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Abstract  Review Article 
 

This paper examines the existence of maximal solution of the comparison differential system and also establishes 

sufficient conditions for the asymptotic practical stability of the trivial solution of a nonlinear impulsive Caputo 

fractional differential equations with fixed moments of impulse using the vector Lyapunov functions. First, it was 

discovered that the vector form of the Lyapunov function was majorized by the maximal solution of the comparison 

system. From the results obtained, it was also established that the main system is asymptotically practically stable in 

the sense of Lyapunov. 
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1. INTRODUCTION 
The study of the concept of fractional calculus 

which is mainly concerned with the pure mathematical 

fields is traceable to the 19th century by Liouville, 

Riemann, Caputo, etc [29, 39]. 

 

One of the trends in the stability theory of 

solutions of differential equations is the so-called 

practical stability [10-35]. This aspect of stability was 

introduced by LaSelle in [26], and it is used in 

estimating the worst-case transient and steady-state 

responses together with verifying point wise in time 

constraints imposed on the solution path or the 

trajectory curve. Fundamental results in this area were 

established in [10,22,34-36,42] for integer order 

derivative. 

 

Rapidly revolving alongside the development 

of the theory of practical stability in recent years is the 

mathematical theory of impulsive differential equations 

which have experienced a massive research attention 

and development. The theory of impulsive differential 

equation is richer than the corresponding theory of 

differential equations [18], as they constitutes very 

important models for describing the true state of several 

real life processes and phenomena since many evolution 

processes are characterized by the fact that, at certain 

moments of time, they experience a change of state 

abruptly. These processes are assumed to be subject to 

short term perturbations whose duration is negligible in 

comparison with the duration of the process. 

Consequently, it is natural to assume that these 

perturbations act instantaneously, that is, in the form of 

impulses. For instance, many biological phenomena 

involving thresholds, bursting rhythm models in 

medicine and biology, optimal control models in 

economics, pharmacokinetics and frequency modulated 

systems do exhibit impulsive effects [18]. 

 

Again, the efficient applications of impulsive 

differential system require the finding of criteria for 

stability of their solutions [37], and one of the most 

versatile methods in the study of the stability properties 
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of impulsive systems is the Lyapunov second method 

(see [6]). 
 

The novelty of the Lyapunov's second method 

as observed in [6-40] over other methods of examining 

stability properties of impulsive differential systems 

like the Razumikhin technique, the use of matrix 

inequality, the Laplace transform method, variational 

method, etc. stems from the fact that the method allows 

us to examine the stability of solutions without first 

solving the given differential equation - by seeking an 

appropriate continuously differentiable function 

(Lyapunov’s function) that is positive definite, whose 

time derivative along the trajectory curve is negative 

semidefinite. 

 

The stability of the zero solution of impulsive 

differential equations have been extensively studied in 

[13] and [32], and fundamental results have been 

obtained for its corresponding fractional order in [3-46]. 

Atsu in [6] obtained fundamental results on the practical 

stability of impulsive Caputo fractional differential 

equations using the vector Lyapunov functions, 

stressing the importance of the method over the scalar 

Lyapunov function. 

 

In this paper, the asymptotic practical stability 

of impulsive Caputo fractional order systems is 

considered, and by means of the comparison principle, 

sufficient conditions for the asymptotic practical 

stability of impulsive fractional order systems is 

established using a class of piecewise continuous 

functions. An illustrative example is given to confirm 

the suitability of the obtained results. 

 

2. Preliminaries and Basic Definitions 

The basic concept of calculus such as the 

derivative and integrals can be generalized to 

noninteger order using fractional calculus. This allows 

for more in-depth understanding of behavior of 

functions, particularly when they have complex or 

irregular behavior. There are multiple ways to define 

fractional derivatives and the integrals and the choice of 

definitions depends on the specific applications (see 

[16-39]). 

 

 

There are several definitions of fractional derivatives and fractional integrals. 

General Case: Let the number 0,1 −  nn  be given, where n  is a natural number, and (.)  denotes the 

Gamma function. 

 

Definition 2.1 

The Riemann Liouville fractional derivative of order   of )(t  is given by (see [35]) 
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Definition 2.2 

The Caputo fractional derivative of order   of )(t  is given by (see [36]) 

0

)(1 ,)()(
)(

1
)(

0

0
ttdssst

n
tD

t

t

nn

t

C

t −
−

= 
−− 


   

 

The Caputo derivative has many properties that are similar to those of the standard derivatives which make them 

easier to understand and apply. Also, the initial conditions of the Caputo fractional order derivative are also easier to 

interpret in physical context. 

 

Definition 2.3 

The Grunwald-Letnikov fractional derivative of order   of )(t  is given by (See [2]) 
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Definition 2.4: The Grunwald-Letnikov fractional Dini derivative of order   of )(t is given by (See [2]) 
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where rC  are the binomial coefficients and 
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Particular Case (when n=1). In most applications, the order of   is often less than 1, so that )1,0( . For simplicity 

of notation, we will use 
DC

 instead of 
DC

t0
 and the Caputo fractional derivative of order   of the function )(t  is  

 −


= −

t

t

C ttdssttD

0

0,)(
)(

1
)( 


                   (2.1) 

 

3. Impulses in Fractional Differential Equations 

 

Consider the initial value problem (IVP) for the system of fractional differential equations (FrDE) with a Caputo 

derivative for .10    
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Some sufficient conditions for the existence of the global solutions to (3.1) are considered in [8-43].  

The IVP for FrDE (3.1) is equivalent to the following Volterra integral equation (See [3]), 
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Consider the IVP for the system of impulsive fractional differential equations (IFrDE) with a Caputo derivative for 
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NNN under the following assumptions: 

;...,...0)( 21 →→ kastandttti kk

NN RRRfii →+:)( is piecewise continuous in ],( 1 kk tt −  

and for each ,...,2,1, = kRx N
 and ),(),(lim

),(),(




+

→
=

+ k
tyt

tfytf
k

 exists; 

NN

k RRIiii →)(  

 

In this paper, we assume that 0)0(,0)0,(  kItf  for all k so that we have trivial solution for (3.3), and the points 

,...2,1, =ktk are fixed such that .lim....21 =
→

k
k

tandtt The system (3.3) with initial condition 00 )(  =t  is 

assumed to have a solution ).),,([),;( 000

NRtPCtt    

 

Remark 3.1. The second equation in (3.3) is called the impulsive condition, and the function ))(( kk tI   gives the 

amount of jump of the solution at the point .kt  

 

Definition 3.1 Let NN RRR → +:  Then  is said to belong to class   if, 

(i)   is continuous in ],( 1 kk tt −  and for each 
NR and ),(),(lim
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(ii)  is locally Lipschitz with respect to its second argument x  and 0)0,(  t
 

 

Now, for any function ).,),([),( 0

NRtPCt +   we define the Caputo fractional Dini derivative as:  
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0tt   where NRtt   ,,),,[ 00
 and there exists 0h  such that ].,[ 0 Ttrht −  
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Definition 3.2 A function ],[ nn RRPCg is said to be quasimonotone nondecreasing in  , if y  and ii y=  

for ni 1  implies ).()( ygg ii =  

 

Definition 3.3 The zero solution of (3.3) is said to be: 

(PS1) practically stable if for every + Rtand 00  there exist 0),( 0 = t  continuous in 0t  such that for 

any   00 ,NR Implies   ),,( 000 ttRN
 for ;0tt   

(PS2) uniformly practically stable if for every 
+ Rtand 00 there exist ,0)( =   continuous in 0t  such 

that for any   00 ,NR  implies   ),,( 000 ttRN  for ;0tt   

(PS3) asymptotically practically stable if it is practically stable and if for each + Rtand 00  there exist positive 

numbers 0)( 000 = t  and ),( 0 tTT =  such that for Ttt + 0
 and  0

 implies ;),,( 00  tt  

(PS4) uniformly asymptotically practically stable if it is uniformly practically stable and )(00 =   and )(TT =  

such that for Ttt + 0
, the inequality  0

 implies .),,( 00  tt  

 

Definition 3.4 A function )(ra is said to belong to the class K  if ,0)0(),),,0([ = + aRPCa   and )(ra  is 

strictly monotone increasing in .r  

In this paper, we define the following sets: 

  = :NRS  

  = :NRS  

 

Suffice to say that the inequalities between vectors are understood to be component-wise inequalities. 

We will use the comparison results for the impulsive Caputo fractional differential equation of the type 
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,0)0,(,:),,[, 0 →= +++ tgRRRgtRRu nnn  where g  is the continuous mapping of nRR ++   into
nR . The 

function ],[ nn RRRPCg ++   is such that for any initial data ,),( 00
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 the system (3.5) with initial 

condition 
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Applying equation (3.8) in [2], we have
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By the lemma, we have that  
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Note that some existence results for (3.5) are given in [12-15].  

 

Remark 3.3 Lemma 3.2 in [1], extends Lemma 1 in [2], where the vectors ),(),( 21  tmandtm  are compared 

component-wise. 

 

In the following, we establish the comparison result for the system (3.3). 

 

4.   Fractional Differential Inequalities and Comparison Results for Vector Fractional Differential Equation 

   

In this section, again we assume that .10    
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The function ),(  tu  is a solution of (4.3), where 0  the fractional differential equation (3.5) if and only if it 

satisfies the Volterra fractional integral equation, 

.),[,))),(,(()(),(

0

0

1

)(
1

0  +−++= −



t

t

ttdssusgstutu  




           (4.4) 

Let the function ),],([),( 0

NRSTtPCtm +   be defined as ))(,(),( tttm =   

We now prove that 

),[),(),( 0  ttfortutm  
                     (4.5) 

Observe that the inequality (4.5) holds whenever ..0 eitt =  

),(),(),( 00000   tuuttm =  

Assume that the inequality (4.5) is not true, then there exists a point 01 tt   such that  

),(),(),(),( 11   tutmandtutm = for ).,[ 10 ttt  

It follows from Lemma 3.2 that 

 

..0)),(),(( 11 eitutmDC −+  
   

 

),()),(( 11  
 tuDtmD CC

++   

 
),())(,( 111  

 tuDttD CC

++   

and using (4.3) we arrive at 

 

),(,()),(,())(,( 111111  tutgtutgttDC ++  

Therefore,  

)),(,(),( 111  tutgtmDC +
                     (4.6) 

 

From Theorem 4.1, the function ),,()( 00  ttt =  satisfies the IVP (4.3) and the equality 

,)),(,()]),(()([suplim 0
1

0

holdsttfhtSt
h

h



→

=−−
+


            (4.7) 

where ),,()( 00  ttt =  is any other solution of (3.5), and  

 0

][

1

1 )()1()),((

0

  −−−= 

=

+ 

−

rhtChtS r

r

r
h

tt

                 

(4.8) 

is the Grunwald Letnikov fractional derivative 
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Since ),( t  is locally Lipschitzian with respect to the second variable, we have that, 
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Using equation (4.8), equation (4.11) becomes, 
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Substituting equation (4.12) into (4.10) we have 
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Dividing through by 0h  and taking the +→ 0suplim has  we have, 
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From equations (3.6) and (3.7) in [1], we have that 
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Using condition (ii) of the Theorem 4.1, we obtain the estimate 
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Now equation (4.14) with 1tt =  contradicts (4.6), hence (4.5) is true.    □  

For ],,[ 0 Ttt  we now establish that 
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Observe that the inequality (4.15) holds for 0tt =  

Assume that (4.15) is not true. Then there exists a point 1t such that ),(),( 21 21
  tutu = and 
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By Lemma 3.2, we have that 
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which is a contradiction, and so (4.15) is true. Thus, equations (4.5) and (4.15) guarantee that the family of solutions
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Arzela-Ascoli theorem, )},({  tu
i
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ij
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to the function )(t  on ].,[ 0 Tt  Then we show that )(t  is a solution of (4.4). Thus, equation (4.4) becomes  
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Taking the →jiaslim  in (4.16) yields, 
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              (4.17) 

 

Hence, )(t  is a solution of (3.5) on ].,[ 0 Tt  We claim that )(t  is the maximal solution of (3.5). Then, from (4.5), we 

have that 
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Suppose that in Theorem 4.1, ,0),( utg then we have the following results 

 

Corollary 4.1. 
 

 

Assume that Condition (i) of Theorem 4.1 holds and,  
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5.    Main Results 

 

In this section, we will obtain sufficient conditions for the practical stability as well as asymptotic practical stability of  

 

the system (3.3). Again we assume .10    

 

Theorem 5.1. Assume that:  
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Then the practical stability of the trivial solution 0=u  of (3.5) implies the practical stability of the trivial solution 

0=  of (3.3). 

 

Proof. Let  0  and 
+Rt0

 be given. 
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Assume that the solution (3.5) is stable. Then given 0)( b  and +Rt0 , there exists a positive function 

0),( =  ot  which is continuous in 0t  for each   such that  
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where ),,( 00 uttu  is any solution of (3.5). 

Choose ).,( 000 += tu  

Since ),( xt  is continuous, then by the property of continuity, given 0 there exists a positive function 

0),(11 =  ot  that is continuous in ot  for each   such that the inequalities 
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and as 0,0),( →→ t then the inequalities  
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Suppose that this claim is false, then there would exists a point ),[ 01 ttt   and the solution ),,( 00  tt  with 
10    

such that 

 = )()( 1 tandt  for ),[ 10 ttt
                

(5.3) 
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for ),[ 10 ttt  and from Theorem 4.1, 
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where 
=

=
n

i

i uttt
1

00 ),,()(   is the maximal solution of (3.5). 

Then, using equations (5.4), (5.3), (5.5) and condition (iii) of Theorem 5.1 we arrive at the estimate 
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which leads to a contradiction. 

 

Hence, the practical stability of the trivial solution 0=u  of (3.5) implies the practical stability of the trivial solution 

0=  of (3.3). 

 

Theorem 5.2. Assume that: 
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( ) ),,()( 0  tbiii   for all ,),( +  SRt   where Kb  and .),(),,(
1

0 
=

=
N
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i tt    

Then the asymptotic practical stability of the trivial solution 0=u  of (3.5) implies the asymptotic practical stability of 

the trivial solution 0=  of (3.3). 

 

Proof. Let  0  and +Rt0  be given. 

Assume that the trivial solution (3.5) is asymptotically practically stable. Then it is practically stable, and given 

0)( b  and +Rt0 , there exists a positive function 0),( =  ot  which is continuous in 0t  for each   such 

that  


=
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=
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Since ),( xt  is continuous, then by the property of continuity, given 0 there exists a positive function 

0),(11 =  ot  that is continuous in ot  for each   such that the inequalities 

 − ),(),( 00tt  implies 
10  −  

and as 0,0),( →→ t then the inequalities  

  ),( 0010 tand                     (5.7) 

are satisfied simultaneously. 

We claim that, if ,10    then  ),,( 00tt . 

Now, suppose this claim is false, then there exists a sequence  nt  such that Tttandnast nn +→→ 0  

such that  

 ),,( 00ttk , where ),,( 00  ttk
 is some solution of (3.3) starting in 

00   . 

Now, from condition (iii) of the Theorem 5.2, we have that 

      

 Ttttttttb kkkk + 000000 )),,,(,()),,((   i.e. 

 

 
Ttttttb kkk + 0000 )),,,(,()( 

                
 (5.8) 

This implies that ),[)( 10 tttforSt    and for ),[ 10 ttt  from Theorem 4.1, 
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N

i

kikk utttt
1
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Combining equations (5.8), (5.9), (5.6) and (5.5) gives the estimate 

)(),,()),,(,()(
1

00000  butttttb
N

i

kikk  
=

 

which leads to an absurdity. 

 

Hence, the asymptotic practical stability of the trivial 

solution 0=u  of (3.5) implies the asymptotic practical 

stability of the trivial solution 0=  of (3.3). 

 

From the results obtained, we can therefore conclude 

that the trivial solution of the main system (3.3) is 

asymptotically practically stable. 

 

6. CONCLUSION 
In this paper, the existence of the maximal 

solution of the comparison system for vector Lyapunov 

function is established, and sufficient condition for the 

asymptotic practical stability of impulsive Caputo 

fractional order systems is presented by means of the 

comparison principle. It was discovered that the 

maximal solution of the comparison system majorizes 

the vector form of the Lyapunov function. Again, 

sufficient conditions for the asymptotic practical 

stability of the impulsive fractional order systems are 

established. The results also went t further to emphasize 

the fact that the solution of the main system is 

asymptotically practically stable. 
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