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Abstract  Review Article 
 

In this paper, we study a second-order backward difference formula (BDF2) scheme for the Navier-Stokes-omega (NS-

omega) model. By employing the stabilization scheme for space discretization and the BDF2 method for time 

discretization of NS-omega model, we obtain the fully discrete approximation of them. The paper provides an analysis 

of the unconditional stability and convergence of the approximate solutions. Furthermore, the numerical experiments 

are conducted to validate the theoretical findings and demonstrate the efficiency of the proposed scheme. 
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1. INTRODUCTION 
The challenge of simulating fluid flow is 

primarily attributed to the extensive range of spatial eddy 

scales. For turbulent flows, Kolmogorov's universal 

framework provides significant insights into the behavior 

of eddies within these turbulent flow regimes. Accurate 

simulation of these eddies necessitates a substantial 

number of spatial mesh points per time step in direct 

numerical simulation (DNS), typically on the order of 

𝑅𝑒9/4. Constrained by finite computational resources, 

this approach to the Navier-Stokes equations (NSE) 

poses a significant challenge in achieving precise 

simulations, particularly at high Reynolds numbers. 

Therefore, we should use the turbulence model for 

numerical solution of flows with a high Reynolds 

number. The common turbulence model is the large eddy 

simulation (LES). The LES approach is apply a spatial 

filter to the NSE. Furthermore, 𝛼-models are also 

turbulence models. 

 

The research on finite element methods (FEM) 

for 𝛼-models of fluid flows has demonstrated their 

superior effectiveness in obtaining accurate solution to 

flow problems with coarser spatial and temporal 

discretization compared to direct numerical simulation of 

the NSE [1-3]. In these models, the NS-omega model is 

unique in that in addition to its superior theoretical 

properties such as energy conservation, model helicity 

conservation and well-posedness [4, 5], it can be 

computed efficiently by using unconditionally stable 

algorithm. This model modifies the vorticity term 

u =  in the nonlinearity of the Navier-Stokes 

equations. It controls turbulent cascades at scales smaller 

than a certain length without introducing any additional 

dissipation [1]. 

 

The convective term of the 𝛼-models is 

represented in rotational form. For the NS-omega model, 

we write the rotational form as follow 
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where ( , )u u x t=  is the velocity, ( , )p p x t= is the 

pressure,  is the kinematic viscosity and ( , )f f x t=  is 

an external force applied to the fluid and 2 1( )I −− +  is 

the Helmholtz filter, where 0   is filtering radius, with 

suitable initial conditions in a bounded, polyhedral 

domain ( 2,3)d d =  and no-slip boundary 

condition 0u =  on  . Some mathematical theories of 

the continuous NS-omega model can be found in [5]. 

 

Numerical methods for solving the numerical 

approximation of the NSE have been investigated 

extensively. Such as the backward difference method, 

projection method, discontinuous Galerkin method. Li 

[22] proposed a second-order mixed stabilized finite 
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element method for solving the variable density Navier–

Stokes equations. The method employs second-order 

backward difference for temporal discretization. In [23], 

Dokken and Johansson introduced a second-order 

projection method for the Navier-Stokes equations, 

leveraging the BDF2 scheme for temporal discretization 

and the FEM for spatial discretization. They presents 

several numerical experiments to varify the convergence. 

Li and Shen [21] introduced a SAV approach that 

guarantees unconditionally stable schemes for the 

Navier-Stokes equations, and prove error estimates. 

 

In this work, we investigate the convergence of 

the BDF2 scheme in temporal discretization and FEM in 

spatial discretization for the NS-omega model. Multi-

step backward difference formula (BDF) time integration 

methods are widely used for partial differential 

equations, see [6-11]. As a result of its stability and high 

accuracy, BDF2 is one of the most popular BDF schemes 

[12]. The first-order BDF and second-order BDF 

temporal semi-discrete scheme for Navier-Stokes 

equations was presented and analyzed by Girault and 

Raviart in [24]. Rebholz and Tone study the H1-stability 

for positive time of the BDF2 scheme for 2D Navier-

Stokes equations [13]. Rong and Fiordilino introduce the 

BDF2 modular gradient divergence stabilization scheme 

for Navier-Stokes equation in [14]. To the best of our 

knowledge, there is no convergence analysis for the NS-

omega by using the BDF2 scheme in temporal 

discretization. 

 

The structure of this paper is as follows. In 

Section 2, we establish the foundational notation and 

essential preliminaries that will be employed throughout 

the paper. Proceeding to Section 3, we delineate the 

BDF2 discretization scheme for the NS-omega model, 

accompanied by an in-depth examination of its stability 

properties. In Section 4, we provide a comprehensive 

theoretical analysis of the error estimates. Finally, the 

numerical experiments corroborate the validity of our 

theoretical findings. 

 

2. Notation and Preliminaries 

This section summarizes the notation, 

definitions and preliminary lemmas needed. In this 

article, we use the symbol C  for positive numbers. It can 

be different in different places and it is independent of 

the mesh size h  and the time step t . We first denote the 

inner product in 2 ( )L  and its corresponding norm by 

( , )   and ‖‖. Similarly, the ( )pL   norms and the 

Sobolev ( )k

pW   norms [17] norm are denoted by pL
‖‖  

and k
pW

‖‖ . kH  is used to represent the Sobolev space 

2 ( )kW  and k‖‖  denotes the norm in kH . Additionally, 

we define the function spaces as following  
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Here,1 ,1 ,1p s r      . For the function spaces, we have these norms 
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We divide the time interval [0, ]T into m  elements 1( , )n nt t + for 0,1, , 1n M=  − , where :nt n t=   and
T

t
m

 = . Next, we 

introduce the analogous norms in the discrete condition 
1
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where ( )n

nv v t=  and the same goes for the other variables. 
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Next, we define the velocity and pressure spaces by 
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0

2 2
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( ) : ( ) : | 0 ,
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We define *X is the dual space of X , and the norm is denoted by 
*‖‖ . Then, the space of divergence-free V is denoted by 

: { : ( , ) 0 }.V v X v q q Q=   =    

 

Next, we define the trilinear form ( , , )b     and ( , , )b     by  

( , , ) : (( ) , ),

( , , ) : (( ) , ).h

b u v w u v w

b u v w u v w

=  

=  
 

 

For , ,u v w X , the trilinear form ( , , )b u v w  satisfy the following inequalities 
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The weak formulation of (1) is: Find :[0, ]u T X→  and :[0, ]p T Q→ satisfy 

( , ) ( , , ) ( , ) ( , ) ( , ) ,

( , ) 0 .

tu v b u u v u v p v f v v X

u q q Q

+ +   −  =  

 =  
 ……………….. (2) 

 

Suppose h  is the uniformly regular triangulations of   with  : hK K=   as 0h → . Here max h KK
h h


= , where 

Kh is a diameter of K .We can denote the finite element spaces ,h hX X Q Q  . Then, the discrete divergence-free space 

hV  is denoted by 

: { : ( , ) 0 }.h h h h h h hV v X v q q Q=   =    

 

Assume the velocity-pressure finite element spaces hX  and hQ  satisfy the discrete inf-sup condition, 

( , )
inf sup 0,
h h

h h

h h
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q Q v X

q v
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Where   is a positive constant independent of the mesh size h. 

In addition, hX and hQ  satisfy the approximation properties [16]: 
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The semidiscrete finite element approximation of (2) is: Find : [0, ]h hu T X→ and : [0, ]h hp T Q→  

satisfy 

( , ) ( , , ) ( , ) ( , ) ( , ) ,

( , ) 0 .

h h h h h h h h h h h h

t

h h h h

u v b u u v u v p v f v v X

u q q Q

+ +   −  =  

 =  
 

 

To study the discretization of the NS-omega model, we have to deal with the discrete differential filter. 

Germano [18] introduced a continuous differential filter into the turbulent model. 

 

Definition 2.1 Continuous differential filter: For 2 ( )L    and 0   is a fixed constant, denote the filter operation on 

  by , where   is the unique solution of 
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2 .   −  + =  

 

Then, we define the discete differential filter from Manica [19]. 

 

Definition 2.2 Discrete differential filter: For 2 ( )w L  , for the filter radius 0  , 2 1( )hw I w −= −  +  is the unique 

solution of 
2 ( , ) ( , ) ( , ) .h h hw w w X      + =   ……………………….. (3) 

 

Now, we introduction some basic properties of discrete differential filters from [19]. 

 

Lemma 2.1 For w X , we have the bound of the discretely filter and approximately w  

, , .h h hw w w w w w      ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖……………….. (4) 

 

Proof The proof of the first inequality in (4), we can set hw =  in (3), and use the Cauchy–Schwarz inequality to complete 

proof. For the second inequality in (4), the filter can be rewritten as 
2 ( , ) ( , ) ( , ) .h h hw w w X    −  + =    

 

Set hw =  , we can get 
2 2 2 ( , ).h h hw w w w  +  =  ‖ ‖ ‖ ‖  

 

By using the Cauchy–Schwarz inequality to complete the proof. The last inequality in (4) use the the second inequality and 

the inequality 
h hw w ‖ ‖‖ ‖ to complete proof. 

 

The error analysis will use the discrete Gronwall’s lemma: 

 

Lemma 2.2 Suppose that n and N are non-negative integers, n N . The real numbers , , , , ,n n n na b c t C   are non-negative 

and satisfy that 
1

0 0 0
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The proof of Lemma 2.2 can be found in [15]. 

 

Lemma 2.3 If 2, , (0, ; ( ))k
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We have used the following identity in the later proof 
2 2 2 2 22(3 4 , ) | | | | | 2 | | 2 | | 2 | .a b c a a b a b b c a b c− + = − + − − − + − + ……………….. (5) 

 

3. Numerical scheme and its stability 

In this section, we introduce the BDF2 scheme for the NS-omega model and provide the analysis for its stability. 

The method is given by: Given 1,h h h

n nu u V−  , find 1 1( , )h h h h

n nu p X Q+ +   , for all ( , )h h h hv q X Q  , satisfy 
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Theorem 3.1 Consider the NS-omega model with the BDF2 scheme. A solution , 1, , 1h

lu l M=  − , 

exists at each time-step. The scheme is unconditionally stable: the solution satisfy the following á priori bound: 
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Proof Set 1 1,h h h h

n nv u q p+ += =  in (6) and use the identity (5). The nonlinear term in the scheme vanishes.Thus, for every n  

we can obtain 

2 2 2 2 2
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Multiplying (8) by t  and then summing it from 1n =  to 1M − , we have 

 

Remark 3.1 Since the energy 2 2

1

1 1
( ) : 2

2 2

h h h h

n n n nE u u u u −= + −‖ ‖ ‖ ‖  and the energy dissipation 2( ) :h h

n nu u = ‖ ‖  of NS-

omega model, we can get 
1 1
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Assume 0 =  and 0f = , we can get 1( ) ( )h h

ME u E u= . Hence, this scheme is energy conserving. 

 

4. Error Analysis 

In this section, we present a complete error analysis for method (6). To give the error estimate of the method (6), 

we firstly denote the error by 1 1 1

h

n n ne u u+ + += − . Next, we give the error estimate by the following theorem. 

 

Theorem 4.1 Let ( , )h hX Q  be chosen as 2 1( , )P P Taylor–Hood elements, and further suppose that ( , )u p  is a solution of 

the NS-omega model for 0, 0   , with given 1(0, ; ( ))f L T H −  , satisfies the following regularity 
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n nu p+ + is given by method (6) with 1,2, , 1n m − , the error in the discrete solution satisfies 
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Proof Note it for , ,u v w X , we can define the filtering error accordingly:  
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Hongjian Wang, Sch J Phys Math Stat, Sep, 2024; 11(9): 120-131 

© 2024 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          125 

 

 

At time 
1nt +

 the solution of the ( , )NSE u p satisfies, 

1 1 1 1 1

1

1 1 1 1 1

1
(3 4 , ) ( , , ) ( , )

2

( , ) ( , ) ( ) ( , , ),

h h h

n n n n n n

h h h h

n n n n n

u u u v b u u v u v
t

p v f v E v FE u u v

 + − + + +

+ + + + +

− + + +  


−  = + −

…………………………... (13) 

 

where 1

1( )h

nE v+ is denoted by 

1 1 1

1 1

3 4
( ) ( ( ), ).

2

h hn n n

n t n

u u u
E v u t v

t

+ −

+ +

− +
= −


 

 

We decompose the error as 

1 1 1 1 1 1 1 1 1, , .h h h

n n n n n n n n ne u U U u   + + + + + + + + += + = − = −  

 

Here, 1nU + is the interpolation of 1nu +  in hV . 

 

Subtracting (14) from (6), for all ( , ) ( , )h h h hv q X Q , we have 

1 1 1 1 1

1 2

1 1 1 1

1
(3 4 , ) ( , ) ( , )

2

( ) ( ) ( , , ),

h h h h

n n n n n n

h h h

n n n n

e e e v e v p p v
t

E v E v FE u u v

+ − + + +

+ + + +

− + +   − − 


= − −

……………….……….. (14) 

 

Where 2

1nE + is denoted by 
2

1 1 1 1 1( , , ) (2 , , ).h h h h h

n n n n n nE b u u v b u u u v + + + − += − −  

 

Setting 1

h h

nv  += in (15), we can get 

2

1 1 1 1 1 1 1

1 1 1 1 1

1 2

1 1 1 1

1 1 1

1 1
(3 4 , ) (3 4 , )

2 2

( , ) ( , )

( ) ( )

( , , ),

h h h h h h

n n n n n n n n n

h h h

n n n n n

h h

n n n n

h

n n n

t t

p

E E

FE u u

        

   

 



+ − + + + − +

+ + + + +

+ + + +

+ + +

− + +  = − − +
 

−   + − 

+ −

−

‖ ‖

……………….. (15) 

for every 1

h h

n Q +  . 

i.e., 

2 2 2 2 2

1 1 1 1 1

2

1 1 1 1 1 1

1 2

1 1 1 1 1 1 1

1 1 1

1
( 2 2 2 )

4

1
(3 4 , ) ( , )

2

( , ) ( ) ( )

( , , ),

h h h h h h h h h

n n n n n n n n n

h h h

n n n n n n n

h h h h

n n n n n n n

h

n n n

t

t

p E E

FE u u

        

        

   



+ + − + −

+ + − + + +

+ + + + + + +

+ + +

− + − − − + − +


+  = − − + −  


+ −  + −

−

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ……………….. (16) 

for every 1

h h

n Q +  . 

 

The terms on the right-hand side of (17) can be bounded as follows. 1 0  , 
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2 3, 0   , we have the following estimates. 
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Where we use the first inequality in lemma 2.3. 
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Combining (23-26) with (22), we can get 
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Next, we use the definition of the discrete filter to bound the filtering error 
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Set 1 2 3

1 1 1
, ,

16 8 8
     = = = . From the mentioned above estimate (17-21), (27) and (28), we can get 
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for every 1

h h

n Q +  . 

 

Multiplying (29) by 2 t  and summing it from 1n =  to 1m− , we have 
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Applying lemma 2.2 to (30), we have: 
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Then, we bound the terms on the right-hand side of (31). 

For the term 
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Combining (32)-(37) with (31) 
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Using the triangle inequality, we can get 
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We’ve done the proof. 

 

With the results, we can get that for the Taylor-Hood mixed finite element 2k = , we can get the corollary. 
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Corollary 4.1 Suppose that the finite element spaces ,h hX Q  are Taylor-Hood elements. Assume that the true solution

( , )u p  satisfies the reqularity in Theorem (4.1) with 2k = . Then, we can get the following estimate. 

2 2 4 4 4

,0 2,0| | | | ( ( ) ).e e O h t +   + + ‖‖ ‖ ‖ ……………….. (24) 

 

5. Numerical experiments 

In this section, we use two numerical experiments to validate the theoretical analysis. The first experiment 

computed the errors and convergence rates of our scheme. The second experiment is the benchmark test of channel flow 

over a step. We use the 2 1( , )P P Taylor-Hood finite elements for velocity spaces and pressure spaces. The software 

Freefem++ [20] was used for numerical experiments. 

 

5.1 Convergence rate 

In order to verify the convergence rate of our scheme, we consider the NS-omega model in unit square domain 

[0,1] [0,1]=  with the solution such that: 

1

2

( , , ) (1 0.01 ) (2 ),

( , ,

.

) (1 0.01 ) (

=

2 ),

 ( , , )

u x y t t sin y

u x y t t cos

p x y t x y





= +

= +

+

 

 

In the test, we choose 1, 0.01T = =  and 1/h m = = , where m  is the number of subdivisions of interval[0,1] . 

By using 2 1( , )P P  on uniform meshes, we compute errors and convergence rates by changing mesh size. The result for NS-

omega model is presented in Table 1. The values of convergence rates are consistent with the theoretical analysis. 

 

Table 1: Error and convergence rates for NS-omega 

m  t  
,0

hu u


−‖ ‖  Rate 
2,0

hu u −‖ ‖  Rate 
2,2

hp p−‖ ‖  Rate 

8 T/2 1.3353e-2  3.7090e-1  1.8351e-2  

16 T/4 3.3540e-3 1.9932 1.0663e-1 1.798 4.7546e-3 1.948 

32 T/8 8.3941e-4 1.9984 2.8756e-2 1.891 1.2094e-3 1.975 

64 T/16 2.1068e-4 1.9943 7.6998e-3 1.901 3.0612e-4 1.982 

 

5.2 Channel flow over a step 

In this numerical experiment, we consider the 

BDF2 scheme for the NS-omega model to simulate the 

two-dimensional channel flow over a step. The domain 

  of this experiment is a [0,40] [0,10]  rectangle with 

a 1 1  step on the bottom for [5,6]x . The no-slip 

boundary conditions are applied on the top and bottom 

boundaries and the steps. The parabolic inflow (left) and 

outflow (right) conditions are given by: 

2

1

2

1

(10 )
(0, ) (40, ) ,

2

.(0,y) = (40,y)=0

5

y y
u y u y

u u

−
= =

 

 

The flow with a viscosity of 1/ 600 =  through 

the channel from left to right. The force 0f = , time step 

0.01t =  and run the test until T = 40. In the simulation, 

the coarse and fine meshes used for the computations of 

the simulations as shown in Figure 1 and Figure 2. The 

degrees of freedom is 24544 in the coarse mesh, while 

41322 in the fine mesh. With these settings, we anticipate 

the emergence of eddies down-stream of the obstruction. 

Over time, these eddies are eventually growing and 

detaching. 

 

We first present the result of computing the 

NSE directly. Computations were performed on a mesh 

using 2 1( , )P P  Taylor-Hood elements and the BDF2 finite 

element formulation. The solution at T = 40 is shown in 

Figure 3. Although it predicted a smooth flow field, it did 

not capture the reformation of eddies after detachment. 

 

As the primary goal of fluid flow models is to 

accurately predict solution on a coarser mesh than that 

required by DNS, we conducted test of the method on the 

coarse mesh and obtained the following result using 

identical parameters as those used for fine mesh NSE 

computation. The NS-omega model found a smooth flow 

field and captured the correct behavior. 
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Figure 1: Two-dimensional channel flow over a step, coarse mesh 

 

 
Figure 2: Two-dimensional channel flow over a step, fine mesh 

 

 
Figure 3: Navier-Stokes equations on the fine mesh, T=40, ν = 1/600 

 

 
Figure 4: NS-omega model on the coarse mesh, T=40, ν = 1/600, α = 0.125 

 

6. CONCLUSION 
In this article, we applied the BDF2 time-

stepping scheme with the finite element method to solve 

the NS-omega model with no-slip boundary condition in 

, 2,3d d = . We provided a complete numerical analysis 

about the stability and convergence of the solution. In the 

analysis, we proved the solution is unconditional 

stability, and converge to the true solution of NSE. The 

correctness of the theoretical analysis is proved by 

several numerical experiments. 

 

In the future, we will commit to extending this 

model across the broader range of application fields. For 

instance, by incorporating the method with pressure 

correction and the generalized scalar auxiliary variable 
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(GSAV) approach, we will delve into the stability and 

convergence of these methods. 
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