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Abstract
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This article presents a novel continuous numerical method designed for the numerical integration of general third-order
initial value problems (I\VVPs) of ordinary differential equations (ODEs). A combination of power series and exponential
function was formulated for the purpose of collocation and interpolation at nodal and off-nodal points to generate system
of linear equations necessary for the method. The resulting hybrid linear multistep method was implemented using block
mode approach. Consistency, stability, and convergence of the method were verified using established criteria. The
developed method was applied directly to solve linear and nonlinear third order ODEs without reducing them to systems
of first-order equations. Computational results demonstrated better accuracy when compared with existing numerical
methods in the literature.
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1. INTRODUCTION

High-order linear and nonlinear initial value
problems (I\VVPs) frequently arise in engineering and
scientific applications, particularly in fields such as
Biological Sciences and Control Theory, where their
solutions are critically important. Conventionally, these
high-order 1VVPs are often addressed by the reduction
method (see Lambert [1973] and Fatula [1988]), which

transforms the high-order equation into a system of first-
order ordinary differential equations (ODEs). The
reduction approach has several limitations, including
unnecessary computational burden, excessive computer
subroutines, and high computational costs (see
Mehrkanoon [2011], Kayode [2011], Kayode and
Adeyeye [2013], Awoyemi et al [2014], Kayode and
Obarhua [2015]).

This paper discusses the development of approximate solution of general third-order ordinary differential equations

of the form:

" = fCo 3,y ") (o) = §0.y' (%0) = 61,y (%0) = &2 O

Where x,y € R™ and f € C'[a, b].

Many authors has highlighted the advantages of
direct methods, in solving higher-order 1\VVPs that avoid
the reduction process, with improved computational
efficiency and accuracy. In this regard, several
continuous collocation and interpolation techniques have
been extensively studied, For example, Kayode [2011]
investigated a three-step one point method based on
collocation at selected both one off-grid and grid points
to approximate second order ordinary differential
equations but with low order of accuracy. Kayode and
Adeyeye [2013], however, propagated a two-step two-

point hybrid method for general second order differential
equations with application of Chebyshev series as an
approximate solution. The computational results showed
that the method is better in accuracy than some existing
methods. Areo and Adeniyi [2013] investigated a self-
starting linear multistep method for direct solution of
IVPs of second order ODEs. Kayode and Obarhua
[2015] constructed a 3-step y-function Hybrid Methods
for Direct Numerical Integration of second Order 1\VVPs
in ODEs. In all these methods, third order ordinary
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differential equations cannot be solved unless reduced to
second order ODEs.

In this development, several direct methods
have been proposed for solving (1) in literature. Allog-
many and Ismail [2020] examined an Implicit Three-
Point Block Numerical Algorithm for Solving Third
Order Initial VValue Problem Directly with Applications.
Adeyefa and Olanegan [2022] proposed an Accurate
Four-Step Hybrid Block Method for solving Higher-
Order Initial Value Problems. Duromola [2022]
developed a Single-Step Block Method of P-Stable for
solving Third-Order Differential Equations (IVPs)
having Ninth Order of Accuracy. Other works in
literature on this topic include Ramos and Rufai [2018],
Abolarin et al., [2020]. In Obarhua [2023] a ninth-order
three-step, four-point optimized hybrid block method
was developed all with the intention to solving same
problem. Motivated by the ongoing quest for higher

accuracy and efficiency in numerical integration, this
study presents a three-step with six-point Hybrid Block
Method. This novel method is problem-independent,
providing high degree of freedom in the choice of
interpolation points based on the order of the differential
equation with greater adaptability in application
compared to other problem-dependent block methods.
Specifically, the research introduces an order-ten block
integrator with six off-step points, designed for third-
order ODEs, a significant advancement in the direct
numerical solution of high-order ODEs.

2. Mathematical Formulation

In this work, the approximation of the exact
solution y(x) of the third-order initial value problem of
ordinary differential Equation (1) is considered by a
combination of power series polynomial and exponential
functions of the type

n-1 n .
. ajx’
P = ) ap+acis ). @
j=0 =

The third derivatives of (2) is obtained as

n—4 n .
. a;x)3
P = ) G =6~ 2ap ba ) ®)
j=3 j=3 '
Equations (1) and (3) yields a differential system:
n—4 n .
. axl=3
Fe2y\ ¥ =) G- D0 Dap? +a ) s @
j=3 j=3

where x is continuous and differentiable, parameters a; 's in (2), (3), and (4) are linear terms to be determined. To
get the system of algebraic equations in equations (5) and (6), = xp4;,j = 0,74, 72,73, 1,2,31,5, and ¥ 3 was applied to

equation (2) and x = x4 ;,j = 0(1)3 applied to equation (4).

9

. S ajx)3
Yn+j = Z ajx]_l + Z (j _ ] = 01 71,72, T3, 1:21 1101' 1/)2! lzb3 (5)
j=3 j=3
6 10 -3
_ . . i3 a;x .
Favg = ) JU = DG = Dap 4 ) 2= 0(1)3 ©)
=3 j=3

Using the relation X j=Xpt jTh, (5) and (6) were written as matrix form and solved using CAS in Wolfram
4

Mathematical to obtain the parameters a; 's for j = 0,1,2,---,12 which were then substituted back into (2) to yields the

following continuous scheme after some simplifications:

2 <1 <3 3
YO =) GYnas+ D W dnar+ ) @y, + B Bifuss @
j=0 i>0 v>2 j=0

where x = X, = X + th, a]fs and ﬁ;s are the coefficients that defined the scheme. Evaluating (7) at t = 3 yields the
main formula of the developed Three-Step Hybrid Block method. This gives
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, 12298770837 12406261536 , 330941030¢
Yn+s t 3389561 V2 T 433189561 Vn+s T 233189561 Vntl ®
20091557888 12298770837 12406261536 90091557888

_I_— . — . — — —
433189561 “n+s 433189561 "' T433189561 “n+s 433189561 - nty

2.1 Block Formulation of the Derived Formula
In keeping with [7], the normalized form of the general block method is given by

GY; = Ey, + h*7Pdf () + h*"PHF (y,) €))

To derive the block formula described in (9), we combine the formulas in (8) with the first, and second derivative
formulas obtained from (7), and write them in block form using the definition of the implicit block method in (9)

q q q q
B Oml = h Y Ty 4 (3 A fot Y i ifoss (10)
j=0 r=0 j=0 r=0

where p represent the power of the derivative of the continuous method and p represent the order of the problem
to be solved. Equation (10) was solved for j = 0 G) 3 in order to obtain the following block formulas that constitute the
derived Three-Step Hybrid Block Method.

h3

1

=Y+ ghyn + L ey,
g T Yo+ 33 W9 ¥ T5884159078400 +
+40628682160f 3~ 16678823337 fr, + 8023499385, — 12626777328fn+g+8495097468f .5
4 +2

(27324004827dfn + 44926673520f 1 - 4-848764-9276f 1)

1 1 3
=y, +=hy, +=h?y" + ——— (544380697, + 15549 — 11983191
Vsl =Yt Sy + hyn+73766246400<5 380697y +1554906880f, 1 8319100f, a2

+1015669248f 2= 416275827 fy + 1993655071, 313570048fn+g + 210868988fn+_
) 2

— 1 ' 2 h?

Vs =Vn 3 3hY0 + Ry A+ —— (1392449289fn +4924186128f, 1 — 2503958292, 1

(13)
+2639875920fn+3 — 1083763395 f41 + 522575955 f,,, — 822426000, > + 5533193161 s
4 4 2

! 1 n h3
Va1 =V + hyh+2h2y + m(19059894fn +74491008f,, 1 ~ 24717880f, 1 + 40870016f,, .2 (14)
Vnrz =Vn + 2hyn + 2Ry + ——— (5150159fn +21707648f,,,1 +2233968f,, 1 + 10158720/, 3 (15)
By + ok 2y i 14343221529af, + 58964284368bf 1+ 13713933420 _1(16
Ynag I T g n T 3510 77712588800( U - fu1(16)

+19966540176fn+§ + 32642582445f,,1 + 25358652099¢f,,,, — 30971088720hfn+2
1

_ 5, 1 ,25,2 » h3
yn% =Yn +3 hy,, + . h2y]! Tosocieame (684728625fn + 2737344000fn+% + 984494500fn+%

17)
+553696000f, 3 + 2111905125 f 1 + 1686460875, — 1902912000f, o + 1123633500f 5
4 4 2
R VAL e P
Yl =0 T Y o T Y T 156067430400
+3259394061f,,5 + 83289779364f 1+ 89233205468f s + 173160863920f 1 + 11557019760f 3
n+s n+y n+y n+

(44552319427f, + 169736963583 f,,,; + 140184427185f,,,,(18)

3

9 h
Ynes =y + 3hyy + 5 Wy + m<817698fn +3093120f, 1 +1841400f, 1 — 198528, , (19)
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, +hyn N h?
Yusk =¥n+ 1+ 1180259942400
+31025613520f, 3 ~ 1266374013311 — 9506522432 o + 6391847484fn+_
4

(16937905691afn +38008281600bf, 1 — 37530351452cf (20)

2

hyn h
yn+ =y, + > —_—+ m(SOS%S%Ifn - 241231749fn+% +116562303f,,, + 5428045f,,,3

—632649600f 1+ 123431264f 5+ 1119154480f,,, + 582089552f 3 — 183455536f o
Tl+i Tl+§ Tl+1 n+—

(21

3 2
— ! _h 14
nad T g ¥ 4857036800(
—200583405f,,, — 151454160f .o + 101899116f s5— 33596352f 1+ 4481281fn+3
TI.+Z Tl+§ Tl+T

=
w

2495740591, + 1051054992f 1 - 262025676f 1 + 510456320fn+§ (22)
1

h2

Vha1 =Yn + hyy + m(20118959fn + 89638464fn+% - 9493880fn+% + 56968384fn+% (23)

2

hiz =Yn + 2hyy + ————— 5564524 21561472 13396944 — 415360 24
Vivo =Vh+ 2hy + 5o fut frt ¥ frd o @4)

2

9
9=t h "+—(865279233 +3157351488f 1+ 2638732140
yn+§ Yn T3 T 1857036800 f fn% fn% 25

—917045712f 3+ 5006381985, + 3968707347f,,, — 4211412480f o+ 2411056692f s
n+s n+o n+s
4 4

2

5
! — li _h "
Vsl =In 3+ 3ee831232
+492438375f,,1 + 421867875f,,, — 404734000f o + 243619200f s — 71090000
n+Z n+i n+T

(74431525fn +258750000f, 1+ 263516000f 1 — 134926000, , 26
26

2
"=y +—hyy —(2199000881 7346374640 8635086108
Vsl = Yn G T4400 fnt faid® foid @7
—5289500480f 3+ 15988806537 f,,, — 12899775152f o+ 8545717444 s — 2272089600f 11
n+z n+z n+s n+—
2

Vi s =y + 3hyl + m(295491fn +953280f 1 + 1255320f 1 — 856768f, 3 +230709f,,;  (28)

"

h
=y +—————(185791571f, + 6952365041 — 553656388 447678040 29
Vppl = I +2438553600< Jnt Tt Tin £ (29)

y" 1 =yi + ——————(30683051f, + 161654560f1, — 11064856f1. + 47535136f 30
nad T 419126400( " ra F4n 2en (30)
"y =y " 24534209f, + 124341768f 32949972f 88230472f 31
Vi T +m( nt Lan T Jen 7 (31)

v =yl + m(1922599); +10009472f1,, + 180400011, +11302016f3,  + 10490371, (32)

h
Viles =yi + m(310387fn +669824f1, +2256496f1,  —2341504f3,  +4002900f (33)
Vo =i+ m(10432107fn +22827096f1, +75289500f1,, — 777039123, + 134096391 f,n(34)

Yy,s = + m<1588195fn +3437600f1, , +11525800f1,  — 11941600f3, +20459175f11  (35)
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h
" 11 =y 4 s (230031571, + 507428504f1, +1653703612f1, — 1702561960
Vol T T /n Tin T3 fam

+2953570191 ;4 + 32200550255, — 2284389976f0, + 2297471044fs  — 2174790641,
4 2 4

(36)

Yn+3 = Yo +

55400 (2821fn +5760f1,, +21024f1, = 22144f3  + 36639110+ 36639 ;.

—22144f%+n + 21024f%+n + 5760f%+n + 2821f3+n) 37)

3. Analysis of the Properties of the Derived Method
In this section, the analysis of the basic properties of the developed three-step Hybrid Block method is presented.s

3.1 Order of the Method
Assuming the linear operator £ associated with the k — step hybrid scheme is defined as

k
L@k =) [aynes = 1 (B (tnsy)] (38)
j=0
where a, and S, are not both zero and y(x) € C™][a, b]. Expanding Yn+j and f ; as Taylors series expansion gives
) . Gh? GhP*: s
Yn+j = Y(xn +jh) = y(xz) + jhy' (xy) + y'(xn) + e+ @13 yP(xn) (39)
. o h)? jh)3 ; UhP
fs = ¥ G + ) = ¥ ) + jhy(@) () + Gy @) ) + By ) + -+ L3200 (40)
Substituting and collecting like terms gives
L{y(x), h} = Coy(x) + C1hy' (xn) + C2h%Y" (xn) + -+ C,hPYP (x) (41)
Therefore, applying the linear operator L(41) to determine the order and error constant of the main method
4 12298770837 4 12406261536 + 3309410304
Yn+3 T 7433189561 22 " 433189561 n+s ' 433189561 - n+s
20091557888 12298770837 12406261536 20091557888
433189561 “n+s 433189561 ™! 433189561 2n+s 433189561 °n+y

where C, are constants. Since Cy = C; = C; =+ = Cp4, = 0, Cpy3 # 0 is the error constant.
2850317

Hence the method is of order 10 with error constant ¢, 3 = — ———
642252800

Consistency of the Method

The first and second characteristics polynomial (p) and (o) respectively of the main method are given as:

3309410304 1 12406261536 ; 20091557888 % 12298770837 12298770837

4 2 — 1 _ 2
433189561 | | 433189561 |~ 433189561 | ' 433189561 ' _ 433189561
20091557888

* 433189561

p(r) =r3—1r0—

9
T4

12406261536 > = 3309410304 11
— r2 2 =0
433189561 433189561

229905 44132445 44132445 229905

— 0 1 2 3
= 247536892 ' 247536892 ' 247536892 ' 247536892

o(r)

It shows by appling the following conditions that the method developed in this article is consistent
(i) The method is of orderp = 10 > 1
which is obvious condition (i) is satisfied

k
(ii) a;=0
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Z 3309410304 12406261536 20091557888 12298770837 12298770837
a]-= -

-i- 433189561 * 433189561 433189561 * 433189561 433189561
20091557888 12406261536 3309410304

+ + +1=0
433189561 433189561 433189561
since
_ _1 o = 3309410304 o, = _124—06261536 Ua = 20091557888 an = 20091557888
@o = ~L &1 = Jsoser ' %2 = T 433180561 ' *3 T 433189561 0% 433189561 '
_ 12406261536 _ 3309410304 _ 12298770837 _ 12298770837
% = TT433189561 ' © T T 433189561 7 433189561 '8 433189561

agq = 1 condition (ii) is satisfied

(i) p(r) = p' (1) = 0
") =r3—1 3309410304 1 12406261536 1 20091557888 3 12298770837 12298770837
p(r)y=r>—-1-

1_ 2
20091557888 9 12406261536 5 3309410304 11

4 2 — 4
433189561 | ' 433189561 |~ 433189561 | ' 433189561 | _ 433189561 |

4 — 2 4 =
133189561 | 433189561 | ' 433189561

and
1y _a2 B27352576 3 6203130768 1 15068668416 1 12298770837
Pr) =31~ i33180561 T 433189561 |~ 433189561 | ' 433189561
24597541674 | 45206005248 5 31015653840 3 9100878336 7
r-+ T4 — r2 + rid =
433189561 433189561 433189561 433189561
Also
1., 3309410304 12406261536 20091557888 12298770837 12298770837
p(l) = 433189561 | 433189561 433189561 ' 433189561 433189561

+ 20091557888 12406261536 4 3309410304
433189561 433189561 433189561

and
827352576 6203130768 15068668416 12298770837

P =3_43318956l+ 433189561 433189561 * 433189561
24597541674 45206005248 31015653840 9100878336

433189561 * 433189561 433189561 * 433189561

it follows that p(1) = p’(1) = 0 showing that the condition (iii) is satisfied as well
p"" (r) = nla(r) and for the principal rootr = 1
155128608 11 4652348076 5 4708958880 9 14126876640 3
p"(r) =6 4 2 1 P

23261740380 1 1706414688 1 133087050

T 61884223 | T 433189561 | ° 433189561 | ' 433189561 |

2 e
433189561 | T 61884223 |~ 61884223
o a1 (229905 44132445 | 44132445 229905
o) = '<247536892r 247536892 ' 247536892 247536892r)
since
iy g 155128608 4652348076 4708958880 14126876640
P =6~ Te84223 T 433189561 433189561 | 433189561
23261740380 1706414688 _ 133087050
433189561 ' 61884223 61884223
and
sg(1) 3 (229905 44132445 44132445 229905 \ . 22181175 _ 133087050
to(1) = '(247536892 247536892 © 247536892 247536892)_ "51884223 61884223

Therefore for the principal root r = 1; it is observed that last condition above is satisfied, hence the method is consistent.
condition (iv) is satisfied.

Zero Stability of the Method
Using (11)-(37) as h — 0, we have
det[yA©® — AO)]
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1 0 0 0 0 0 0 0 O
010000000
001 000TO0TUO00O0
000100000 (00000000 I
0000 1000O0UO 0O [000O0O0TO0TO0O0 1
—detl0 0000100 0f_Jooo0oo0o000O0O0 1
000000100 |ooooo0o0o0o0 1
000000010[000000001J
0000O0OCOOT1 ooooo0o0®Oo0O0°1
000 0O0TO0TO 0O 1
000 0O0TO0TO 0O 1
lo o o000 0 0 1
=y9_y8=0
By solving for y we have
Yr-1=0

Solving the above equation fory,y =1,y =0,y =0,y =0,y =0,y =0,y =0,y =0,y =0
Hence, the method is zero-stable.

3.2 Convergence
For a numerical method to converge, it must be both consistent and zero-stable [10]. Therefore, since it has been
obviously seen that the three-step hybrid block method is consistent and zero stable. Hence the method is convergent.

Region of Absolute Stability of the Method
The region of absolute stability of the method is examined via the procedure discussed in Lambert (1973). The
stability matrix can be expressed as

J(2) =zH( —2G)™'Q +R (42)
together with the Stability function
p(n,z) =det(—J(z) + nl) (43)
for the Stability properties, the method (3.142) - (3.150) was formulated as a general linear method of the form,
Y G Q h3f (u)
. Ty R [___l (44)
Yi+1 H R Yi—1
where n represents the roots of the first characteristics polynomial, and
ter= =
T Ly P T s
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6000 0 0 1301143087 7
899245670400
600000 O 77768671
10538035200
000000 O 18083757
100925400
0 000 0 0O 50423
1524600
H=]10 0 0 0 0 0 O 7735737
5145525
000000 0 2049031647
11101798400
000000 0 32606125
140507136
000000 0 6364617061
2229537200
0 000 0 00O 58407
169400
0 17 F Yn+1/4 ]]:”“/4
0 1 Yn+1/2 n+1/2
0 1 Yn+3/4 fasasa
0 1 Yn+1 fa+
0 1 1 0
R=[0 1],Qz 0 1[,Y=| Ynse ,1=[0 1],f(y)= Favz
0 1 Yn+9/a frroja
0 1 Yn+s/2 fn+5/2
0 1 Vn+11/4 f
n+11/4
L0 14 - Yn+3
L fres

Now, putting the values of the variables G, H, Q, R, J and | in equations (43) and (44), to obtain the Stability
function. The stability polynomial (45) and its first derivatives (46) are then plotted in MATLAB (R2012a) environment.
It should be noted that J is 9 by 9 identity matrix. The region of absolute stability (RAS) of the method is shown in the
Figure 1 below;

_ (5, 749375128 3227432\ i

f@) = 54208000 ' 84700 (45)
, (74937512 + 103277760)6°

f'(z) = (46)

27104000

The region of absolute stability of the method is P-stable, since the region consists of the complex plane outside
the enclosed figure and its interval of periodicity lies between (0,0.52) which falls within the interval of periodicity for P-
stability. (0, o).

Region of absolute stability of the method
0.3 T T T T

8 fo T

o2t  ® . S :;'z.;‘—»!“" S |

03} : : : =

0.4 i 1 1 i 1 i
o 0.1 0.2 03 0.4 05 06 0.7

Re(z)
Figure 1: Region of Absolute Stability of the new method. The figure shows the area where the method is stable

| © 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India [ 19 |




Kayode S. J et al, Sch J Phys Math Stat, Jan, 2025; 12(1): 11-23

4 Numerical Experiments
To test how well the proposed method works, the authors used three sample problems as numerical examples.
They measured the accuracy of the method by calculating the absolute error it generated when applied to the sample

problems.

4.1 Problem 1

The first sample problem considered in this work is
y"(x) =x =4y (x);y(0) = 0;y(0) = 0;y"(0) = 1, h = 0.1

. 3 x?
Exact Solution y(x) = 1—6(1 —cos (x) + ?)
Source: Obarhua (2022)

Table 1: Numerical Results for problem 2,k = 3,p = 10, h = 0.1 for problem 1

X

Exact Solution

Computed Solution

Error in 3-step

0.10

0.0049875166547671941642130

0.00498751665476719433453626

1.70323E —19

0.20

0.0198010636244590469752760

0.01980106362445904816948220

1.19421E - 18

0.30

0.0439995722044353192673220

0.04399957220443532468283120

5.41551E—18

0.40

0.0768674919974064835773590

0.07686749199740651444272070

3.08653E — 17

0.50

0.1174433176497238029873240

0.11744331764972386434452000

6.13572E —17

0.60

0.1645579210356237041928050

0.16455792103562381289780000

1.08705E — 16

0.70

0.2168811607062048240093600

0.21688116070620502252007000

1.98511E - 16

0.80

0.2729749104314916361635820

0.27297491043149193735952200

3.01196E — 16

0.90

0.3313503927549538228718760

0.33135039275495425500857300

4.32137E—-16

1.00

0.3905275318525891975620440

0.39052753185258981085163100

6.13290E —16

Table 2: Comparison of the errors of the 3 -step with other existing method for problem 1.

x | 3-step,p=10,h=0.1

Adeyefa and Olanegan (2022),p =10,h = 0.1

0.10 1.70323E — 19

3.0000E—-10

0.20 1.19421E—18

2.1560E—10

0.30 5.41551E—18

3.9810E —-10

0.40 3.08653E — 17

7.2860E — 09

0.50 6.13572E—17

4.6470E — 09

0.60 1.08705E — 16

9.0400E — 09

0.70 1.98511E—-16

1.7320E — 08

0.80 3.01196E — 16

2.6640E — 08

0.90 4.32137E—-16

4.2960E — 08

1.00 6.13290E — 16

6.2790E — 08

1078
10—10 L
10—12 L

10—14 L

Error Logqo

10-16 =

10-18 L

Grid - values

—— Error in 3-Step Method
Error in Adeyefa and Olanegan (

Figure 2: Comparison of absolute errors of the proposed method on problem 1 as compared with

Adeyefa and Olanegan (2022)
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Problem 2

y"=—-e%y(0)=1y'(0) =-1y"(0) =3;h =01

Exact Solution
y(x) =2+ 2x% —e*

Source: Adoghe et al., (2016)

Table 3: Numerical Results for k = 3,p = 10, h = 0.1 for problem 2

X

Exact Solution

Computed Solution

Error in 3-step

0.10

0.91482908192435237518829

0.914829081924352375187823

4.67000E — 22

0.20

0.85859724183983016607893

0.858597241839830166075687

3.24300E — 21

0.30

0.83014119242399689601626

0.830141192423996896001787

1.44730E — 20

0.40

0.82817530235872968217515

0.828175302358729682114330

6.08200E — 20

0.50

0.85127872929987185315135

0.851278729299871853034126

1.17224E-19

0.60

0.89788119960949102512463

0.897881199609491024921742

2.02888E — 19

0.70

0.96624729252952347837545

0.966247292529523478021593

3.53857E—-19

0.80

1.05445907150753239542046

1.054459071507532394884220

5.36240E — 19

0.90

1.16039688884305033619987

1.160396888843050335423870

7.76000E — 19

1.00

1.28171817154095476463971

1.281718171540954763517960

1.12175E—-18

Table 4. Comparison of errors in the 3-step with other methods for test problem 2.

x | 3-step,p=10,h=0.1| Omoleetal, (2024),p =10,h=0.1
0.10 4.67000E — 22 8.1100E—17
0.20 3.24300E — 21 1.4010E — 16
0.30 1.44730E — 20 2.0410E - 16
0.40 6.08200E — 20 2.7010E — 16
0.50 1.17224E - 19 3.4810E— 16
0.60 2.02888E — 19 44310E— 16
0.70 3.53857E — 19 5.3510E—-16
0.80 5.36240E — 19 6.4410E — 16
0.90 7.76000E — 19 7.6410E — 16
1.00 1.12175E—18 8.8410E—16
108
10-10 L, g
2 i ]
§’ 10712
5 qol =« Error in 3-Step Method
=
w0 ‘ Error in Omole et al. (2024
10—16 L
1% ]
00 o0z 04 06 08 10
Grid - values

Figure 3: Comparison of absolute errors of the proposed method on problem 2 as compared with Omole (2024)

Problem 3:
y'==-y,y(0)=1y'(0)=-1y"(0)=15hr=01
Exact Solution

yx)=e™*

Source: Abolarin et al., (2020)
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Table 5: Numerical Results for problem3,k=3,p =10,h=0.1

x Exact Solution Computed Solution Error in 3-step
0.10 | 0.904837418035959573164249 | 0.904837418035959573163890 | 3.5900E — 22
0.20 | 0.818730753077981858669936 | 0.818730753077981858667492 | 2.4440E — 21
0.30 | 0.740818220681717866066874 | 0.740818220681717866056065 | 1.0809E — 20
0.40 | 0.670320046035639300744433 | 0.670320046035639300705584 | 3.8849E — 20
0.50 | 0.606530659712633423603800 | 0.606530659712633423531536 | 7.2264E — 20
0.60 | 0.548811636094026432628459 | 0.548811636094026432507914 | 1.2055E — 19
0.70 | 0.496585303791409514704800 | 0.496585303791409514511279 | 1.9352E — 19
0.80 | 0.449328964117221591430102 | 0.449328964117221591149638 | 2.8046E — 19
0.90 | 0.406569659740599111883454 | 0.406569659740599111495248 | 3.8821E — 19
1.00 | 0.367879441171442321595524 | 0.367879441171442321071750 | 5.2377E — 19

Table 6: Comparison of the errors in the 3 -step with other methods for problem 3

x | 3-step,p =10,h= 0.1 | Abolarinetal., (2020),p = 15,h=0.1
0.10 3.5900E — 22 3.450699E — 06
0.20 2.4440E — 21 6.169050E — 05
0.30 1.0809E — 20 1.532998E — 04
0.40 3.8849E — 20 3.687668E — 04
0.50 7.2264E — 20 7.117489E — 04
0.60 1.2055E—-19 1.199891E — 03
0.70 1.9352E—-19 1.845664E — 03
0.80 2.8046E — 19 4.036620E — 03
0.90 3.8821E—-19 3.638358E — 03
1.00 5.2377E—-19 6.859964E — 03

0.001 |
108

Out[+]= 10-13 L

Error Logqg

10-18 L

- Error in 3-Step Method
Error in Abolarin et al. (2020)

L s L L | L L L |

10-8[

0.0 0.2 0.4 0.6

Grid - values

0.8

1.0

Figure 4: Comparison of absolute errors of the proposed method on problem 3 as compared with Abolarin (2020)

5. CONCLUSION

In this study, a three-step, P-stable, order ten
hybrid block method that solve initial value problems of
third order ordinary differential equations was
developed. The method was zero stable and consistent
satisfying basic requirements for convergence of Linear
Multistep Methods (LMM). As shown by the region of
absolute stability. The accuracy and the usability of
developed method was tested by applying it to solve
three numerical examples and was found to be efficient
as it gives a minimal error, hence has higher accuracy for
handling the direct solution of third-order initial value
problem of ordinary differential equations.
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