit. Generally, the variance of a random variable X is defined thus $\sigma^2 = EX^2 - (EX)^2$

$$\sigma^2 = \frac{2 + 12\theta + 21\theta^2 + 22\theta^3 + 15\theta^4 + 6\theta^5 + \theta^6}{\theta^2 (1+\theta)^6} \tag{7}$$

The variance of DXL is well-defined for $\theta > 1$

Definition 2.3. The measures of the Skewness (SK), Kurtosis (Ku) and coefficient of variation (CV) are respectively

$$SK = \frac{6(1+\theta)^{6}(4+\theta(3+\theta(3+\theta)))}{\left(2+12\theta+21\theta^{2}+22\theta^{3}+15\theta^{4}+6\theta^{5}+\theta^{6}\right)^{\frac{3}{2}}}; \quad Ku = \frac{24(1+\theta)^{9}(5+\theta(3+\theta(3+\theta)))}{\left(2+12\theta+21\theta^{2}+22\theta^{3}+15\theta^{4}+6\theta^{5}+\theta^{6}\right)^{2}};$$
and
$$CV = \frac{\sqrt{2+12\theta+21\theta^{2}+22\theta^{3}+15\theta^{4}+6\theta^{5}+\theta^{6}}}{(2+\theta)^{3}(1+\theta+\theta^{2})}$$
(8)

Definition 2.4. Let $X \sim \text{DXL}(\theta)$, then the moment generating function can be expressed as;

$$E(e^{tx}) = \int_0^\infty e^{tx} f(x) dx = \int_0^\infty e^{tx} \left\{ \frac{\theta^2}{(\theta+1)^3} \left[3 + 3\theta + \theta^2 + x \right] e^{-\theta x} \right\} dx = \frac{\theta^2 \left((1+\theta)^3 - x(3+\theta(3+\theta)) \right)}{(x-\theta)^2 (1+\theta)^3}$$
(9)

Definition 2.5. Let $X \sim \text{DXL}(\theta)$, then the characteristic function can be expressed as

$$E(e^{itx}) = \int_0^\infty e^{itx} \left\{ \frac{\theta^2}{(\theta+1)^3} \left[3 + 3\theta + \theta^2 + x \right] e^{-\theta x} \right\} dx = \frac{\theta^2 \left((1+\theta)^3 - ix(3+\theta(3+\theta)) \right)}{(ix-\theta)^2 (1+\theta)^3}$$
(10)

Definition 2.6. The Odds function is a measure of reliability that provides relative information about a characteristic of an event. Let $X \sim DXL(\theta)$, the Odd function can be expressed as

$$O_{DXL} = \frac{1 + (3+x)\theta + 3\theta^2 + \theta^3 - e^{x\theta} (1+\theta)^3}{1 + (3+x)\theta + 3\theta^2 + \theta^3}$$
(11)

Which is a function of both θ and x.

Definition 2.7 (Stress-Strength Reliability Analysis). Stress strength is a tool used in reliability engineering for measuring the interference of the component's strength and the stresses placed on the component. Let X be the stress pressured on a system and let Y be the strength, then the stress-strength of the component can be expressed as

$$R = P(Y < X) = \frac{\theta_2 (1 + \theta_2)^3 \left(\theta_1 (2 + \theta_1) \left(1 + \theta_1 + \theta_1^2\right) + (1 + \theta_1)^3 \theta_2\right) - \theta_2 \theta_1^2 \left((1 + \theta_1)^3 + (3 + \theta_1 (3 + \theta_1)) \theta_2\right)}{(1 + \theta_1)^3 (1 + \theta_2)^3 (\theta_1 + \theta_2)^2}$$
(12)

2.1 Stochastic ordering of DXL distribution

A random variable X is said to be smaller than another random variable Y in the stochastic order $(X \leq_{st} Y)$ if $F_Y(x) \geq F_Y(x) \forall_x$ Hazard order $(X \leq_{hr} Y)$ if $h_X(x) \geq h_y(x) \forall_x$. Mean residual life order $(X \leq_{mrl} Y)$ if $m_X(x) \geq m_Y(x) \forall_x$ Likelihood ratio order $(X \leq_{lr} Y)$ if $\frac{f_X(x)}{f_Y(y)}$ decreases in x.

This implies that $X \leq_{lr} Y \Rightarrow X \leq_{hr} Y \Rightarrow X \leq_{st} Y \Rightarrow X \leq_{mrl} Y$

Theorem 1. Let $X \sim \text{DXL}(\theta_1)$ and $Y \sim \text{DXL}(\theta_2)$. if $\theta_1 \ge \theta_2$ then $X \le_{lr} Y$ hence $X \le_{lr} Y$ hence $X \le_{hr} Y$, $X \le_{mrl} Y$ and $X \le_{st} Y$.

$$\frac{f_x(x)}{f_y(x)} = \frac{\frac{\theta_1^2}{(\theta_1+1)^3} \left[3+3\theta_1+\theta_1^2+x\right] e^{-\theta_1 x}}{\frac{\theta_2^2}{(\theta_2+1)^3} \left[3+3\theta_2+\theta_2^2+x\right] e^{-\theta_2 x}} = \frac{\theta_1^2 (3+x+\theta_1 (3+\theta_1))(1+\theta_2)^3}{\theta_2^2 (3+x+\theta_2 (3+\theta_2))(1+\theta_1)^3} e^{(\theta_2-\theta_1)x}$$
(13)

θ	n	Mean	Variance	Skewness	Kurtosis	Coef_of_Variatio
0.1	20	0.024289	2.43E-05	-0.01951	2.19054	0.202776
0.25	20	0.116072	0.000103	-2.7513	9.819726	0.087419
0.75	20	0.713218	0.142651	0.663403	2.509077	0.52956
1.5	20	2.957938	15.98445	1.640762	4.430654	1.351636
2	20	17.72641	2037.038	2.776434	9.246187	2.54612
0.1	50	0.025932	1.96E-05	-0.64482	3.411136	0.170847
0.25	50	0.116278	0.000102	-3.71119	19.8305	0.087036
0.75	50	0.722453	0.173432	1.073874	3.844995	0.576442
1.5	50	2.00631	7.236173	3.251948	15.32836	1.340777
2	50	12.27604	418.9275	2.605879	9.324192	1.66729
0.1	100	0.023418	3.23E-05	-0.58484	2.881073	0.242516
0.25	100	0.116498	0.000119	-4.17456	23.97722	0.093605
0.75	100	0.618744	0.094013	0.812617	3.342225	0.495544
1.5	100	3.031273	22.9144	3.296725	16.5969	1.579171
2	100	11.51081	1184.675	5.015983	29.71649	2.990155
0.1	200	0.023977	3.01E-05	-0.5615	3.163804	0.228855
0.25	200	0.117837	3.76E-05	-2.847	13.98406	0.052018
0.75	200	0.703413	0.174947	1.667402	8.630457	0.594624
1.5	200	3.374808	40.42739	4.901618	33.73182	1.884034
2	200	7.305934	806.6444	11.6071	149.3261	3.887454
0.1	500	0.024018	3.22E-05	-1.06009	4.947523	0.236307
0.25	500	0.117738	6.33E-05	-4.23826	25.85988	0.067588
0.75	500	0.70216	0.200075	1.556225	5.836694	0.63703
1.5	500	3.575282	49.71561	5.602991	47.92676	1.972132
2	500	10.53034	1307.157	12.73594	215.8108	3.433378

Harrison O. Etaga et al., Sch J Phys Math Stat, Dec, 2023; 10(10): 192-202

Taking a natural log of the ratio will yield

$$ln\frac{f_x(x)}{f_y(x)} = ln\frac{\theta_1^2(1+\theta_2)^3}{\theta_2^2(1+\theta_1)^3} + ln\frac{(3+x+\theta_1(3+\theta_1))}{(3+x+\theta_2(3+\theta_2))} + (\theta_2-\theta_1)x$$
(14)

Differentiating the natural log of the ratio w.r.t x will result

$$=\theta_2 - \theta_1 - \frac{3\theta_1 - \theta_1^2 + \theta_2(3 + \theta_2)}{\left(3 + x + 3\theta_1 + \theta_1^2\right)\left(3 + x + 3\theta_2 + \theta_2^2\right)}$$
(15)

If $\theta_2 \ge \theta_1$, $\frac{d}{dx} ln \frac{f_x(x)}{f_y(x)} \le 0$, and $\frac{f_x(x,\theta_1)}{f_y(x,\theta_2)}$ is decreasing in x.

2.2 Mean Residual Function for DXL

Given that a component has survived until time t, the expected additional lifetime is called the mean residual lifetime.

$$MRL = \frac{1}{1 - F(x)} \int_{x}^{\infty} 1 - F(t)dt = \frac{(\theta + 1)^{3}}{\left((\theta + 1)^{3} + x\theta\right)e^{-\theta x}} \int_{x}^{\infty} \frac{\left((\theta + 1)^{3} + t\theta\right)e^{-\theta t}}{(\theta + 1)^{3}} dt = \frac{1}{\left((\theta + 1)^{3} + x\theta\right)} \left\{ \frac{(\theta + 1)^{3}e^{-\theta x}}{\theta} + \frac{\gamma(2, x)}{\theta} \right\}$$
(16)

2.3 Distribution of the Order Statistics

,

Suppose $X_1, X_2,...,X_n$ is a random sample of X_r ; r=(1,2....,n) are the rth order statistics obtained by arranging X_r in ascending order of magnitude $\exists X_1 \leq X_2$

 $\leq \dots X_r$ where X_1 is the smallest of all variable and X_r is the largest of all variable, then the pdf of the rth order statistics is given by

$$f_{r:n}(x) = \frac{n!}{(r-1)!(n-r)!} f(x)(F(x))^{r-1} (1-F(x))^{n-r}$$
 the pdf of r^{th} order statistics of DXL is given as:

© 2023 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India

Harrison O. Etaga et al., Sch J Phys Math Stat, Dec, 2023; 10(10): 192-202

$$f_{r:n}(X) = \frac{n!}{(r-1)!(n-r)!} \frac{\theta^2}{(\theta+1)^3} \left[3+3\theta+\theta^2+x \right] e^{-\theta x} \left(1 - \left\{ 1 + \frac{x\theta}{(\theta+1)^3} \right\} e^{-\theta x} \right)^{r-1} \left(\left\{ 1 + \frac{x\theta}{(\theta+1)^3} \right\} e^{-\theta x} \right)^{n-r}$$
(17)

The pdf of minimum order statistics is obtained by setting r = 1

$$f_{1:n}(x) = \frac{n\theta^2}{(\theta+1)^3} \left[3+3\theta+\theta^2+x \right] e^{-\theta x} \left(\left\{ 1+\frac{x\theta}{(\theta+1)^3} \right\} e^{-\theta x} \right)^{n-1}$$
(18)

pdf of maximum order is obtained by setting r = n

$$f_{n:n}(x) = \frac{n\theta^2}{(\theta+1)^3} \left[3 + 3\theta + \theta^2 + x \right] e^{-\theta x} \left(1 - \left\{ 1 + \frac{x\theta}{(\theta+1)^3} \right\} e^{-\theta x} \right)^{n-1}$$
(19)

Definition 2.8. Bonferroni and Lorenzi Curve

$$B_{p} = \frac{1}{p\mu} \int_{0}^{q} xf(x)dx = \frac{\theta}{p(2+\theta)(1+\theta+\theta^{2})} \left[\frac{3\gamma_{2,q}}{\theta^{2}} + \frac{3\theta\gamma_{2,q}}{\theta^{2}} + \frac{\theta^{2}\gamma_{2,q}}{\theta^{2}} + \frac{\gamma_{3,q}}{\theta^{3}} \right]$$

$$L_{p} = \frac{1}{\mu} \int_{0}^{q} xf(x)dx = \frac{\theta}{(2+\theta)(1+\theta+\theta^{2})} \left[\frac{3\gamma_{2,q}}{\theta^{2}} + \frac{3\theta\gamma_{2,q}}{\theta^{2}} + \frac{\theta^{2}\gamma_{2,q}}{\theta^{2}} + \frac{\gamma_{3,q}}{\theta^{3}} \right]$$
(20)

Definition 2.9. Rényi entropy was originally introduced in the field of information theory as a parametric relaxation of Shannon (in physics, Boltzmann–Gibbs) entropy. [**fuentes2022renyi**]. The Renyi Rntropy of DXL can be expressed as

$$R_{\omega}(x) = \frac{1}{1-\omega} \log \int_{0}^{\infty} f(x)^{\omega} dx = \frac{1}{1-\omega} \log \int_{0}^{\infty} \left(\frac{\theta^2}{(\theta+1)^3} \left[3+3\theta+\theta^2+x \right] e^{-\theta x} \right)^{\omega} dx = \frac{1}{1-\omega} \log \frac{\theta^{2\omega}}{(\theta+1)^{3\omega}} \int_{0}^{\infty} \left[3+3\theta+\theta^2+x \right]^{\omega} e^{-\theta \omega x} dx$$

$$\tag{21}$$

let;

$$\theta^5 + 3\theta^3 + 3\theta = a, x = b, \omega = n.$$
 Then $(a + b)^n = \sum_{j=0}^{\omega} a^j b^{\omega - j}$

-

$$R_{\omega}(x) = \frac{1}{1-\omega} \log \frac{\theta^{2\omega}}{(\theta+1)^{3\omega}} \int_{0}^{\infty} \sum_{j=0}^{\omega} {\omega \choose j} (3+3\theta+\theta^{2})^{j} x^{\omega-j} e^{-\theta\omega x} dx = \frac{1}{1-\omega} \log \frac{\theta^{2\omega}}{(\theta+1)^{3\omega}} \sum_{j=0}^{\omega} {\omega \choose j} (3+3\theta+\theta^{2})^{j} \int_{0}^{\infty} x^{\omega-j} e^{-\theta\omega x} dx = \frac{1}{1-\omega} \log \frac{\theta^{2\omega}}{(\theta+1)^{3\omega}} \sum_{j=0}^{\omega} {\omega \choose j} (3+3\theta+\theta^{2})^{j} \frac{\Gamma_{\omega-j+1}}{(\theta\omega)^{\omega-j+1}} \therefore R_{\omega}(x) = \frac{1}{1-\omega} \log \frac{\theta^{\omega+j-1}}{(\theta+1)^{3\omega}} \sum_{j=0}^{\omega} {\omega \choose j} (3+3\theta+\theta^{2})^{j} \frac{(\omega-j)!}{(\omega)^{\omega-j+1}}$$

$$(22)$$

3 Maximum Likelihood Function

Let $(X_1, X_2, ..., X_n)$ be random samples of size *n* which follow the DXL distribution, then the likelihood function is given as

$$\ell(f_{(x;\theta)}) = \prod_{i=1}^{n} \frac{\theta^2}{(\theta+1)^3} \left[3 + 3\theta + \theta^2 + x \right] e^{-\theta x}$$

$$= \frac{\theta^{2n}}{(\theta+1)^{3n}} \prod_{i=1}^{n} \left[3 + 3\theta + \theta^2 + x \right] e^{-\theta \sum_{i=1}^{n} x_i}$$
(23)

Taking the log of the function

$$\psi = 2nln\theta - 3nln(\theta + 1) - \theta \sum_{i=1}^{n} x_i + \log \sum_{i=1}^{n} \left[3 + 3\theta + \theta^2 + x \right]$$

Differentiate ψ w.r.t θ i.e $\frac{d\psi}{d\theta}$ and equate to zero yields the result below

$$\frac{2n}{\theta} - \frac{3n}{(\theta+1)} - \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} \frac{2\theta+3}{3+3\theta+\theta^2+x} = 0$$
(24)

Eq 24 is not a compact function, therefore its convergence will be guaranteed by numerical iteration implemented in R using **optim**() function.

4. Applications

In this section, some real data analysis will be carried out to check the performance of the proposed

distribution among the following competing distributions namely, XRama, Lindley, Ishita, Akash,

© 2023 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India

Prenav, Chris-Jerry, Shanker, Rama, XLindley, Rani, and XShanker.

Distribution	f(x)	F(x)
Proposed	$\theta^2 \left[3+3\theta+\theta^2+x\right]e^{-\theta x}$	$1 = \int 1 + \frac{x\theta}{2} \int e^{-\theta x}$
DXL	$(\theta+1)^3$ [0 + 00 + 0 + λ] e	$\left\{ 1 + (\theta+1)^3 \right\}^{\alpha}$
XRani [11]	$\frac{\theta^5}{\left(\theta^5+24\right)^2} \left[\theta^6+48\theta+24x^4\right] e^{-\theta x}$	$1 - \left\{ 1 + \frac{24\theta^4 x^4 + 96\theta^3 x^3 + 288\theta^2 x^2 + 576\theta x}{(\theta^5 + 24)^2} \right\} e^{-\theta x}$
Rani [28]	$rac{ heta^5}{ heta^5+24}\left(heta+x^4 ight)e^{- heta x}$	$1 - \left[1 + \frac{\theta x (\theta^3 x^3 + 4\theta^2 x^2 + 12\theta x + 24)}{\theta^5 + 24}\right] e^{-\theta x}$
Shanker [26]	$\frac{\theta^5}{\theta^2+1}(\theta+x)e^{-\theta x}$	$1 - \left[1 + \frac{\theta x}{\theta^2 + 1}\right] e^{-\theta x}$
XShanker [9]	$\frac{\theta^2}{\left(\theta^2+1\right)^2} \left(\theta^3+2\theta x+x\right) e^{-\theta x}$	$1 - \left[1 + \frac{\theta x}{\left(\theta^2 + 1\right)^2}\right] e^{-\theta x}$
XGamma [25]	$rac{ heta^2}{1+ heta}\left(1+rac{ heta}{2}x^2 ight)e^{- heta x}$	$1 - \left[1 + \frac{\theta x + \frac{\theta^2 x^2}{2}}{1 + \theta}\right] e^{-\theta x}$
Rama [27]	$rac{ heta^4}{ heta^3+6} \left(1+x^3 ight) e^{- heta x}$	$1 - \left[1 + \frac{\theta^3 x^3 + 3\theta^2 x^2 + 6\theta x}{\theta^3 + 6}\right] e^{-\theta x}$
Lindley [16]	$\frac{\theta^2}{\theta+1}(1+x)e^{-\theta x}$	$1 - \left[1 + \frac{\theta x}{\theta + 1}\right] e^{-\theta x}$
XLindley [6]	$\frac{\theta^2(2+\theta+x)}{(1+\theta)^2}e^{-\theta x}$	$1 - \left[1 + \frac{\theta x}{(1+\theta)^2}\right]e^{-\theta x}$
Ishita [29]	$\frac{\theta^3}{\theta^3+2}\left(\theta+x^2\right)e^{-\theta x}$	$1 - \left[1 + \frac{\theta x(\theta x + 2)}{\theta^3 + 2}\right] e^{-\theta x}$
Akash [30]	$rac{ heta^3}{ heta^2+2}\left(1+x^2 ight)e^{- heta x}$	$1 - \left[1 + \frac{\theta x(\theta x + 2)}{\theta^2 + 2}\right] e^{-\theta x}$
Pranav [15]	$rac{ heta^4}{ heta^4+6} \left(heta+x^3 ight) e^{- heta x}$	$1 - \left[1 + \frac{\theta x (\theta^2 x^2 + 3\theta x + 16)}{\theta^4 + 6}\right] e^{-\theta x}$
Chris-Jerry [22]	$\frac{\theta^2}{\theta+2}\left(1+\theta x^2\right)e^{-\theta x}$	$1 - \left[1 + \frac{\theta x(\theta x + 2)}{\theta + 2}\right] e^{-\theta x}$

Table 2: List of Competing one-parameter distributions in the class of Lindley

The first application is on Vinyl chloride data from clean upgradient ground-water monitoring wells in (g/L) studied by [31] in table 1.

Table 3: Vinyl chloride data from clean upgradient ground-water monitoring wells in (g/L)

5.1	1.2	1.3	0.6	0.5	2.4	0.5	1.1	8.0	0.8	0.4	0.6	0.9	0.4	2.0	0.5	5.3
3.2	2.7	2.9	2.5	2.3	1.0	0.2	0.1	0.1	1.8	0.9	2.0	4.0	6.8	1.2	0.4	0.2

The following model adequacy metrics are deployed; Akaike information criterion (BIC), Corrected Akaike Information criterion (CAIC), Bayesian Information Criterion (BIC), and Hannan–Quinn information criterion (HQIC), the model performance is proved if the proposed distribution has minimum value for each of the criteria. The K-S, Cramer von Misses W^* , Anderson Darling statistics A^* , and p-value for goodness of fit.

Table 4: A	Table 4: Analytical Measures for the Vinyl chloride data from clean upgradient ground-water monitoring wells in (g/L)										
Distr	NLL	AIC	CAIC	BIC	\mathbf{W}^*	A *	K-S	p-value	θ	std.err	
DXL	55.54	113.0757	113.2007	114.6021	0.4956	0.3215	0.0977	0.902	0.6514	0.0888	
Xgama	78.55	159.0958	159.2208	160.6222	0.0729	0.4725	0.2478	0.3809	0.8082	0.1011	
Lindley	56.3	114.6073	114.7323	116.1336	0.0627	0.4046	0.1327	0.5878	0.8234	0.1054	
Ishitta	57.3	116.6058	116.7308	118.1322	0.0947	0.604	0.1404	0.5142	1.1571	0.0962	
Akash	57.57	117.1473	117.2743	118.6756	0.099	0.6296	0.1565	0.3758	1.1656	0.1126	
Prenav	58.34	118.6715	118.7965	120.1979	0.1361	0.8471	0.1463	0.4606	1.4844	0.0977	
Chris-Jerry	57.93	117.8536	117.9786	119.38	0.1032	0.6549	0.1782	0.2303	1.1644	0.1321	
Shanker	56.46	114.9129	115.0379	116.4393	0.0634	0.4129	0.1307	0.6065	0.8534	0.9478	
Rama	59.34	120.6832	120.8082	122.2096	0.1543	0.9518	0.1768	0.2383	1.531	0.1176	
Xlindley	55.7	113.4008	113.5258	114.9271	0.0598	0.3498	0.1081	0.8218	0.7144	0.0943	
Rani	59.88	121.7515	121.8765	123.2771	0.1936	1.1646	0.1516	0.4151	1.7844	0.0997	
XShanker	59.88	113.6927	113.8177	115.2191	0.0569	0.3685	0.1108	0.7979	0.7567	0.0828	

© 2023 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India

A good look at the results in Table 4 showed that the proposed distribution is the best fit for the data with a p-value of 0.902, followed by XLindley with a fitting probability of 0.8218. The K-S statistic is also the minimum among the thirteen competing distributions compared. Viewing the performance metrics namely NLL, AIC, CAIC, and BIC, the values are minimum for

the proposed distribution compared to those of other competing distributions except XRama.

Figures 5 and 6 display the goodness of fit of the selected distributions to the data on the data. The figures show that the DXL distribution fits the data.

ecdf(data)

Figure 5: Density, cdf, survival, and TTT plots for the Vinyl Chloride Data

Figure 6: PP plots for the Vinyl Chloride data

The next application is on rainfall reported at the Los Angeles Civic Center in the Months of February

from 1943 to 2018 and studied by [10] The data is in table?

	Table 5: rainfall data in the months of February										
3.07	8.65	3.24	1.52	0.86	1.29	1.41	1.6	1.48	0.63		
0.33	2.98	0.68	0.59	1.47	6.46	3.32	2.26	0.15	11.57		
2.88	0.23	1.51	0.11	0.49	8.03	2.58	0.67	0.13	7.98		
0.14	3.54	3.71	0.17	8.91	3.06	12.75	1.48	0.70	4.37		
2.84	6.10	1.22	1.72	1.90	3.12	4.13	7.16	6.61	3.21		
1.3	4.94	0.08	13.68	0.56	5.54	8.87	0.29	4.64	4.89		
11.02	2.37	0.92	1.64	3.57	4.27	3.29	0.16	0.20	3.58		
0.83	0.79	4.17	0.03								

Table 6: Analytical Measures of Fitness and Performance for the Rainfall Data in the Months of February										
Distr	NLL	AIC	CAIC	BIC	W*	A*	K-S	p-value	θ	std.err
DXL	160	323.2067	323.2622	325.5107	0.0377	0.268	0.0804	0.7248	0.4227	0.0372
Xgama	198.06	398.128	398.1833	400.4318	0.05359	0.3829	0.2032	0.0044	0.5609	0.0447
Lindley	163.94	329.8854	329.9409	332.1894	0.0421	0.3085	0.1264	0.1876	0.5185	0.0439
Ishitta	170.78	343.5547	343.6103	345.8588	0.0864	0.6064	0.1691	0.2091	0.8303	0.0476
Akash	169.18	340.3678	340.4233	342.6718	0.0836	0.5867	0.1773	0.0191	0.7894	0.0509
Prenav	176.6	355.2028	355.2583	357.5068	0.1673	1.0913	0.2035	0.0043	1.1046	0.0524
Chris-Jerry	167.1	336.2053	336.2608	338.5093	0.0779	0.5462	0.1805	0.0161	0.737	0.0548
Shanker	166.41	334.8205	334.476	337.1245	0.0445	0.3274	0.1386	0.1167	0.5671	0.0425
Rama	177.54	357.0729	357.1284	359.377	0.1695	1.1081	0.2257	0.0011	1.0855	0.0577
Xlindley	161.41	324.828	324.884	327.1328	0.0383	0.2762	0.0954	0.511	0.4606	0.0398
Rani	184.52	371.036	371.0915	373.34	0.2696	1.6789	0.2341	0.0006	1.3891	0.05696
XShanker	184.52	328.7697	328.8253	331.0738	0.0414	0.3032	0.1134	0.2972	0.5213	0.0379

The results in Table 6 showed that the proposed distribution is the best fit for the data with a p-value of 0.7248, followed by XShanker with a fitting probability of 0.8218. The K-S statistic is also the minimum among the thirteen competing distributions compared. Viewing

the performance metrics namely NLL, AIC, CAIC, BIC, and HQIC the values are minimum for the proposed distribution compared to those of other competing distributions.

© 2023 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India

Figure 8: PP plots for the Data

Figure 9: PP plots for the Data (continue)

Expected

Figures 7, 8, and 9 display the goodness of fit of the selected distributions to the data on the data. The figures show that the DXL distribution fits the data better than the competing distributions.

5. CONCLUSION

DXL was proposed for modeling increasing failure rate data in this paper. In the study, the properties included moment and its associated measures such as the mean which is the first crude moment, the second, third, and fourth crude moments, the variance, skewness, kurtosis, and coefficient of variation measures with some theoretical statistics presented for better understanding. The reader's attention was beamed at the moment generating function, characteristic function, odd function, stress-strength reliability, stochastic ordering, mean residual life function, and distribution of order statistics. The parameter of the distribution was estimated using the popular maximum likelihood estimation. The proposed distribution was justified by deploying two real data sets on vinyl chloride and rainfall.

REFERENCES

- 1. Said Hofan Alkarni. (2015). "Extended inverse Lindley distribution: properties and application". In: *SpringerPlus*. pages 1–13.
- Anabike, I. C., Igbokwe, C. P., Onyekwere, C. K., & Obulezi, O. J. (2023). Inference on the parameters of Zubair-Exponential distribution with application to survival times of Guinea Pigs. *Journal of Advances in Mathematics and Computer Science*, 38(7), 12-35.
- Bakouch, H. S., Al-Zahrani, B. M., Al-Shomrani, A. A., Marchi, V. A., & Louzada, F. (2012). An extended Lindley distribution. *Journal of the Korean Statistical Society*, 41, 75-85.
- Biju, G. V., Rajagopalan, V., & Kumar, C. S. (2020). On weighted Rani distribution with applications to Bladder cancer data. *High Technology Letters*, 26(6), 546-558.
- Chinedu, E. Q., Chukwudum, Q. C., Alsadat, N., Obulezi, O. J., Almetwally, E. M., & Tolba, A. H. (2023). New Lifetime Distribution with Applications to Single Acceptance Sampling Plan and Scenarios of Increasing Hazard Rates. Symmetry, 15(10), 1881.
- Chouia, S., & Zeghdoudi, H. (2021). The xlindley distribution: Properties and application. *Journal of Statistical Theory and Applications*, 20(2), 318-327.
- 7. Serra Chouia and Halim Zeghdoudi. (2021). "XLindley Distribution: Properties and Application". In: *Journal of Statistical Theory and Applications*. 20.2, pages 318–327.
- 8. Elbatal, I., Diab, L. S., & Elgarhy, M. (2016). Exponentiated quasi Lindley distribution. *International journal of reliability and applications*, 17(1), 1-19.
- 9. Etaga, H. O., Celestine, E. C., Onyekwere, C. K., Omeje, I. L., Nwankwo, M. P., Oramulu, D. O., &

Obulezi, O. J. (2023). A new modification of Shanker distribution with applications to increasing failure rate data. *Earthline Journal of Mathematical Sciences*, *13*(2), 509-526.

- Etaga, H. O., Nwankwo, M. P., Oramulu, D. O., & Obulezi, O. J. (2023). An Improved XShanker Distribution with Applications to Rainfall and Vinyl Chloride Data. *Sch J Eng Tech*, *9*, 212-224.
- Etaga, H. O., Onyekwere, C. K., Oramulu, D. O., & Obulezi, O. J. (2023). A New Modification of Rani Distribution with More Flexibility in Application. *Sch J Phys Math Stat*, 7, 160-176.
- Ganaie, R. A., & Rajagopalan, V. (2022). Exponentiated Aradhana distribution with properties and applications in engineering sciences. *Journal of Scientific Research*, 66(1), 316-325.
- Ghitany, M. E., Atieh, B., & Nadarajah, S. (2008). Lindley distribution and its application. *Mathematics and computers in* simulation, 78(4), 493-506.
- Innocent, C. F., Frederick, O. A., Udofia, E. M., Obulezi, O. J., & Igbokwe, C. P. (2023). Estimation of the parameters of the power size biased Chris-Jerry distribution. *International Journal of Innovative Science and Research Technology*, 8(5), 423-436.
- 15. KK, S. (2018). Pranav distribution with properties and its applications. *Biom Biostat Int J*, 7(3), 244-254.
- Lindley, D. V. (1958). Fiducial distributions and Bayes' theorem. *Journal of the Royal Statistical Society. Series B (Methodological)*, 102-107.
- Nwankwo, B. C., Orjiakoh, J. N., Nwankwo, M. P., Chukwu, E. I. M. I., & Obulezi, O. J. (2024). A New Distribution for Modeling both Blood Cancer Data and Median Effective Dose (ED50) of Artemether-Lumefantrine against P. falciparum. *Earthline Journal of Mathematical Sciences*, 14(1), 41-62.
- Obulezi, O., Igbokwe, C. P., & Anabike, I. C. (2023). Single acceptance sampling plan based on truncated life tests for zubair-exponential distribution. *Earthline Journal of Mathematical Sciences*, 13(1), 165-181.
- 19. Obulezi, O. J., Anabike, I. C., Okoye, G. C., Igbokwe, C. P., Etaga, H. O., & Onyekwere, C. K. The Kumaraswamy Chris-Jerry Distribution and its Applications.
- Obulezi, O. J., Anabike, I. C., Oyo, O. G., Igbokwe, C., & Etaga, H. (2023). Marshall-Olkin Chris-Jerry distribution and its applications. *International Journal of Innovative Science and Research Technology*, 8(5), 522-533.
- Al-Omari, A. I., Aidi, K., & Seddik-Ameur, N. (2021). A Two Parameters Rani Distribution: Estimation and Tests for Right Censoring Data with an Application. *Pakistan Journal of Statistics and Operation Research*, 1037-1049.
- Onyekwere, C. K., & Obulezi, O. J. (2022). Chris-Jerry distribution and its applications. *Asian Journal* of *Probability and Statistics*, 20(1), 16-30.
- 23. Oramulu, D. O., Etaga, H. O., Onuorah, A. J., & Obulezi, O. J. (2023). A New Member in the Lindley

© 2023 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India

Class of Distributions with Flexible Applications. *Sch J Phys Math Stat*, 7, 148-159.

- 24. Oramulu, D. O., Igbokwe, C. P., Anabike, I. C., Etaga, H. O., & Obulezi, O. J. (2023). Simulation study of the Bayesian and non-Bayesian estimation of a new lifetime distribution parameters with increasing hazard rate. *Asian Research Journal of Mathematics*, 19(9), 183-211.
- 25. Sen, S., Maiti, S. S., & Chandra, N. (2016). The xgamma distribution: statistical properties and application. *Journal of Modern Applied Statistical Methods*, *15*(1), 38.
- R. Shanker. (2015). "Shanker distribution and its applications". In: *International journal of statistics* and Applications 5.6, pages 338–348.
- 27. R. Shanker. (2017). "Rama distribution and its application". In: *International Journal of Statistics and Applications* 7.1, pages 26–35.

- R. Shanker. (2017). "Rani distribution and its application". In: *Biometrics & Biostatistics International Journal* 6.1, pages 1–10.
- R. Shanker, & K. K. Shukla. (2017). "Ishita distribution and its applications". In: *Biometrics & Biostatistics International Journal*, pages 1–9.
- Rama, Shanker. (2015). "Akash distribution and its applications". In: *International Journal of Probability and Statistics*, pages 65–75.
- 31. Tolba, A. H., Onyekwere, C. K., El-Saeed, A. R., Alsadat, N., Alohali, H., & Obulezi, O. J. (2023). A New Distribution for Modeling Data with Increasing Hazard Rate: A Case of COVID-19 Pandemic and Vinyl Chloride Data. *Sustainability*, 15(17), 12782.
- Zeghdoudi, H., & Nedjar, S. (2016). Gamma Lindley distribution and its application. *Journal of Applied Probability and Statistics*, 11(1), 129-138.
- Zitouni, M. (2020). The Kumaraswamy-Rani distribution and its applications. *Journal of Biometrics and Biostatistics*, 11(1), 1-4.