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Abstract  Original Research Article 
 

Uncertainty theory, introduced by Professor Baoding Liu of Tsinghua University in China in 2007, has lately made 

significant progress. It serves as an advanced and adaptable mathematical tool for modeling uncertainties and handling 

unforeseen outcomes that may arise when using likelihood and/or fuzzy set approaches, which are sometimes favored 

alternatively. Mathematical models are used in several academic disciplines to provide accurate quantitative estimations 

based on facts. Crucially, these mathematical frameworks must offer a dependable evaluation of the certainty in their 

predictions. Uncertainty quantification (UQ) is a discipline that focuses on delivering accurate and dependable 

assessments of trust regarding forecasts made by models. Empirical models utilize data and statistical methods to build 

connections between parameters in a system, whereas mechanistic frameworks are built upon prior knowledge and 

understanding of the underlying mechanism that governs changes in the overall structure. This article will demonstrate 

the effectiveness of a data-driven empirical technique in solving ordinary differential equations under conditions of 

uncertainty. The research aims to determine the practicality and accuracy of its approach compared to existing numerical 

methods, which may often yield unsatisfactory results. 

Keywords: uncertain differential equation, uncertainty quantification, empirical approach, empirical solution, ordinary 

differential equation uncertainty. 
Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 

author and source are credited. 

 

1. INTRODUCTION 
Uncertainty theory, introduced by Professor 

Baoding Liu of Tsinghua University in China in 2007, is 

a recently developed discipline of axiomatic 

mathematics that has gained significant popularity. It is 

primarily utilised to handle the concept of "belief degree" 

as defined by Liu (2007). Probability is a commonly used 

theory to model uncertainty and understand random 

events. However, it may not be enough to address 

uncertainties related to personal beliefs of individuals 

(Liu, 2010a).  

 

In order to meet this requirement, uncertainty 

theory has recently undergone significant development. 

It functions as a sophisticated and flexible mathematical 

instrument for representing uncertainties and resolving 

unexpected results that may occur when employing 

probability and/or fuzzy set assumptions, which are 

occasionally preferred alternatives. 

 

 

Mathematical models are utilised throughout 

various fields of study to offer precise quantitative data-

driven estimations. Significantly, these mathematical 

algorithms must provide a reliable assessment of the 

certainty in their forecasts. The discipline of uncertainty 

quantification (UQ) specializes on generating and 

presenting precise levels of confidence in forecasts from 

models. (Shuttleworth et al., 2024). 

 

Empirical models rely on data and statistical 

procedures to establish relationships between parameters 

in a system, while mechanistic frameworks are based on 

previous experience and comprehension of the 

fundamental process that drives changes in the overall 

structure (Mas, 2021). In this article, we’re going to 

present the efficacy of data-driven empirical approach in 

finding the solution when it is worked under uncertainty 

conditions of ordinary differential equation. The research 

attempts to establish its feasibility and accuracy over the 

traditional numerical methods that in certain instances 

fail to give the desires results. 

 

https://saspublishers.com/sjpms/
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2. BACKGROUND STUDY 
The application of uncertainty theory, which 

Liu (2007) and Liu (2009) refined, has been fruitful in 

numerous disciplines, including science, technology, 

finance, the environment, and more. One early use was 

ambiguity statistics, which Liu (2010) defined as a set of 

mathematical techniques for data gathering, analysis, and 

interpretation based on uncertainty theory. One facet of 

uncertain analytics is the uncertain assumption test, 

which uses the idea of uncertainty to determine if a 

hypothesis is reliable or not based on the data that has 

been collected. Ye and Liu initiated the present study in 

2022. Uncertainty in time series appraisal, uncertain 

regression modeling, and other areas of uncertain 

statistics have all adopted the uncertain hypothesis 

analysis (Ye & Liu, 2023). 

 

Uncertain differential equation (Liu 2008) is 

employed as a mathematical tool to represent the 

temporal changes of a dynamic system, adding to the 

realm of uncertain statistics. Financing (Liu 2013), 

chemical processes (Tang and Yang 2021), electrical 

systems (Liu 2021a), drug kinetics (Liu and Yang 2021), 

software dependability as worked by Liu and Kang in 

2022, COVID-19 study by Lio and Liu (2021), holdings 

issues of Alibaba examined by Liu and Liu (2022), and 

many more areas have made significant use of uncertain 

differential equations. In practical applications of 

unresolved differential equations, the initial step 

involves estimating the unknown parameters within the 

equation. The goal of this estimate, which makes use of 

uncertainty theory, is to fit the data that was collected as 

precisely as feasible. 

 

Yao and Liu (2020) initially introduced the 

moment value approximation using the variability 

analysis method of uncertain differential equation. 

Afterwards, least squares estimation was studied by 

Sheng team (2020), minimal compensate estimation was 

offered by Yang and colleagues in 2020, and the greatest 

likelihood estimation was proposed by Liu and Liu 

(2022). But the previously suggested difference-based 

parameter estimation methods for indeterminate 

differential equations fail miserably when the 

measurement intervals are too long. To solve this 

problem and find a connection between uncertain 

differential equations and observable data, Liu and Liu 

(2022) proposed the idea of residuals. They also 

proposed a novel approach for estimating parameters in 

uncertain differential equations, utilising the concept of 

residuals (Ye & Liu, 2023).  

 

When modeling biochemical and biological 

functions, ordinary differential equations (ODEs) are 

commonly used. When dealing with beginning 

circumstances and parameters, ordinary differential 

equations (ODE) models often face large amounts of 

ambiguity and unpredictability. Efficient and reliable 

methodologies for analysing the effects of uncertainty 

and variability on the dynamical behaviour are 

particularly crucial, especially when dealing with 

nonlinear ODEs. An analysis of model sensitivity 

involves examining how changes in the input variables 

impact the behaviour of the model, namely its output 

(Weiße et al., 2010). 

 

In most cases, numerical approaches are used to 

solve the difficulty. These approaches may include 

estimating the functional link between the input and 

output, solving the ordinary differential equation (ODE) 

for an extensive collection of values to be entered that 

are produced arbitrarily or quasi-randomly, or 

determined local sensitivity indices, which are the 

identified portion of the derivative of the desired result 

with respect to the input variables. When uncertainty can 

be reduced to minor disturbances, it is frequently 

satisfactory to examine its impacts in a localised manner. 

However, it is challenging to identify in advance whether 

the uncertainty is small. Additionally, in numerous 

biological applications, the assumption of minor 

perturbations is either problematic (e.g., in 

pharmacokinetics) or has been proven to be incorrect. 

 

The decreasing expenses for sensors, storage 

facilities, and computational elements resources in the 

past decade has enabled data-driven exploration 

methods. Such techniques have had an immense effect 

on the sciences and mathematical applications by 

facilitating various innovations in characterising high-

dimensional data obtained from experiments (Rudy et 

al., 2017). From a purely empirical perspective, which is 

generally a data-driven process, model uncertainty is a 

concern because estimates may depend on the specific 

model being used. Hence, the integration of various 

models to mitigate the variability of models is highly 

recommended. 

 

Advancements in the numerical solution of 

ODEs have made it feasible to devise efficient methods 

that calculate approximate solutions. These solutions are 

easier for practitioners to read and comprehend, 

particularly those seeking precise and dependable 

representations of their mathematical models (Enright, 

2012). 

 

Using this methodology, the specialist initially 

determines the mechanisms that dictate the behaviour of 

the studied system. Subsequently, leveraging domain-

specific expertise on the identified processes, the 

specialist proceeds to meticulously document a suitable 

arrangement of the model equations. In contrast to the 

theoretical approach, the empirical technique relies on 

gathering and evaluating data via trial and error. The 

expert selects a class of structures (linear or polynomial, 

for example) that they believe will work, then adjusts the 

established parameters of the selected structure and tests 

the data used for the model adaptation. Iteratively 

searching for a good model is done if the match isn't 

close enough. When building models, very little, if any, 
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of the existing domain-specific information is actually 

use (Todorovski & Džeroski, 2006). 

 

3. RELATED WORKS 
This section discusses on the uncertainty 

conditions and data-driven empirical approaches that are 

currently being applied and measured in the researches 

and real life conditions. Considering the research’s 

criteria, ordinary differential equation is given primary 

focus as the working model and thereafter, the articles 

are chosen where data-driven approaches are used under 

uncertainty to obtain feasible values and consequently 

the model performance measures are described. 

 

For determining the variables in uncertain 

differential equations, Yao & Liu (2020) utilized a 

system of moments for the starting time as a means of 

estimation. Using the one-of-a-kind form of an uncertain 

differential equation, it was demonstrated that the 

relationship of the input information adhered to a typical 

normal uncertainty distribution. These equations were 

derived by the researchers by replacing the empirical 

moments of the parameter functions and the observed 

data with the usual regular uncertain distribution 

moments. The estimated parameters were given by the 

answers to these equations. To illustrate the suggested 

approach of moments, examples were given in both 

numerically and analytic forms. 

 

Jonckheere (2021) attempted to establish a 

unified method for estimating differential equations from 

data that included hidden variables. They conducted a 

data-driven regression analysis using Lasso-type 

estimation on the temporal derivative of the variables. 

The mechanism was evaluated by employing a 

compendium of functions. These functions included 

lower-order temporal derivatives of the observable 

variables. The objective of the study was to create a 

model capable of quantifying the significance of best-fit 

data that could differentiate the result accuracy from that 

when the data contained significant noise.  

 

Extensive numerical instances were 

demonstrated in the study to show that the proposed 

method was capable of successfully recovering valuable 

descriptions of the dynamical system that originated the 

data. Even, in those cases where certain variables were 

not observed. Furthermore, due to its reliance on solving 

a convex optimization challenge, the proposed method 

was significantly faster than contemporary approaches 

that lacked in addressing combinatorial issues. Lastly, 

the model was validated with an actual dataset consisting 

of temperature time series. 

 

Kuehn (2021) examined how uncertainty in 

variables in the system was created under a possible 

significant nonlinear dynamical system and affect the 

system's bifurcation behaviour. Their model was 

proposed to calculate the probability of various types of 

bifurcations (sub-critical versus super-critical) along a 

particular bifurcation curve. In order to achieve this 

significant advancement, three methods were proposed: 

an analytical approach, which involved calculating the 

probability explicitly using Mellin transformation and 

inversion; a semi-analytical approach that combined the 

analytical method with a moment-based numerical value 

assumption procedure; and a specific sampling-based 

approach that utilised unscented modification. The 

model was worked with numerical methods to ensure the 

extent to which it can be used in uncertainty conditions. 

 

Tang & Li (2021) utilized uncertain differential 

equations to analyze the individual dynamics of interest 

rates and stock prices over time. The researchers utilized 

the method of moments to estimate the variables in 

uncertain differential equation according to empirical 

observations. They utilized the provided interest rate and 

stock models to determine the value of European options 

and then analyze how these values compare to real-world 

observations. Ultimately, the stochastic financial model 

presented a conundrum. 

 

Lejarza & Baldea (2022) presented a machine 

learning framework to distinguish the compatible 

equations in the form of ordinary differential equations 

when worked in noisy experimental data sets. In order to 

derive simple governing equations from an enormous 

number of basis functions, their suggested approach 

evaluated successive subsets of measurement data and 

used statistical deduction. The proposed system used a 

state-of-the-art numerical discretization approach to 

reduce estimation mistakes caused by gradient 

estimating something. Researchers sought for ways to 

enhance the model by making it more resilient to noise 

and stiffer overall. The approach was able to effectively 

identify simple ruling principles in nonlinear dynamical 

systems, even when there was a lot of measurement 

noise. In fact, it performed better than the most advanced 

frameworks currently available in the literature. 

 

The multi-fidelity Monte Carlo (MFMC) 

method was developed by Du and Su (2022) to examine 

the variability of nonlinear partial differential equations. 

It makes use of data-driven low-fidelity approaches. In 

the beginning, the nonlinear PDEs were transformed into 

ODEs via the use of finite discretising difference or the 

Fourier adjustment. In order to generate effective 

nonlinear low-fidelity models for the ODEs system, the 

shortened dimension model and the discrete empirical 

interpolation method (DEIM) were employed.  

 

To provide the best estimate of the statistics, the 

MFMC method was used to combine the high-fidelity 

and low-fidelity model outputs. Results from 

experiments with the nonlinear Schrodinger and Burgers' 

equations show that the MFMC method, which is based 

on a data-driven low-fidelity model, outperforms the 

traditional Monte Carlo method in terms of 

computational simplicity. 
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Noorani & Mehrdoust (2022) proposed an 

innovative approach to estimate uncertain parameters of 

a stock model influenced by the Liu process. Parameter 

estimation was split into two parts by the suggested 

method. Part one was to use the information at hand to 

create an optimized artificial neural network, and part 

two was to use that network to estimate the unreliable 

variables in the model. In order to optimize the artificial 

neural network and resolve the parameter guessing issue, 

because the Nelder-Mead algorithm was employed. The 

main benefit of the approach being described is that it 

may be used to forecast future data without worrying 

about how the estimate difficulty is impacted by the 

intervals amongst observations. Demonstrating a 

comparison methodology reveals the potential 

effectiveness of the suggested strategy for non-linear 

issues, in which artificial neural network topologies 

exhibit strong performance. 

 

The study by Zhou et al., (2023) identified 

seven well characterized subfields related to 

mathematical uncertainties, that is, uncertainty in the 

axiomatic framework, in developing, in sets, in logic, in 

differential equations, in analysis of risks, and in 

relationships are all subfields of uncertainty.The 

domains with the most papers are those dealing with 

uncertain calculations, including differential equations 

and computing. Furthermore, we develop indices of 

maturity and current focus based on variables like 

citations, total documents, volume of highly referenced 

literature, and half-life to evaluate the research potential 

of sub-fields. 

 

As indicated by these metrics, uncertain 

procedures have garnered significant attention in recent 

years due to their high potential for advancement. The 

principal areas of investigation in this study are uncertain 

linear quadratic optimization, the best supervision of 

discrete-time unresolved processes, and equivocal an 

extra period reward procedures. In addition, ambiguous 

risk analysis, which analyzes predicted deficits, risk 

related to investments, and the structural dependability 

of platforms with built-in uncertainty, is ranked second 

among risk analysis techniques. 

 
4. CONCEPTUALIZATION AND METHODOLOGY  

The research is conceptualized to provide the 

evidence of fundamental potency of empirical approach 

that can be utilized in finding the solution of ordinary 

differential equation (ODEs)when they are solved under 

uncertain conditions. The underlying approach aims to 

reduce the chances of false effort and provide the best-fit 

route to achieve accuracy and fastness in obtaining the 

desired solution when they are used in the said 

conditions. 

  

Furthermore, the practical usability of empirical 

approach in solving the ODEs in uncertainty condition at 

real time scenario is particularly explored and analysed. 

For that a latest real life condition is examined where 

ODE model is used to estimate a result by applying the 

data-driven empirical approach. Thereafter, the 

significance of using empirical model is justified. 

Overall, the study focuses the core objectivity of 

revealing the feasibility of empirical method over the 

other contemporary models, such as computational and 

probabilistic models so that the technique can be fully 

utilized to work out with advance technology, such as, 

machine learning or neural net platforms.  

 

The study can also be extended to ensure the 

role of empirical approach for differential equations of 

dynamic form and operational methodologies that can 

ideally exclude noise and provide the desired results with 

good accuracy score. 

 

5. FINDINGS AND DISCUSSION 
Here, we present two different scenario, (i) one 

based on model-based approach of finding solution of 

ordinary differential equations (ODEs) in uncertainty 

condition; and (ii) the other where ODE model is used to 

estimate a real time condition added with uncertainty. In 

both the case, data-driven empirical approach is used and 

the model performance is evaluated accordingly. 

 

i. Solution of Ordinary differential equations 

(ODEs) in a Two-Stage Indirect Approach to 

Estimate the Derivatives of the State 

 

Model Details: 

The two-stage approach, as outlined by Bradley 

and Boukouvala (2021), addresses two distinct issues 

associated with regression in order to take into account 

the variable parameters of the mechanistic model. In the 

preliminary stage, the variables comprising the data-

driven framework are modified based on the first 

findings of the measurements. During the second phase, 

the settings of the logical ODE are determined utilizing 

the state and derivative estimations of the data-driven 

model. This is achieved through the initial resolution of 

the ensuing regression issue. 

 

Min ∑(𝑥𝑘,𝑗,𝑚𝑒𝑠𝑠 - 𝑥𝑘,𝑗,𝑝𝑟𝑒𝑑)2+ ∑w2 ------------------- (1) 

 

s.t.
𝑑𝑥𝑘

𝑑𝑡
 = NN(xk, w) -------------------------------------- (2) 

 

At this point we integrate a NODE with respect 

to the standalone variable t in order to determine and 

forecast the state factors xk at time points j, where j runs 

from 1 to J, while k extends from 1 to K. With the help 

of a term for regularizing and the total number of squared 

deviations between the forecasts made by the model and 

what was found in the facts, the objective function was 

minimized by adjusting the parameter values of the 

neural network. 

 

Performance Discussion: 

A regularizing penalty element is added to the 

goal function and compounded by a hyperparameter λ in 
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order to take into consideration the several parameters in 

the neural network. Incorporating the learnt NODE from 

the beginning of the data set at time t0=0 to the end at 

time tf yields derivative projections once the NODE 

(Neural Ordinary Differential Equation) has been 

trained. 

 

Using the same procedure parameters as the 

observed data. The NODE models derived products 

using state projections at times when measurable data is 

available. Inequalities 3 and 4 reflect the second part of 

the two-stage method, which entails developing a 

nonlinear program (NLP) in order to discover the 

components of the original mechanical ordinary 

differential equation (ODE). 

 

This study compares the efficiency of algebraic 

data-driven models—specifically, algebraic neural 

networks—with that of more conventional 

computational methods for predicting system 

derivatives, and it finds that the latter are superior. This 

system is also used to demonstrate the ability of the 

indirect method to estimate parameters for mechanical 

ordinary differential equations (ODEs) with very 

nonlinear components. 

 

A study of contrasts was done involving the 

computational needs of the NODE2 condition 

methodology and the standard direct strategy in order to 

evaluate its efficacy. The findings of this study were 

summarized after it was run on without noise training 

data. A preset amount of 10 undetectable nodes was put 

in a neural network situated in the node for this 

experiment. 

 

When discussing the direct method, "compute 

time" is how long it takes to train the components of the 

mechanical ordinary differential equation (ODE). Stage 

1 of the indirect technique's computing time consists of 

fitting the neural ODE settings, and stage 2 is solving the 

NLP for the mechanistic parameters.  

 

The time comparison does not account for the 

hyperparameter modification. In a nutshell, the time 

required to handle a single NODE is already included in 

stage 1. Although the NODE 2-stage approach's 

computing expenditure will grow due to hyperparameter 

modification, the grid search cross-validation technique 

may be parallelized to reduce this computation time. 

 

The work also made a significant contribution 

by demonstrating how to train neural Ordinary 

Differential Equations (ODEs) using integration. To 

determine the dynamics of a system, the standard two-

stage approaches use algebraic data-driven models. 

Because directly integrating differential equations is 

computationally costly, this is done instead. Using 

NODEs for derivative estimations, the suggested method 

successfully brings integration back into the two-stage 

approach, even if it is only present in the first phase. 

 

The time required to train algebraic data-driven 

models, like the one used in this study, is far lower than 

that required to learn neural ordinary differential 

equations (ODEs). Stage 2's natural language processing 

(NLP) issue cannot be solved using their derivative 

estimates, nevertheless. Neuronal Ordinary Differential 

Equations (ODEs) are able to record data on derivatives 

effectively, according to this study's reasoning. This 

supports the use of NODEs regardless of the additional 

computing expense resulting from integration and 

gradient evaluation during conditioning. 

 

Contrarily, training neural ODEs takes more 

time than a conventional artificial neural network (NN), 

but it's still faster than directly estimating the settings of 

the underlying mechanism. The study's neural network 

architecture was smaller than typical deep learning 

schemes, but there were many more elements to fit to the 

NODE than to the mechanistic version. 

 

The accuracy was significantly enhanced when 

NODEs were used as the interpolating model. System 

derivatives could be computed using other data-driven 

models. Unfortunately, this study did not have the time 

or resources to conduct a thorough comparison with all 

methods. Because splines and other algebraic 

interpolating frameworks fail to take the required 

derivatives into consideration, we expect NODEs to 

perform better. 

 

There are computational benefits to using the 

neural ODE-based approach rather than directly 

integrating mechanical ODEs. But the best part is that it 

can find the mechanical parameters with little to no 

scaling and no prior knowledge of their values. 

Mechanistic differential equations involving the 

parameterization of very nonlinear operators, such 

logarithmic functions and the exponential form, show the 

most gain in measurement of parameters. 

 

ii. Use of Ordinary differential equation (ODE) 

based model to estimate the time variant 

infection and reporting rate in COVID-19 

pandemic time 

 

Model Details: 

The project, known as Steuerungs-Prognose von Intensiv 

medizinischen COVID-19 Kapazitäten (SPoCK), 

utilizes various data sources and use data-driven methods 

to predict the number of occupied ICU beds. The scope 

of the project is shown in the figure below as discussed 

in the scholarly article of (Refisch et al., 2022): 
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Figure 1: Schematic Diagram Showing the SPoCK program forecasts the requisite hospital capacity of Intensive 

Care Units (ICUs) for patients with COVID-19. An important variable that must be forecasted is the quantity of 

latest reported cases from the RKI, which is shown by the blue box. The findings are used for graphically 

demonstrate DLR logic and management members, such as the BBK, RKI, and local and regional health 

authorities. (Source: Refisch et al., (2022)) 

 

Compartmental models or Susceptible-

Infected-Recovered (SIR)-like models are commonly 

used in this research to describe the spread of infectious 

diseases. Typically, both methods involve dividing the 

population into subgroups that have distinct 

characteristics. Entities are able to shift between specific 

populations with the help of transitioning rates, which, 

along with the starting values of those subpopulations, 

define the system's evolution through time. The validated 

Susceptible-Exposed-Infected-Recovered (SEIR) model 

provides the ordinary differential equation (ODE) 

characterization of the compartment wise-segmented 

scheme that is given below. 

 

 
 

The variable N represents the entire population, 

and it is equal to the sum of the variables S, E, I, and R. 

To display time derivatives, one uses the dot format. 

Also, ο, γ, and δ stand for the rates of distribution, 

infectiousness, and mortality or treatment, 

correspondingly. The reason for selecting this model 

class is its conciseness, which is crucial for frequent 

evaluation, and its ability to accommodate a more 

adaptable infection time compared to the usual SIR 

model. 

 

Performance Discussion: 

Multiple research have addressed the issue of 

time-dependent infection rates in various ways. During 

the initial stages of the COVID-19 global mass health 

hazard, researchers analyzed the effects of various non-

pharmacological interventions (NPIs) using step 

functions that implemented β(t) using several versions of 

smoothed step functions. The goal was to determine how 

various NPIs fared. These strategies are sometimes only 

applicable to certain time periods when the infection 

frequency is expected to be constant or consistently 

decreasing or increasing. However, we want to use a 

more holistic approach that permits the infection rate to 

fluctuate freely within the given timeframe, meaning it 

can drop or rise more than once. 

 

It is essential to have an accurate description of 

the COVID-19 transmission dynamics because it is 
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affected by numerous elements that can change during 

the continuing COVID-19 pandemics. 

 

• Multiple Non-Pharmaceutical Interventions 

(NPIs) are implemented, revoked, and 

reintroduced in an iterative manner. 

• The sample member’s adherence to regulatory 

measures fluctuates throughout time. 

• Seasonal factors, such as meteorological 

conditions, result in variations in the likelihood 

of infection. 

• Mutations modify the physiological 

mechanisms that underlie disease transmission 

and other related issues. 

• Vaccinations decrease the proportion of the 

population that is susceptible. 

• Air pollution can exacerbate the severity of 

COVID-19. 

 

Typically, there are multiple model categories 

and architectures that can be used to represent the same 

event. The differences in the mechanical architecture of 

different frames make it generally hard to transfer 

approximation values across them. To tackle this issue, 

we avoid using any prior knowledge about parameter 

values in the optimization process and instead depend 

only on data. 

 

There are just three fixed factors that are 

established in advance, which are the initial numbers of 

individuals in the affected, revealed and regained 

states:Sinit, Einit, and Rinit. The time point zero (t0) is 

defined as the earliest day with a minimum of 100 

reported cases, in order to uphold the premise of well-

mixing in ODE modelling. Sinit represents the entire 

population of the specific region, as reported by the 

Federal Statistical Office of Germany. 

 

In order to measure the level of uncertainty in 

the model's predictions, our forecasting tool offers 

confidence intervals in addition to the suggested 

predictions. In this case, we talk about two main sources 

of doubt: uncertainty about parameters and uncertainty 

about approaches. As explained in the Profile likelihood 

analysis portion, the first approach is to simulate every 

prospective attribute arrangements that match the data 

that has been collected. As explained in the part called 

"Averaging of approaches," the second method includes 

doing the investigation using a lot of different models. 

 

To predict variables using data, numerous kinds 

of methods can be used, such as ordinary differential 

equation (ODE) models or stochastic differential 

equation (SDE) models, regardless of the mixed results. 

Employing a System Dynamics Engineering (SDE) 

method could prove advantageous in tiny locations 

characterized by minimal infection rates or during 

periods of exceptionally low overall infection figures.  

 

In such instances, the spread of infection is 

mostly driven by local outbreaks, and the population is 

not thoroughly mixed, making the use of ordinary 

differential equations (ODEs) inefficient. In a well-

mixed system, the infection probability for all 

susceptible individuals is uniformly distributed, and the 

spread of infection is governed by an average infection 

probability. The premises that were used to make the 

ODE approach for the selected geographical units make 

sense, and the model was changed in a good way. Our 

main goal was to create an effective approach that lets us 

analyze data every day and make precise projections. 

 

6. CONCLUSION 
As discussed in the above two cases, both 

models showed the improved accuracy of data-driven 

empirical approach when it is applied on the ODE model 

under uncertainty condition. The first approach as shown 

is worked on experimental machine learning based 

model that used data-driven interpolation as a better 

solution approach that traditional direct conventional 

algebraic approach. Although, the model exhibited a few 

data oriented limitation. 

 

In the second model, the ODE is utilized in 

estimating the real time patient count estimation that is 

worked in data-driven approach and the data are 

evaluated in terms of their noise content. Here too, the 

data-driven stochastic approach showed accurate 

determination of result under uncertainty condition over 

the tradition computational methods. Thus, we can say 

that empirical approach has its own efficacy under 

uncertainty condition to tackle time variant data sources 

and provide the result. 
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