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Abstract  Original Research Article 
 

In general, the maximum likelihood method with Newton-Raphson iteration is used to estimate the parameters of the 

binary logistic regression models, and also can be estimated using an iterative (re-)weighted least squares (IWLS) whose 

iterations are equivalent to the Newton-Raphson iterations. However, it is known that these methods produce bias 

estimates if small sample sizes are used. The main aim of this paper is to determine the appropriate sample size to 
achieve the unbiasedness of parameters estimates in the binary logistic regression model. To investigate the appropriate 

sample size three models were suggested and generated with known parameters. The estimates of the suggested models 

were collected via simulation study, using different sample sizes. The expected values for the collected parameters by 

the simulation where compared with the actual values of parameters of the suggested models.  From the results of the 
simulation study, it was found that the appropriate sample size to achieve the unbiasness for such models, is 80 or more.  

Keywords: Logistic regression, Maximum likelihood estimation, Iterative (re-)weighted least squares,  Convergence 

problems, Bias reduction technique. 
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1. INTRODUCTION 
Great deal of practical data in the medical 

sciences, social sciences, and other fields need to model 

binary response variables for which the response 
outcomes are success or failure. For example, one might 

be interested in modeling the existence of certain 

diseases. In this case, the response variable would take 

the value of 1 if the disease exists and 0 if not.  One of the 
statistical models that can be used to deal with binary 

response data is the  binary logistic regression model. 

Binary logistic regression models can be used  to study 

relationship between multiple explanatory variables and 
a single binary response variable or a categorical variable 

with two categories. In general, to estimate the 

parameters of the binary logistic regression models, the 

maximum likelihood parameter estimation method with 
Newton-Raphson iteration is used [1].  Furthermore,  the 

parameters of binary logistic regression models can be 

estimated using an iterative (re-) weighted least squares 

(IWLS) solver.  It is straightforward to prove that the 
Newton-Raphson iterations are equivalent to (IWLS) 

iterations [2]. These methods are not convergent if the 

sample size is small and the proportion of success events 

is small [3]. If the result of parameter estimation through 
the iteration is not convergent, indicate that the model 

formed is no suitable for the data being analyzed [4]. 
Since the logistic model is widely used in the medical 

sciences, social sciences. The subject of studying the 

behavior of the maximum likelihood estimates for 

logistic regression model is very important.  Therefore, 
we need to solve the un-convergence problem. There are 

many discussions on the un-convergence problem in 

logistic regression model  like [5]. Also, there is a study 

about the bias reduction of the estimates like [6], and for  
the effects of the sample size see [7]. One way to resolve 

this problem is using the score function modification, 

modification on score function discovered by Firth [8]. 

Many studies have used this technique like [3, 9]. These 
studies  concentrate to evaluate the behavior and 

properties of the bias reduction method using the score 

function modification by simulated data with different 

sample sizes and parameters. 
 

However, it is well known that the maximum 

likelihood estimates are asymptotically unbiased, which 

results in a bias for small samples [8]. Therefore, the 
convergence or (bias) problem is related to the sample 

size, so the purpose of this research is to determine the 

appropriate or optimal sample size to avoid the problem 

https://saspublishers.com/sjpms/
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of convergence and obtain the unbiased Parameter 

estimates of the binary logistic regression model. 

 

2. BINARY LOGISTIC REGRESSION 

MODEL 
Binary logistic regression is an existing causes 

and effects analysis for such binary response variables 

for which the response outcomes are success or failure. 

The binary random response can be defined as,  

𝑦 = {
1 𝑖𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑖𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠
0 𝑖𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑖𝑠 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

}. 

 

The above binary random response can be 
considered as a bernoulli random variable with 

probability of success 𝑝 and probability of failure (1 −
𝑝). Then, the sum of the responses over a sample n will 

have a binomial distribution. The general form for the 

multiple logistic regression model can be written as [10], 

𝒍𝒐𝒈𝒊𝒕 (𝒑) = 𝐥𝐨𝐠 (
𝒑

𝟏 − 𝒑
) = 𝑿𝜷 

 

The right-hand side of the above equation is 

called the systematic component, where 𝑋 is a (n x k) 

matrix and 𝛽 is a (k x 1) vector of parameters.  

 

The term 𝑙𝑜𝑔𝑖𝑡 (𝑝) = log (
𝑝

1−𝑝
) is a logit 

transformation from probabilities to a continuous 
random response, and it is called the link function. From 

the above equation, we can write the probability of 

success vector as, 

𝒑 =
𝒆𝑿𝜷

𝟏 + 𝒆𝑿𝜷
 

 

3. THE MAXIMUM LIKELIHOOD METHOD 
TO ESTIMATE THE PARAMETERS OF THE 

MODEL 
Let 𝑦1, … , 𝑦𝑛 be independent random variables 

such that 𝑦𝑖 is the number of successes in the group or 

class i ni is the number of trials in the ith class, and 𝑝𝑖 is 

the probability of success in the ith class. In this case 𝑦𝑖 

will have a binomial distribution with 

parameters (𝑛𝑖 , 𝑝𝑖). The likelihood function for the ith 

observation can be written [10], 

 

𝒍(𝒑𝒊; 𝒚𝒊) = (
𝒏𝒊

𝒚𝒊
) 𝒑𝒊

𝒚𝒊(𝟏 − 𝒑𝒊)𝒏𝒊−𝒚𝒊 

 

For the independent observations, the likelihood function will be, 

𝑳(𝑷; 𝒀) = ∏ (
𝒏𝒊

𝒚𝒊
) 𝒑𝒊

𝒚𝒊(𝟏 − 𝒑𝒊)𝒏𝒊−𝒚𝒊

𝒎

𝒊=𝟏

 

 

Therefore, the log likelihood function is, 

𝑳(𝑷; 𝒀) = ∑ [𝒍𝒐𝒈 (
𝒏𝒊

𝒚𝒊
) + 𝒚𝒊 𝐥𝐨𝐠 (

𝒑𝒊

𝟏 − 𝒑𝒊
) + 𝒏𝒊𝐥𝐨𝐠(𝟏 − 𝒑𝒊)]

𝒎

𝒊=𝟏

 

 

We can write the log likelihood function in terms of the Xi’s and βi’s as follows, 

𝑳(𝜷; 𝒀) = ∑ [𝒍𝒐𝒈 (
𝒏𝒊

𝒚𝒊
) + 𝒚𝒊 ∑ 𝐗𝐢𝐣𝛃𝐣

𝐤

𝐣=𝟏

− 𝒏𝒊𝐥𝐨𝐠 (𝟏 + 𝐞𝐱𝐩 ∑ 𝐗𝐢𝐣𝛃𝐣

𝐤

𝐣=𝟏

)]

𝒎

𝒊=𝟏

 

 

To find the estimators for the coefficients  𝜷, we derive the log likelihood function with respect to  𝜷 and maximize this 

function. First the derivative of the log likelihood function with respect to 𝑝𝑖 is, 

𝝏𝑳

𝝏𝒑𝒊
= ∑

𝒚𝒊 − 𝒏𝒊𝒑𝒊

𝒑𝒊(𝟏 − 𝒑𝒊)

𝒎

𝒊=𝟏

 

Using the relation 𝑝𝑖 =
𝑒𝛽0+ 𝛽1𝑋𝑖1+⋯+𝛽𝑘𝑋𝑖𝑘

1+𝑒𝛽0+ 𝛽1𝑋𝑖1+⋯+𝛽𝑘𝑋𝑖𝑘
, we can find 

𝜕𝑝𝑖

𝜕𝛽𝑗
 

 

By applying the chain rule, we can find the derivative of the log likelihood function with respect to 𝛽𝑗 as follows, 

𝝏𝑳

𝝏𝜷𝒋
=

𝝏𝑳

𝝏𝒑𝒊

𝝏𝒑𝒊

𝝏𝜷𝒋
 

 

Where 

𝝏𝑳

𝝏𝒑𝒋
= ∑

𝒚𝒊 − 𝒏𝒊𝒑𝒊

𝒑𝒊(𝟏 − 𝒑𝒊)

𝒎

𝒊=𝟏

 

 

 



 

    

Jalal A. Moaiti & Radi A. Othman, Sch J Phys Math Stat, Dec, 2024; 11(12): 187-191 

© 2024 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          189 

 

 

And 

𝝏𝒑𝒊

𝝏𝜷𝒋
=

𝒆𝜷𝟎+ 𝜷𝟏𝑿𝒊𝟏+⋯+𝜷𝒌𝑿𝒊𝒌

[𝟏 + 𝒆𝜷𝟎+ 𝜷𝟏𝑿𝒊𝟏+⋯+𝜷𝒌𝑿𝒊𝒌]𝟐
 𝑿𝒊𝒋 

 
Therefore, the maximum likelihood estimator for the jth coefficient can be obtained by solving the following score 

equations, 

𝝏𝑳

𝝏𝜷𝒋
= ∑

𝒚𝒊 − 𝒏𝒊𝒑𝒊

𝒑𝒊(𝟏 − 𝒑𝒊)

𝒎

𝒊=𝟏

𝝏𝒑𝒊

𝝏𝜷𝒋
= 𝟎 

 

We are not going to be able to set this to zero and solve exactly. (That’s a transcendental equation, and there is no closed-

form solution). We can however approximately solve it numerically. 

 
The above equation can be reduced in vectors notation, over all parameters as, 

𝝏𝑳

𝝏𝜷
= 𝑿𝑻(𝒀 − 𝝁) , 𝝁 = 𝒏𝒑  

 

The fisher information for 𝛽 is, 

−𝑬(
𝝏𝟐𝑳

𝝏𝜷𝒓 𝝏𝜷𝒔
) = ∑

𝒏𝒊

𝒑𝒊(𝟏 − 𝒑𝒊)

𝝏𝒑𝒊

𝝏𝜷𝒓

𝝏𝒑𝒊

𝝏𝜷𝒔
𝒊

 

=
𝒏𝒊

𝒑𝒊(𝟏 − 𝒑𝒊)
 (

𝝏𝒑𝒊

𝝏𝜼𝒊
)𝟐𝒙𝒊𝒓𝒙𝒊𝒔  , 𝜼𝒊 = ∑ 𝒙𝒊𝒋𝜷𝒋

𝒌

𝒋=𝟏

 = {𝑿𝑻𝑾𝑿}𝒓𝒔 

 
Where W is a diagonal matrix of weights giving by, 

𝑾 = 𝒅𝒊𝒂𝒈 {𝒏𝒊 (
𝝏𝒑𝒊

𝝏𝜼𝒊
)𝟐/ 𝒑𝒊(𝟏 − 𝒑𝒊)} 

 

And it can be reduced to, 

𝑾 = 𝒅𝒊𝒂𝒈[𝒏𝒊𝒑𝒊(𝟏 − 𝒑𝒊)] 
 

The response variable, 

𝜼𝒊 = 𝒍𝒐𝒈 (
𝒑𝒊

𝟏 − 𝒑𝒊
) = ∑ 𝒙𝒊𝒋𝜷𝒋

𝒌

𝒋=𝟏

 

 

Can be approximated, using first order Taylor series approximation as, 

𝒛𝒊 = �̂�𝒊 +  
𝒚𝒊 − 𝒏𝒊�̂�𝒊

𝒏𝒊

𝝏𝜼𝒊

𝝏𝒑𝒊
 

 

In matrix notation, the above quantities being computed at the initial estimate �̂�0 can maximize the likelihood function if, 

𝑿𝑻𝑾𝑿�̂� = 𝑿𝑻𝑾𝒁 

 

Which can be solved iteratively using iterative (re-)weighted least squares (IWLS) method, 

�̂� = (𝑿𝑻𝑾𝑿)−𝟏𝑿𝑻𝑾𝒁 

 

However, due to the approximation on the response vector 𝑍, 

𝑬(𝒁) ≠ 𝑿𝜷 →  𝑬(�̂�) ≠ 𝜷 

 

In other words, the iteration process results in biased estimates, especially if the sample size is small. 

 

4. SIMULATION STUDY 
Simulation studies were conducted to 

investigate the appropriate sample size to avoid the 

problem of convergence and obtain the unbiased 
parameter estimates of the binary logistic regression 

model. The simulation plan used are based on three 

binary logistic models were generated according to 

following model equations. 

• First model:   𝒍𝒐𝒈𝒊𝒕 = 𝟐 +  𝟎. 𝟓𝟖 𝒙 (𝑖. 𝑒 𝛽0 =
2 𝑎𝑛𝑑 𝛽1 = 0.58) 

• Second model:  𝒍𝒐𝒈𝒊𝒕 = 𝟎. 𝟓 +  𝒙   (𝑖. 𝑒 𝛽0 =
0.5 𝑎𝑛𝑑 𝛽1 = 1) 
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• Third model:   𝒍𝒐𝒈𝒊𝒕 = 𝟏 − 𝟏. 𝟐 𝒙  (𝑖. 𝑒 𝛽0 =
1 𝑎𝑛𝑑 𝛽1 = −1.2) 
 

The response variable, which takes the value 0 

or 1, was generated using a random bernoulli variable, 

simulation data for the three models were generated 

using different sample sizes, the smallest sample 𝑛 = 10 

and the largest sample 𝑛 = 10,000. For each sample size 

we perform 10,000 simulations. We will examine the 

precision of the estimation for these models with 

different sample sizes by compare expected values of 

parameters 𝐸(𝛽) obtained by simulation for (IWLS) 

method with known values of parameters 𝛽 to each the 

true model. 
 

5. RESULTS AND DISCUSSION 
A simulation study conducted to observe the 

behavior of the bias of (IWLS) parameter estimates in 
binary logistic regression for different sample sizes. The 

results of 10,000 simulations for the three true models 

were as follows. 
 

Table 1 shows results for true first 

model, 𝒍𝒐𝒈𝒊𝒕 = 𝟐 +  𝟎. 𝟓𝟖 𝒙 (𝑖. 𝑒 𝛽0 = 2 𝑎𝑛𝑑 𝛽1 =
0.58). 

 

Table 1: Results the simulated first model 

Sample size 𝑬(𝜷𝟎) 𝑬(𝜷𝟏) 

10 10.74 3.112 

20 3.150 0.901 

40 2.284 0.671 

80 2.120 0.615 

160 2.047 0.589 

320 2.025 0.588 

640 2.011 0.583 

1280 2.009 0.582 

2560 2.006 0.581 

5120 2.001 0.580 

10000 2.000 0.580 

Table 2 shows results for true second model, 𝒍𝒐𝒈𝒊𝒕 = 𝟎. 𝟓 +  𝒙 (𝑖. 𝑒 𝛽0 = 0.5 𝑎𝑛𝑑 𝛽1 = 1). 
 

Table 2: Results the simulated second model 

Sample size 𝑬(𝜷𝟎) 𝑬(𝜷𝟏) 

10 3.135 5.287 

20 0.813 1.617 

40 0.571 1.142 

80 0.510 1.049 

160 0.520 1.029 

320 0.505 1.015 

640 0.505 1.007 

1280 0.502 1.006 

2560 0.499 0.999 

5120 0.500 1.000 

10000 0.500 1.000 

 

Table 3 shows results for true third model, 𝒍𝒐𝒈𝒊𝒕 = 𝟏 − 𝟏. 𝟐 𝒙  (𝑖. 𝑒 𝛽0 = 1 𝑎𝑛𝑑 𝛽1 = −1.2). 
 

Table 3: Results the simulated third model 

Sample size 𝑬(𝜷𝟎) 𝑬(𝜷𝟏) 

10 5.300 -6.210 

20 1.751 -2.062 

40 1.147 -1.380 

80 1.055 -1.273 

160 1.010 -1.227 

320 1.001 -1.213 

640 1.010 -1.215 

1280 1.007 -1.208 

2560 1.004 -1.202 

5120 1.000 -1.201 

10000 0.999 -1.200 
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Results presented above give biased estimates 

(convergence problems) for known values of parameters 

when the sample sizes (𝑛 = 10,𝑛 = 20, and 𝑛 = 40) 

under the three true models. Therefore, 

𝐸(𝜷𝒊) ≠ 𝜷𝒊 , 𝑖 = 0,1 

 

But when sample sizes (𝑛 ≥ 80), the expected 

values of parameters 𝐸(𝛽) are unbiased estimates for 

known values of parameters 𝛽. Therefore, 

𝐸(𝜷𝒊) ≅ 𝜷𝒊 , 𝑖 = 0,1 

 

6. CONCLUSION 
The simulation study shows that the empirical 

results of computations to estimate the parameters of the 

logistic regression model, Clearly the bias of the 
parameter estimates obtained from the (IRLS) method 

depends on the sample size, if the sample size less than 

80 we found convergence problem, unless the sample 

sizes are equal to 80 or more. However, from this study 
we can conclude that, 

• If sample size (n ≥ 80), the estimate values 

obtained from the (IWLS) method in the binary 

logistic regression model are approximate the 
values of actual parameters (unbiased 

estimates). 

• If sample size (n < 80), the estimate values 
obtained from the (IWLS) method in the binary 

logistic regression model are not approximate 

the values of actual parameters (biased 

estimates). 
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