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Abstract  Original Research Article 
 

Bootstrap is a resampling method of estimating parameters or sampling distributions based on observed data. In order 

to apply the bootstrap approach when evaluating the parameters of time-series models, we need to consider the lack of 

independence between the observations. This study addresses the sensitivity of the white-noise distribution to the 

performance of the bootstrap method in uncovering the true sampling distribution of parameter estimates of 

autoregressive models. In order to study the performance, we use three white–noise (normal, exponential, and uniform) 

distributions for three (first and higher-order) models. 
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1. INTRODUCTION 
Efron (1979) introduced the bootstrap as a 

resampling method and its Monte-Carlo approximate 

form (Chernick & LaBudde, 2014). He mainly addressed 

the bootstrap to evaluate the sampling distribution of 

parameter estimates when the probability distribution of 

the given data is unknown (Efron & Gong, 1983; Lahiri, 

2003; Zoubir & Iskander, 2004). His method is attractive 

due to the following points: 1) May consistently estimate 

the distribution of a statistic under weaker conditions 

than the traditional approach (derivation of the 

asymptotic distribution) does, 2) Makes the derivation of 

the asymptotic distribution superfluous, 3) Applicable in 

cases where the asymptotic distribution is unattractive, 

4) Has some optimal properties (Efron, 1982; Shao, & 

Tu, 1995; Hall, 2013). In addition, bootstrapping has 

many applications and has been used to solve problems 

that would be too difficult to deal with analytically 

(Efron & Tibshirani, 1994).  

 

This study addresses the sensitivity of the 

white-noise distribution to the performance of the 

bootstrap method in uncovering the true sampling 

distribution of parameter estimates of autoregressive 

models. In order to study the performance, we simulate 

data from three (first and higher-order) models with three 

white-noise (normal, exponential, and uniform) 

distributions by using the 𝑅 language and then estimate 

the true distribution of the simulated data, which is used 

to assess the distribution of bootstrap estimates and their 

standard errors. Furthermore, one of the models has 

coefficients that are very close to the unit circle. The 

consistency of each bootstrap estimate is also considered, 

i.e., the effect of sample size on the bootstrap estimates 

and their standard errors. As a result, we chose two 

samples (50 and 500) to ensure the consistency of the 

bootstrap estimates. The percentile method based on the 

bootstrap distribution is invoked in order to construct 
(1 −  )100% confidence intervals for the model 

parameters and compare them to the classical confidence 

intervals based on the large sample theory 

(approximately normal). In addition, the normality 

(Shapiro-Wilk) test is also carried out for parameter 

estimates of models. Finally, the EasyFit statistical 

package is used in order to test the goodness of fit 

(Kolmogorov-Smirnov) of residuals for a normal 

distribution.  
 

2. METHODOLOGY 
2.1 The Bootstrap Method  

In the past decades, many broad new 

approaches to statistical methods have emerged in the 

form of non- parametric approaches to modelling 

https://saspublishers.com/sjpms/
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uncertainty. Thus, not only the individual parameters 

from the probability distribution but also the entire 

distributions are searched, based on the available 

empirical data (Efron & Gong, 1983; Zoubir & Iskander, 

2004). The bootstrap method was introduced by Efron 

(1979), with further developments in Efron (1981), and 

fully described in Efron and Tibshirani (1994). 

Generally, the bootstrap technique could be divided into 

two branches. The parametric bootstrap is the branch of 

Monte-Carlo simulations that involves resampling from 

a fully defined probability distribution (Robert et al., 

1999; Chernick & LaBudde, 2014). The non-parametric 

bootstrap branch is defined as sampling with a 

replacement technique from a completely unspecified 

distribution 𝐹. The bootstrap method could be described 

as follows:  

 

Suppose 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) is a collection of 

𝑛 numbers drawn at random from a completely 

unspecified distribution 𝐹 (𝑋𝑖’s are independent and 

identically distributed (iid) random variables, each 

having a distribution 𝐹). Let  denotes an unknown 

parameter of interest of 𝐹, and ̂ is an estimator of . 

Hence, we are interested in finding the sampling 

distribution of ̂. In order to estimate the sampling 

distribution of ̂ (X, F), we invoke the bootstrap 

technique, as explained in the following procedure:  

1. Construct the empirical probability distribution 

function �̂� by putting mass (weight) 𝑛−1 at each 

point of the sample 𝑋.  

2. Obtain the bootstrap sample 𝑍 =
{𝑍1, 𝑍2, … , 𝑍𝑛} (the same size as the original 

data) from Fˆ with replacement.  

3. Approximating the sampling distribution of 

̂ (X, F) by the bootstrap distribution of ̂ (X, F̂).  

 

In applying the bootstrap, the most difficult part 

is the actual calculation of the bootstrap distribution. 

Efron (1979) proposed the following three methods: 

Method 1: The theoretical calculation of the 

bootstrap distribution, which is not easy to obtain in 

most cases, 

Method 2: The Monte-Carlo approximation to the 

bootstrap distribution,  

Method 3: Taylor’s series expansion or delta 

method, which turns out to be the same as the usual 

Jackknife theory.  

 

However, due to the difficulty in getting and 

applying theoretical results, we adopt Method 2 in order 

to obtain the sampling distribution of parameter 

estimates of autoregressive models. The Monte-Carlo 

procedure is as follows:  

1. Draw a sufficient number (𝐵) of independent 

bootstrap samples, say 𝑍1, 𝑍2, … , 𝑍𝑛, where 

each 𝑍𝑖 represents a sample from �̂�. 

2. The statistic of interest ̂, is calculated for each 

bootstrap sample. This bootstrap sample of 𝐵 

estimates is used to obtain the Monte-Carlo 

estimate of the bootstrap distribution (Robert et 

al., 1999). For instance, the bootstrap standard 

error is estimated by �̂�𝐵 = [∑ (�̂�𝑘 − �̅�𝐵
𝑘=1 )2/

(𝐵 − 1) ]1/2, where �̅� =  ∑ �̂�𝑘/𝐵𝐵
𝑘=1  is the 

sample mean of the 𝐵 estimates.  

 

It is obvious that as 𝐵 →  ∞, �̂�𝐵 , it will almost 

surely converge to the true bootstrap estimate and the 

true bootstrap estimated standard error, respectively. 

Note that the previous Monte-Carlo algorithm is valid 

only if the bootstrap sample size is equal to the size of 

the actual data; otherwise, it will not converge to the 

above limits (Efron, 1982).  

 

2.2 Bootstrapping Autoregressive Models  

The applications of bootstrap methods to time-

series data are not as straight-forward as in the case of 

random samples due to the lack of independence between 

observations. Therefore, in bootstrapping, the 

assumption of independence among the observations is 

crucial, and the bootstrap could give incorrect answers if 

dependence is neglected (Singh, 1981).  

 

The application of bootstrapping in the case of 

𝐴𝑅𝑀𝐴 models with independent and identically 

distributed errors has been studied by Freedman (1981), 

Stoffer and Wall (1991), Efron and Tibshirani (1994), 

and Lahiri (2003).  

 

In this paper, we adopt the method by Efron and 

Tibshirani (1986) for bootstrapping autoregressive 

models, which consists of the following steps:  

Step 1: Simulate 𝑛 observations from an 

autoregressive (𝐴𝑅) model of order 𝑝. 

Step 2: Fit the 𝐴𝑅 model in the same order as the 

realisation of size 𝑛 simulated according to Step 1.  

Step 3: Calculate the residuals for 𝑡 = 𝑝 + 1, 𝑝 +
2, … , 𝑛 by ̂ =  𝑋𝑡 − ∑ �̂�𝑖

𝑝
𝑖=1 𝑋𝑡−1. 

Step 4: Obtain a bootstrap sample 𝑍1, 𝑍2, . . . , 𝑍𝑛 of 

size n by setting 𝑍1, 𝑍2, . . . , 𝑍𝑝 to the first p 

observations in the data, and for 𝑡 =  𝑝 +  1, 𝑝 +
 2, . . . , 𝑛, we have 𝑍𝑡 = ∑ �̂�𝑖

𝑝
𝑖=1 𝑍𝑡−1 +  𝛿, where 𝛿 

is randomly chosen from the residuals 휀̂.  
Step 5: Fit the 𝐴𝑅 model for the same order in Step 

2 to the bootstrap sample and record the values of 

the estimates.  

Step 6: Repeat Steps 4 and 5 a sufficient number of 

times, say 𝐵 =  250 in order to obtain the bootstrap 

sampling distribution of each estimate (Efron & 

Tibshirani, 1994; Kotz & Johnson, 2012; Young & 

Smith, 2005).  

 

2.3 The Percentile Method  

Standard errors are frequently used to give 

approximate confidence intervals based on normal 

theory. Thus, an approximate (1 −  𝛼)100% confidence 

interval is  

�̂� ± (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 �̂�). 𝑍𝛼, ……………… (1) 
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Where 𝑍𝛼 is the 100𝛼 percentile of the standard normal 

distribution. 

 

Efron and Tibshirani (1986) discussed using the 

bootstrap to give better approximate confidence intervals 

than Formula (1). We used one of their proposed 

methods of obtaining confidence intervals, which is 

called the percentile method. This consists merely of 

using appropriate percentiles of the estimated bootstrap 

distribution to give an evaluated confidence interval. 

Simply, we ascend the values of the bootstrap estimate 

and take the 100. 𝛼𝑡ℎ ordered value as the lower interval 

point and the 100 (1 −  𝛼)𝑡ℎ ordered value as the upper 

interval point. Finally, the percentile method takes the 

following form (�̂�𝑙𝑜, �̂�𝑢𝑝)  =  (𝜃𝛼 , �̂�1−𝛼 ). For further 

details, see, e.g., Efron and Tibshirani (1994); DiCiccio 

and Efron (1996).  

 

3. THE SIMULATION STUDY  
3.1 Using a normal distribution of white noise 

In this section, we apply the bootstrap method 

to three stationary autoregressive processes through 

simulation using the R language. However, due to the 

tremendous difficulty in obtaining the actual (theoretical) 

bootstrap distribution, we have to appeal to the Monte-

Carlo approximation of the bootstrap distribution (Efron 

& Tibshirani, 1986). Our study consists merely of the 

following steps:  

Step 1: Simulate n observations from the 𝐴𝑅 

scheme with normal errors using the 𝑅 language. In 

particular, the following three models have been 

used in the simulation process:  

𝑋𝑡 = 0.2 𝑋𝑡−1 + 휀𝑡 …………………….. (2) 

𝑋𝑡 = 0.9 𝑋𝑡−1 + 휀𝑡 …………………….. (3) 

𝑋𝑡 = 0.4 𝑋𝑡−1 − 0.7 𝑋𝑡−2 +  휀𝑡 ………… (4) 

Where 휀𝑡 is a normal white–noise process with a mean 

equal to 0 and a variance equal to 1.  

Step 2: A model with the same order is fitted to the 

generated data obtained in Step 1.  

Step 3: Steps 1 and 2 are repeated 250 times in order 

to obtain the true sampling distribution of each 

parameter estimate of Models (2), (3), and (4).  

Step 4: The refitted model in Step 2 is bootstrapped 

as explained in Subsection 2.2 to obtain a bootstrap 

sample with the same size as the generated data used 

in Step 1.  

Step5: Step 4 is done for 250 replications in order 

to obtain the bootstrap sampling distribution of each 

parameter estimate of Models (2), (3), and (4).  

Step 6: Finally, the true and bootstrap sampling 

distributions of each estimate are compared to see if 

the bootstrap distributions resemble the true one.  

 

3.2 Using a non-normal distribution of white noise 

We repeat all Steps in Subsection 3.1, but using 

non-normal (exponential, uniform) white-noise 

processes. Hence, the white–noise process has an 

exponential distribution with a parameter (𝜆 =  1), and 

a uniform distribution with parameters (𝑎 =  0, 𝑏 =  1).  
 

4. RESULTS 
In this section, Due to the similarity in the 

results for Models (2, 3, and 4) and the lack of space, we 

give only the results for Model (2). The other results can 

be obtained from the authors. The results of Model (2) 

are arranged in Table 1, for the sake of comparison. 

summary statistics, including mean value, standard error, 

skewness, kurtosis, and variance of residuals, for white–

noise (normal, exponential, and uniform) distributions.  

 

Table 1: Summary Statistics of Parameter Estimates of Model (2) 

  Sample 

Size 

Mean 

Value 

Standard 

Error 

Variance of  

Residuals 

Skewness Kurtosis -95% +95% 

Normal 

White 

Noise 

True  �̂� 50 0.1819 0.1376 0.9820 0.0157 2.9239 0.1509 0.2271 

Boot. �̂�∗  0.1712 0.1425 0.9995 0.1776 2.5336 -0.0893 0.4454 

True �̂� 500 0.1996 0.0438 0.9990 -0.0248 2.8057 0.1957 0.2034 

Boot. �̂�∗  0.2007 0.0410 0.9376 -0.2428 3.2331 0.1145 0.2746 

Exponential 

White 

Noise 

True �̂� 50 0.1860 0.1382 1.9847 -0.4745 3.9323 0.1477 0.2243 

Boot. �̂�∗  0.2002 0.1334 0.8663 -0.2799 2.5952 -0.0997 0.4214 

True �̂� 500 0.2025 0.0437 1.9903 0.0753 3.0723 0.1986 0.2063 

Boot. �̂�∗  0.2045 0.0436 2.4435 -0.0464 3.5681 0.1169 0.2873 

Uniform 

White 

Noise 

True �̂� 50 0.1755 0.1376 0.3317 0.0517 2.9205 0.1374 0.2137 

Boot. �̂�∗  0.1885 0.1348 o.5406 -0.0240 2.7844 -0.0765 0.4454 

True �̂� 500 0.1968 0.0438 0.3338 -0.0736 2.9928 0.1929 0.2006 

Boot. �̂�∗  0.1893 0.0435 0.3341 -0.1656 2.9018 0.1022 0.2701 

 

A variety of graphs (histogram and boxplot) of 

parameter estimates of the three distributions are shown 

in Figures 1, 2, and 3, respectively, for the true (top) and 

bootstrap (bottom) sampling distributions. All results 

take into account the size of the samples 50 (left), and 

500 (right).  
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(1) n=50 (2) n=500 

Figure 1: Histogram and boxplot of the parameter estimate of Model (2); The Normal Case 

 

  

(1) n=50 (2) n=500 

Figure 2: Histogram and boxplot of the parameter estimate of Model (2); The Exponential Case 

 

 
 

(1) n=50 (2) n=500 

Figure 3: Histogram and boxplot of the parameter estimate of Model (2); The Uniform Case 
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The results of the normality (Shapiro-Wilk) test of the coefficients of Model (2) are given in Table 2.  

 
Table 2: The Results of the Normality Test of Coefficients of Model (2) 

Sample Size Sampling Distribution Shapiro-Wilk 

W p-value W p-value W p-value 

Normal Exponential Uniform 

n=50 True �̂� 0.9936 0.3587 0.9839 0.0063 0.9958 0.7398 

Boot. �̂�∗ 0.9898 0.0766 0.9876 0.0299 0.9970 0.9206 

n=500 True �̂� 0.9970 0.9174 0.9949 0.5779 0.9975 0.9645 

Boot. �̂�∗ 0.9950 0.5901 0.9917 0.1719 0.9966 0.8738 

 

4.1 Testing for Goodness of Fit of Residuals  

In this section, we apply tests that consider the 

goodness of fit between a hypothesised distribution 

function and an empirical distribution function of 

residuals. Thus, we are interested in testing the 

hypothesis that a normal distribution will be satisfactory 

as a probability distribution of residual values, i.e., 

𝐻0: 𝐹(𝑥)  =  𝐹0(𝑥), against all alternative 𝐻1: 𝐹(𝑥) ≠
𝐹0(𝑥), where 𝐹0(𝑥) is a normal distribution function 

(Hogg et al., 2013; D’Agostino, 2017).  

 

The EasyFit statistical package is used to 

determine the goodness of fit. The Kolmogorov-Smirnov 

is used, which includes the critical value at the 𝛼 =  0.05 

significance level.  

 

Numerical results of goodness of fit for residual 

values of Model (2) with samples 50 and 500 are given 

in Tables 3 (normal), 4 (exponential), and 5 (uniform), 

respectively. In addition, the probability density function 

and quantile-quantile (Q-Q) plots of true (top) and 

bootstrap (bottom) distributions from the fitting results 

with samples 50 (left) and 500 (right) of Tables 3, 4, and 

5 are shown in Figures 4, 5, and 6, respectively.  

 

Table 3: Numerical Results of Fit for Residuals of Model (2); Normal 
Goodness of Fit Sample Size  

 

True Sampling 

Distribution 

(Normal) 

(𝝁 = 𝟎. 𝟑𝟑𝟏𝟕) 

(𝝈 = 𝟎. 𝟏𝟎𝟎𝟏) 

Bootstrap Sampling 

Distribution 

(Normal) 

(𝝁 = 𝟎. 𝟓𝟒𝟎𝟔) 

(𝝈 = 𝟎. 𝟏𝟗𝟔𝟗) 

Kolmogorov-Smirnov n=50 Statistic 

𝛼 

Critical Value 

Reject? 

0.0827 

0.05 

0.0860 

No 

0.0525 

0.05 

0.0860 

No 

Goodness of Fit Sample Size  True Sampling 

Distribution 

(Normal) 

(𝝁 = 𝟎. 𝟑𝟑𝟑𝟖) 

(𝝈 = 𝟎. 𝟎𝟐𝟗𝟗) 

Bootstrap Sampling 

Distribution 

(Normal) 

(𝝁 = 𝟎. 𝟑𝟑𝟒𝟏) 

(𝝈 = 𝟎. 𝟎𝟑𝟕𝟑) 

Kolmogorov-Smirnov n=500 Statistic 

𝛼 

Critical Value 

Reject? 

0.0420 

0.05 

0.0860 

No 

0.0470 

0.05 

0.0860 

No 

 

  
(1) n=50 (2) n=500 

Figure 4: The probability density function and q–q plots of Residuals of Model (1); The Normal Case 
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Table 4: Numerical Results of Fit for Residuals of Model (2); Exponential 

Goodness of Fit Sample Size  True Sampling 

Distribution 

(Normal) 

(𝝁 = 𝟏. 𝟗𝟖𝟒𝟕) 

(𝝈 = 𝟏. 𝟎𝟖𝟕𝟎) 

Bootstrap Sampling 

Distribution 

(Normal) 

(𝝁 = 𝟎. 𝟖𝟔𝟔𝟑) 

(𝝈 = 𝟎. 𝟑𝟕𝟏𝟎) 

Kolmogorov-Smirnov n=50 Statistic 

𝛼 

Critical Value 

Reject? 

0.1269 

0.05 

0.0860 

Yes 

0.0760 

0.05 

0.0860 

No 

Goodness of Fit Sample Size  True Sampling 

Distribution 

(Normal) 

(𝝁 = 𝟏. 𝟗𝟗𝟎𝟑) 

(𝝈 = 𝟎. 𝟑𝟔𝟔𝟖) 

Bootstrap Sampling 

Distribution 

(Normal) 

(𝝁 = 𝟎. 𝟑𝟑𝟒𝟏) 

(𝝈 = 𝟎. 𝟎𝟑𝟕𝟑) 

Kolmogorov-Smirnov n=500 Statistic 

𝛼 

Critical Value 

Reject? 

0.0333 

0.05 

0.0860 

No 

0.0570 

0.05 

0.0860 

No 

 

  
(1) n=50 (2) n=500 

Figure 5: The probability density function and q–q plots of Residuals of Model (1); The Exponential Case 

 

Table 5: Numerical Results of Fit for Residuals of Model (2); Uniform 

Goodness of Fit Sample Size  True Sampling 

Distribution 

(Normal) 

(𝝁 = 𝟎. 𝟑𝟑𝟏𝟕) 

(𝝈 = 𝟎. 𝟏𝟎𝟎𝟏) 

Bootstrap Sampling 

Distribution 

(Normal) 

(𝝁 = 𝟎. 𝟓𝟒𝟎𝟔) 

(𝝈 = 𝟎. 𝟏𝟗𝟔𝟗) 

Kolmogorov-Smirnov n=50 Statistic 

𝛼 

Critical Value 

Reject? 

0.0827 

0.05 

0.0860 

No 

0.0525 

0.05 

0.0860 

No 

Goodness of Fit Sample Size  True Sampling 

Distribution 

(Normal) 

(𝝁 = 𝟎. 𝟑𝟑𝟑𝟖) 

(𝝈 = 𝟎. 𝟎𝟐𝟗𝟗) 

Bootstrap Sampling 

Distribution 

(Normal) 

(𝝁 = 𝟎. 𝟑𝟑𝟒𝟏) 

(𝝈 = 𝟎. 𝟎𝟑𝟕𝟑) 

Kolmogorov-Smirnov n=500 Statistic 

𝛼 

Critical Value 

Reject? 

0.0420 

0.05 

0.0860 

No 

0.0470 

0.05 

0.0860 

No 
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(1) n=50 (2) n=500 

Figure 6: The probability density function and q–q plots of Residuals of Model (1); The Uniform Case 

 

5. DISCUSSION 
A close examination of our findings drew the 

following remarks: The bootstrap method based on 

Monte-Carlo approximation has a reasonable 

performance in uncovering the true sampling distribution 

of each parameter estimate, and this is true for normal, 

exponential, and uniform white-noise distributions. The 

previous point can be inferred from the summary 

statistics of Model (2) (Table 1) when we compare the 

descriptive statistics (mean, standard error) of the true 

sampling distribution of each parameter estimate with its 

counterparts obtained by bootstrapping. Furthermore, the 

visual comparison between the histogram display, and 

boxplot of the true sampling distributions with the 

corresponding ones for bootstrap distributions (Figures 

1, 2, and 3) confirmed our finding. In addition, in most 

cases, bootstrap standard errors are slightly lower than 

their counterparts obtained from true distributions, 

perhaps due to sampling variability. The bootstrap 

estimate of the variance of residuals is near the true value 

in the Gaussian distribution case. However, in the non-

Gaussian cases, there was a clear difference from the true 

distribution.  

 

Table 1 highlights that the bootstrap confidence 

interval of each estimate based on the percentile method 

has a good approximation to its counterpart obtained 

from true distributions. This outcome means that the 

bootstrap technique can construct a confidence interval 

for a parameter without appealing to the approximate 

normality based on the large sample theory, perhaps at 

the expense of tedious computation. However, it seems 

that the performance of the bootstrap method for the 

sample size of 500 is better than the sample size of 50. It 

is worth noting that had we used more than 250 

replications in our study, the convergence of the Monte-

Carlo approximation to the bootstrap distribution would 

have been faster.  

 

The normality test (Table 2) of coefficients of 

Model (2) shows that all bootstrap estimates have normal 

distributions, except in just one case (exponential) with a 

sample size of 50, we could not accept the null 

hypothesis, which may be due to the sample size.  

 

Numerical results of goodness of fit for 

residuals of Model (1) with samples 50 and 500 show 

that we could not reject 𝐻0 in all cases except the 

exponential case with sample 50 (Table 4). In addition, 

the probability density function and q-q plots of residuals 

of Model (2) (Figures 4, 5, and 6) show that our decision 

about H0 might be reasonable.  

 

6. CONCLUSION 
It should be noted that these results are specific 

to Model (2). Moreover, we have used only three 

distributions (normal, exponential, and uniform) in the 

simulated data from Model (2), which does not guarantee 

the sensitivity of the performance of the bootstrap 

method. For future work, we suggest using more models 

with different distributions of residuals before these 

results can be generalised. In addition, it would be 

interesting to repeat this study using nonlinear time series 

models, for instance, threshold models. Finally, using the 

block bootstrap (𝐵𝐵𝑀) method rather than the bootstrap 

method based on Monte-Carlo approximation in the 

simulation procedure would be attractive.  
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