Scholars Journal of Physics, Mathematics and Statistics

Abbreviated Key Title: Sch J Phys Math Stat
ISSN 2393-8056 (Print) | ISSN 2393-8064 (Online)
Journal homepage: https://saspublishers.com

@ OPEN ACCESS

Numerical Analysis of a BDF2 finite Element Scheme for Navier-Stokes-

Omega Model

Hongjian Wang'*

College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China

DOI: https://doi.org/10.36347/sjpms.2024.v11i09.003

*Corresponding author: Hongjian Wang

| Received: 12.08.2024 | Accepted: 17.09.2024 | Published: 19.09.2024

College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, Sichuan China

Abstract

Review Article

In this paper, we study a second-order backward difference formula (BDF2) scheme for the Navier-Stokes-omega (NS-
omega) model. By employing the stabilization scheme for space discretization and the BDF2 method for time
discretization of NS-omega model, we obtain the fully discrete approximation of them. The paper provides an analysis
of the unconditional stability and convergence of the approximate solutions. Furthermore, the numerical experiments
are conducted to validate the theoretical findings and demonstrate the efficiency of the proposed scheme.
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1. INTRODUCTION

The challenge of simulating fluid flow is
primarily attributed to the extensive range of spatial eddy
scales. For turbulent flows, Kolmogorov's universal
framework provides significant insights into the behavior
of eddies within these turbulent flow regimes. Accurate
simulation of these eddies necessitates a substantial
number of spatial mesh points per time step in direct
numerical simulation (DNS), typically on the order of
Re®/*. Constrained by finite computational resources,
this approach to the Navier-Stokes equations (NSE)
poses a significant challenge in achieving precise
simulations, particularly at high Reynolds numbers.
Therefore, we should use the turbulence model for
numerical solution of flows with a high Reynolds
number. The common turbulence model is the large eddy
simulation (LES). The LES approach is apply a spatial
filter to the NSE. Furthermore, a-models are also
turbulence models.

The research on finite element methods (FEM)
for a-models of fluid flows has demonstrated their
superior effectiveness in obtaining accurate solution to
flow problems with coarser spatial and temporal
discretization compared to direct numerical simulation of
the NSE [1-3]. In these models, the NS-omega model is
unique in that in addition to its superior theoretical
properties such as energy conservation, model helicity
conservation and well-posedness [4, 5], it can be
computed efficiently by using unconditionally stable

algorithm. This model modifies the vorticity term
w=Vxu in the nonlinearity of the Navier-Stokes
equations. It controls turbulent cascades at scales smaller
than a certain length without introducing any additional
dissipation [1].

The convective term of the a-models is
represented in rotational form. For the NS-omega model,
we write the rotational form as follow

u —ux(Vx)+Vp—1Au=f,
v-.u=0, €))

—a’AT+T =u.

where u=u(x,t) is the velocity, p=p(xt)is the
pressure, v is the kinematic viscosity and f = f (x,t) is
an external force applied to the fluid and (—a® +1)™" is
the Helmholtz filter, where « > 0 is filtering radius, with
suitable initial conditions in a bounded, polyhedral
domain Qel%d=23) and no-slip boundary

condition u=0 on oQ. Some mathematical theories of
the continuous NS-omega model can be found in [5].

Numerical methods for solving the numerical
approximation of the NSE have been investigated
extensively. Such as the backward difference method,
projection method, discontinuous Galerkin method. Li
[22] proposed a second-order mixed stabilized finite
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element method for solving the variable density Navier—
Stokes equations. The method employs second-order
backward difference for temporal discretization. In [23],
Dokken and Johansson introduced a second-order
projection method for the Navier-Stokes equations,
leveraging the BDF2 scheme for temporal discretization
and the FEM for spatial discretization. They presents
several numerical experiments to varify the convergence.
Li and Shen [21] introduced a SAV approach that
guarantees unconditionally stable schemes for the
Navier-Stokes equations, and prove error estimates.

In this work, we investigate the convergence of
the BDF2 scheme in temporal discretization and FEM in
spatial discretization for the NS-omega model. Multi-
step backward difference formula (BDF) time integration
methods are widely used for partial differential
equations, see [6-11]. As a result of its stability and high
accuracy, BDF2 is one of the most popular BDF schemes
[12]. The first-order BDF and second-order BDF
temporal semi-discrete scheme for Navier-Stokes
equations was presented and analyzed by Girault and
Raviart in [24]. Rebholz and Tone study the H1-stability
for positive time of the BDF2 scheme for 2D Navier-
Stokes equations [13]. Rong and Fiordilino introduce the
BDF2 modular gradient divergence stabilization scheme
for Navier-Stokes equation in [14]. To the best of our
knowledge, there is no convergence analysis for the NS-

omega by using the BDF2 scheme in temporal
discretization.

The structure of this paper is as follows. In
Section 2, we establish the foundational notation and
essential preliminaries that will be employed throughout
the paper. Proceeding to Section 3, we delineate the
BDF2 discretization scheme for the NS-omega model,
accompanied by an in-depth examination of its stability
properties. In Section 4, we provide a comprehensive
theoretical analysis of the error estimates. Finally, the
numerical experiments corroborate the validity of our
theoretical findings.

2. Notation and Preliminaries

This section summarizes the notation,
definitions and preliminary lemmas needed. In this
article, we use the symbol C for positive numbers. It can
be different in different places and it is independent of
the mesh size h and the time step At . We first denote the

inner product in L*(€) and its corresponding norm by

(~) and [Hl. Similarly, the L"(Q) norms and the
k

Sobolev W () norms [17] norm are denoted by i,

and [H,,. H* is used to represent the Sobolev space

W, (@) and [l denotes the norm inH*. Additionally,
we define the function spaces as following

LP(0,T; L (Q) = {v [0,T] > L°(Q) | ( j; ||v(-,t)||z dt)® < oo},

L*(0,T;L°(Q) = {v [0, T]— L°(Q) | ess sup V(. 1)] . < oo},

L°(0,T;H*(Q) = {v [0,T]—> H*(Q) | (j;||v(-,t)||:dt)5 < oo},

L*(0,T;H*(Q)) = {v :[0,T]> H*(Q) | ess sup |v(.1)], < oo}.

Here,1< p<00,1<s<0,1<r <o0. For the function spaces, we have these norms

. = ([ olgar)

VI, :=ess sup v
0<t<T

forve L”(0,T; H*(Y),

forve L”(0,T;H*(Q)).

o . . T
We divide the time interval [0,T]into m elements (t,,t,,)forn=0,1,---M -1, where t, :=nAt and At =— . Next, we
m

introduce the analogous norms in the discrete condition

1
m
Il (5

p\P
T L e

n

Vn

\'

k

where v" =v(t,) and the same goes for the other variables.
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Next, we define the velocity and pressure spaces by
X =Hg(Q):={ve H'(Q):v|,=0},

Q=L@={ael’(@:] q=0},

We define X "is the dual space of X , and the norm is denoted by [Hl.. Then, the space of divergence-free V is denoted by
V={veX:(V-v,q)=0VvqeQ}.

Next, we define the trilinear form b(,-,-) andb,(.,-,-) by
b(u,v,w) = ((Vxu)xv,w),
b, (u,v, W) = ((VxT")xV,w).

For u,v,we X , the trilinear form b(u,v,w) satisfy the following inequalities
| b(u,v,w) [<CIl Vxull I vil_II wil,
[ b(u,v,w) [<CIl Vxull Il vil [l wil,
[b(u,v,w) |<Cll Vxull | Wil I vwll,

1 1

[b(u,v,w) < Cll ull2ll Vull2ll Wil || Vil

The weak formulation of (1) is: Findu :[0,T]— X and p:[0,T]— Q satisfy
(U, v)+b(u,u,v) +v(Vu,vv) - (p,V-v) = (f,v) VveX,
(V-u,q)=0 VvgeQ.

Suppose IT" is the uniformly regular triangulations of Q with Q= {UK Ke H“} ash — 0. Here h = max h , where

Ker"

h is a diameter of K .We can denote the finite element spaces X" < X,Q" = Q.. Then, the discrete divergence-free space

V" is denoted by
V=" e X" (V-v',q")=0Vq" € Q"}.

Assume the velocity-pressure finite element spaces X" and Q" satisfy the discrete inf-sup condition,
(qh V- Vh)

inf sup i

> B0,
@"<Q" pexn || WVl 11 g

Where S is a positive constant independent of the mesh size h.
In addition, X"and Q" satisfy the approximation properties [16]:
infllu-vil<ch“!lull,, veH" ()",
veX

inf [lu—vl, <Ch“lull,, veH" (),

veX

inf | p—gll<Ch“l pl,  peH ()
qe

The semidiscrete finite element approximation of (2) is: Find u" :[0,T]— X"and p":[0,T]— Q"
satisfy
(U, vy +b" u" V") (VU W — (p", Vv = (FL V") W e X,
(V-u",g"y=0 vq"eQ"

To study the discretization of the NS-omega model, we have to deal with the discrete differential filter.
Germano [18] introduced a continuous differential filter into the turbulent model.

Definition 2.1 Continuous differential filter: For ¢ € L*(Q) and « >0 is a fixed constant, denote the filter operation on
¢ by , where ¢ is the unique solution of
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—a*Ap+¢ = ¢
Then, we define the discete differential filter from Manica [19].
Definition 2.2 Discrete differential filter: Forw e L*(Q), for the filter radiusa >0, W" = (—a’A+1)"w is the unique

solution of
(VW V) +(W ) =W p) Yy e X" 3)

Now, we introduction some basic properties of discrete differential filters from [19].

Lemma 2.1 For we X , we have the bound of the discretely filter and approximately w
Il <ltwll, I vl <l vwll, [ V& I<Il VWl oo O]

Proof The proof of the first inequality in (4), we can set w = W" in (3), and use the Cauchy—-Schwarz inequality to complete
proof. For the second inequality in (4), the filter can be rewritten as
—a? (AW, p) + (W', ) = (W,p) Vi e X"

Sety = AW", we can get
&l AW P+ VIR = (Vw, V™).

By using the Cauchy—Schwarz inequality to complete the proof. The last inequality in (4) use the the second inequality and
the inequality || VxW'|| <I| W"I| to complete proof.

The error analysis will use the discrete Gronwall’s lemma:
Lemma 2.2 Suppose that n and N are non-negative integers, n< N . The real numbers a_,b,,c,,x,,At,C are non-negative
and satisfy that
N N-1 N
ay +AtY b <AtY xa +AtY ¢, +C.
n=0 n=0 n=0

Then,

ay +Atibn < exp(AthlKnj[Aticn +C).
n=0 n=0 n=0

The proof of Lemma 2.2 can be found in [15].

Lemma 2.3 If u,,u,,u, € L*(0,T;H*(Q)), then we have the following inequalities

Ty
Ity =20, +u, I < C(AD[ " e,

3u,,, —4u, +u, ,
2At

"2 1t
| <cx [ 1w,
2

3u,,, —4u, +u .
R i S < (At [ "Il ug et
k

—u,(t
2At l(n+1)

tha

We have used the following identity in the later proof
2(Ba—4b+c,a)=|al’ —|b]? +|2a-b]? —|2b—c| +|a=2b+cC . ..cociiiiinn, (5)

3. Numerical scheme and its stability
In this section, we introduce the BDF2 scheme for the NS-omega model and provide the analysis for its stability.
The method is given by: Givenu,,u, eV", find (u.,, p;.,) € X" xQ", forall (v",q") € X" xQ", satisfy
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L (3u", —

oap B 4ul +ul V") +b, (2ul —ulul V) VUl V')

n-17 n+1? n+1?

—(pl V) = (F V") (6)
(V'U:+1-qh) =0.
Theorem 3.1 Consider the NS-omega model with the BDF2 scheme. A solutionu,',1 =1,---M -1,
exists at each time-step. The scheme is unconditionally stable: the solution satisfy the following & priori bound:

h Hz
n+l

PO ST ) S
E” ug |l +§H2u”' —Uy 4P +vAtd [ vu
n=1

At N 1 1
<SP+ 0P + =120 —ul P
v ; n+1 2 1 2 1 0

Proof Set v" =u’’.,,q" = p{,, in (6) and use the identity (5). The nonlinear term in the scheme vanishes.Thus, for every n
we can obtain

1
m(ll ul P uliP —u'lP2u —u? [P+l ut, —2u! +ul,I7)

n+l~ S+l

+l2u”

n+l

h

h HZ
n+l )

n+l

1
I vut IR, =12+ 20 v
2v 2

ie.,

e, )

1 1
—(lup Pl uglP+Hi2up,, —upP=l2u) —ul, IP) +vIE vul IR, = f
2At 1%

n+l n+l

n+l

Multiplying (8) by At and then summing it fromn=1 toM -1, we have

h

Remark 3.1 Since the energy E(u") ::%II ur|P +%|I2ur'] —u",I? and the energy dissipation &(u):=vIl Vu"I* of NS-

omega model, we can get

M-1 M-1
Euy)+vAY e(ul, ) =EU)+ At (fUn) o ©)
n=1 n=1

Assume v =0 and f =0, we can get E(u/,) = E(u") . Hence, this scheme is energy conserving.

4. Error Analysis
In this section, we present a complete error analysis for method (6). To give the error estimate of the method (6),

we firstly denote the error bye,,, =u, ., —u’ . Next, we give the error estimate by the following theorem.

n+l n+l*

Theorem 4.1 Let (X",Q") be chosen as (P,, P,) Taylor-Hood elements, and further suppose that (u, p) is a solution of
the NS-omega model for & > 0,v > 0, with given f € L*(0,T;H *(Q)), satisfies the following regularity

uel”(O,T;(H" ("), u elZOT;(H " (")) coeeerrieeernnnnn. (10)
u, € PO, T;(H'(Q)"), Uy € COT;(L(QD))s ooeeeeiiiieeeeee, (11)
PelZ(O0,T;H ™ (Q))..covvieiieiiin, (12)

Then, (u",, p!.,) is given by method (6) withn €1,2,---,m -1, the error in the discrete solution satisfies

n+1?

m-1
%H e, +vALS | Ve, oIF <O +a* + (Ao (13)

n=1

Proof Note it foru,v,w e X , we can define the filtering error accordingly:
FE = FE, (u,v, W) == (VxUu—VxT")xV,W).
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Attime t ., the solution of the NSE(u, p) satisfies,

n+l

1
—@Bu,—4u_ +u_,,vV"Y+b (u _,,u v +v(Vu_,, V"
2At( A e e (13)

~(Poas V") = (F0 V) + Ena (V) = FE(U,, Uy, V),
where E; , (v")is denoted by
L) = (s TRy ),
We decompose the error as
€1 = oot nar s =Uns ~Ups g =Up —Up,s.
inv".

Here, U__, is the interpolation of u

n+l n+l

Subtracting (14) from (6), for all (v",q") € (X",Q"), we have

——(3e,,, —4e, +e,_,, V") +v(Ve,, V") - —ph V"
2At( e V) V(Ve, VW = (Pra = P o (14)

= E1+1(V ) En+1(v ) FE(U Vh)i

n+1? n+1’

Where E?

n+l

is denoted by

n+1 b (un+1’ U,V ) b (2U _un l!un+1!vh)'

Setting v" = ¢, in (15), we can get

n+1

1 1
E (3¢nh+1 - 4¢nh + ¢:—l' ¢nh+1)+|| V¢nh+1||2 = _m (377n+1 - 477n + 700 ¢nh+l)

_(V 77n+l'v¢r|11+1) + ( pn+l n+1’ V ¢n+l) .................... (15)
+Er11+l (¢n+l) En+1 (¢:+1)

_FE(un+17 n+11¢n+1)1
forevery A", €Q".
ie.,

—(H Gl =l g +1247., — g1 l247 — g P+ 4., — 247 + 47, 1F)

+ll Vg IF = ~ =4, + 0 ) R VL) (16)

+( pn+1 n+1’ V. ¢n+1) + E n+1 (¢n+1) En+1 (¢:+1)

_FE(un+1’ n+11¢n+1)l
forevery 4!, €Q".

The terms on the right-hand side of (17) can be bounded as follows. V¢, >0,

1
2_At(377n+1_ o + 17— 1’¢n+1) C ||377n+1 77 +77n 1 +Ol|| V¢h ”2

.................... 17)
<C— j“n nlPdt+ gl Vg 1P,
Where we use the second inequality in lemma 2.3.
—V(VT]n+1,V¢:+1)SV” v’]n+l”|v¢:+l‘|2 (18)
Sl Vg [P, |V [,
(Prs = A Vgl ) SCU Py = AP+ & | VAP, (19)
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For the term E | (¢:+l)

—4u_+u h
+1 (¢n+1) (T ut (tn+1)’ ¢n+1)

24U, +u,

sCII— P+l @l I 21
2At (n+1 ¢n ( )

tha
<C(At)? j[ "l Uy IPdt+ & |V I2,

Where we use the third inequality in lemma 2.3.

Next, we bound the term —EZ, (4".,) ,
EZ,(#',)=b,(U,.,,U,.,,v")=b, (u" —u"  u" v
=b,(u,,,—2u, +u, ,u. 4" ,)+b, (2e, —e, ,u',4".)
+b,, (2u) —up 1,770, 401)
=B, Uyy = 2U, Uy Uy 804) +0,, (27, =17, 4, Un s B11)
+b,, (2¢7 — 1, U hra) +b,, (2U =y 770,400

Ve,, & >0, we have the following estimates.
bw(un+l _2un +U, n+1'¢ 1) < CH v(un+1 _2un +un—1)” H vun+lH ” V¢h ”
< CH v(unﬂ _2un +un—1)”2” Vuml +OLH v¢: H2

thia
<Ca0° [ Vu, Pl Ul +.4,] Vgl I,

Where we use the first inequality in lemma 2.3.
bw (2’7n - nn—l' u:+1’ ¢r:]+1) < 2 | ba) (nn' :+l’ ¢:+l) | + | b (77n—1’ u:+1’ ¢:+1) |

<Cllvayll lIva I Ivg I+Cllvay I v I Tvel ... (24)
<C( vy Pl v, I vul P+l Vg I,

bw(2¢ ¢n -11 n+1’¢n+1) < 2 | b (¢n ’ n+11¢n+1) | + | bw(¢:—l’u2+1'¢:+l) |
<Cll ¢“|I5H V¢“H2H Vu:AII v,
+Cll ¢!, HZH AR IIZH vurll Fvg
<Cll gl TVl Il vu!,I?
S 2 T v [ T v T [ R [ v A
<Cll gl vup I +Cll g 1P vul I
+&ll VP P + &l VAP + &l Vg I

bw (ZU: _U:l’ﬂn+1’¢:+1) < 2 | bw (u:’nn+1’¢nh+1) I + | b (U: 1"7n+1' nh+1) I

<cllvull 1 v, v li+Clvur Il v, I Vel

.. (26)
<C(ll VU IR+ VUl B Vg, LB+ gl VIR,

Combining (23-26) with (22), we can get
~EL (4 < CA° [l Vug Pdt+C (I g1+ 47, F)

+C( VAl Vg, IB)+C(l vul B+l v IR Vg, P
+ae | VP P +&,ll VAP +&,ll Vgl I,
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Next, we use the definition of the discrete filter to bound the filtering error
—h
-FE S| (V XUy -Vx U )X Upii ¢r:]+1 |
—h
<ClVx(u,,,—u, Il ITvu Il [Tve!ll
—h
Pl VA, I

P11 u,,, P

<gl vgl P +Ca’ll Vu

= 81” V¢nh+l||2 +Ca4“ Vun+l n+1

Seteg, = %v, & = %v,g3 = lv . From the mentioned above estimate (17-21), (27) and (28), we can get
1
4—At(\| GralP = I HI2g7, — 1P -120) g7 P+l 4., 267 + 4 7)

+

1 1 1
+=vI VLI == V@I ==l Vgl I
2 ¢n 1 8 ¢n 8 ¢n—1

<C(l B+ ¢ 1)+ C(l Vg, P+ V7 24 Vg, 1)
Ll VUPIE+I VB Vg, B+, — AT I

n+1

th
W+cmnm I u,, I2dt

n-1

I

+Cea’llvu IPllu

n+l n+l

1 bt tha
+Co [ mlPdt+C (At [ vu, P,
forevery A", €Q".

Multiplying (29) by 2At and summing it from n=1 tom-1, we have

1 1 m-1
Ly g+ Liogt g e vatS v 2
2 2 1
Lo e Lo e SPIT hoj2 At hij2
<21+ Liog) g+ CACS QI g )+ SN v
-1

At m-1
+v—I VP +CAtZ(|IV77MH2+|| vl v, P
4 n=1 (22)

m-1 m-1
+CAY (VUllE+1 v, D) Vg, . +CAEY Il p,., — A0,
n=1 n=1
m-1 m-1 tha
+CatY o'l Vu, Pl P +C Y [l Pt
n=1 n=1" "t

m-1 m-1
+CAY' Y [l ugPdt +C(at* Y [ 1l vu, P,
n=1 L

Applying lemma 2.2 to (30), we have:
2 g +vAtr:le| Vel P <Cll 17 +Cli2g - 417
+CvAtll V@' I +Cvatll VI

m-1
+CALY. (N7, B4 VP4 Vg, )
n=1
m-1
+CAD (VU IFHI Vi IP Ve, P (23)
n=1

m-1 m-1
+CALY I p,y — AP +CALY oIl Vu, [Pl u, 2

n+1
n=1 n=1

m-1 t m-1 t
N+l 2 4 n+1 2
+CHZ:1:LH Il /2t + C (At) Z;L I ug It

m-1
+CA0* Y [ Vu,lPdt,

n=1 n-1
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Then, we bound the terms on the right-hand side of (31).

m-1
For the term Z.[:"“II 1,IPdt, we have the following estimate

n=1 " "t

L thaa +
I Pt < CHP I IB e (32)
n=1" "

m-1
For the term (At)“z.[:mll u,,/Pdt , we have the following estimate

n=1 n-1

m-1
(A [ g Pelt < COA N U B (33)

n=1" "t

m-1
For the term (At)* > J‘:"AII Vu,/Pdt , we have the following estimate:

n=1" "t

m-1
(A Y[ Vu Pt < A N Uy By (34)
n=1 - "t

m-1
For the term AtY " (IV 7,.., [P+l Va7, 1P+l Vi, 1), we have the following estimate

n=1

m-1 m
ALY (V7 P+ Vg, P+ Vi, ) < CAYS | Vg, P

n=1 n=0

SCAY T u B, o (35)

n=0

2k 2
=Ch ||| u|||2,k+1'

m-1
For the term AtY _(IVul 1P+ V) IP)l V77,17 , we have the following estimate

n=1
m-1 m-1
ALY (VUPIPHI VIRV g, P < Ch2 ALY (WUl 1P+ VIR u, 2
=1 n=1
m-1
<Ch?* MUl A I VAP (36)
n=0
< Cth | H un+1H |i,k+l *

n+1

m-1
For the term AtY "Il p,,, — A7,,IF, A7, is the interpolation of p,, in Q", we have the following estimate
=1
m-1
ALY I Pyy = AP SCRZIIPIE o (37)
n=1

Combining (32)-(37) with (31)
m-1
%H gnl? +VAY [TV P <O +a + (AY)*). oo, (38)
=1

Using the triangle inequality, we can get

P <O +a® + (A" (39)

n+1

1 m-1
=l e, P +1at) Il Ve
2 =

We’ve done the proof.

With the results, we can get that for the Taylor-Hood mixed finite element k = 2, we can get the corollary.
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Corollary 4.1 Suppose that the finite element spaces X",Q" are Taylor-Hood elements. Assume that the true solution
(u, p) satisfies the reqularity in Theorem (4.1) withk =2 . Then, we can get the following estimate.

el +]1I Vellp ;< O(h* +a* +(A)*). oo (24)

5. Numerical experiments

In this section, we use two numerical experiments to validate the theoretical analysis. The first experiment
computed the errors and convergence rates of our scheme. The second experiment is the benchmark test of channel flow
over a step. We use the (P,,R) Taylor-Hood finite elements for velocity spaces and pressure spaces. The software

Freefem++ [20] was used for numerical experiments.

5.1 Convergence rate
In order to verify the convergence rate of our scheme, we consider the NS-omega model in unit square domain
Q =[0,1]x[0,1] with the solution such that:

u (x,y,t) = (1+0.01t)sin(2zy),
u,(x,y,t) = (1+0.01t)cos(27x),
POy, t)=x+y.

In the test, we choosev =1,T =0.01 ande =h=1/m, where m is the number of subdivisions of interval [0,1] .
By using (P,,R) on uniform meshes, we compute errors and convergence rates by changing mesh size. The result for NS-
omega model is presented in Table 1. The values of convergence rates are consistent with the theoretical analysis.

Table 1: Error and convergence rates for NS-omega

m AU Jlu—u| | Rate i va—vu'l| | Rate | p—p"| | Rate
8 | T/2 | 1.3353e-2 3.7090e-1 1.8351e-2

16 | T/4 | 3.3540e-3 1.9932 | 1.0663e-1 1.798 | 4.7546e-3 1.948
32 | T/8 | 8.3941e-4 1.9984 | 2.8756e-2 1.891 | 1.2094e-3 1.975
64 | T/16 | 2.1068e-4 1.9943 | 7.6998e-3 1.901 | 3.0612e-4 1.982

5.2 Channel flow over a step

In this numerical experiment, we consider the
BDF2 scheme for the NS-omega model to simulate the
two-dimensional channel flow over a step. The domain
Q of this experiment is a [0,40]x[0,10] rectangle with
a 1x1 step on the bottom forx €[5,6]. The no-slip
boundary conditions are applied on the top and bottom
boundaries and the steps. The parabolic inflow (left) and
outflow (right) conditions are given by:

_ _YA0-y)
u1(01 y) - U1(4O, y) - 25 ]
u,(0,y) = u, (40,y)=0.

The flow with a viscosity of v =1/600 through
the channel from left to right. The force f =0, time step
At =0.01 and run the test until T = 40. In the simulation,
the coarse and fine meshes used for the computations of
the simulations as shown in Figure 1 and Figure 2. The
degrees of freedom is 24544 in the coarse mesh, while

41322 in the fine mesh. With these settings, we anticipate
the emergence of eddies down-stream of the obstruction.
Over time, these eddies are eventually growing and
detaching.

We first present the result of computing the
NSE directly. Computations were performed on a mesh
using (P,,R) Taylor-Hood elements and the BDF2 finite

element formulation. The solution at T = 40 is shown in
Figure 3. Although it predicted a smooth flow field, it did
not capture the reformation of eddies after detachment.

As the primary goal of fluid flow models is to
accurately predict solution on a coarser mesh than that
required by DNS, we conducted test of the method on the
coarse mesh and obtained the following result using
identical parameters as those used for fine mesh NSE
computation. The NS-omega model found a smooth flow
field and captured the correct behavior.
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Figure 1: Two-dimensional channel flow over a step, coarse mesh
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Figure 2: Two-dimensional channel flow over a step, fine mesh

Figure 3: Navier-Stokes equations on the fine mesh, T=40, v = 1/600
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Figure 4: NS-omega model on the coarse mesh, T=40, v=1/600, a. = 0.125

6. CONCLUSION

In this article, we applied the BDF2 time-
stepping scheme with the finite element method to solve
the NS-omega model with no-slip boundary condition in
0¢,d =2,3. We provided a complete numerical analysis
about the stability and convergence of the solution. In the
analysis, we proved the solution is unconditional

20

25 30 35

'
S

stability, and converge to the true solution of NSE. The
correctness of the theoretical analysis is proved by
several numerical experiments.

In the future, we will commit to extending this
model across the broader range of application fields. For
instance, by incorporating the method with pressure
correction and the generalized scalar auxiliary variable
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(GSAV) approach, we will delve into the stability and
convergence of these methods.
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