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Abstract  Review Article 
 

Fractal universes and atoms are assigned to k-components or stable orbiting laps of simplest cycles of elliptic invariants. 

Cosmological redshift, expansion of the universe, origin of cosmic rays, cosmic microwave background, quantum 

entanglement and the cosmological constant problem are resolvable easily by fractal universes of bifurcating spacetime. 

Quantum entanglement is explainable by a highly correlated pseudo-congruent k-component in bifurcating spacetime. 

A one-dimensional complex contour around nontrivial zeros of zeta and L- functions is capable to create a zero-energy 

universe- action functional. Gauge coupling parameter fit into Gaussian periods of fixpoints. Many experiments in 

natural history support a fractal zeta universe. 
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1. INTRODUCTION 
In natural science constants of gauge coupling 

Gw are predetermined from outside. Regulator indices of 

an information current based universe predict the order 

of magnitude Gw for five interactions w=1,…,5 [1]. 

Experimental data for the fine structure constant αf show 

αf ≃1/128 GeV which questions a Gw theory [2]. The 

conjecture 2πδF
2≃αf

-1 with Feigenbaum constant δF 

remains an open problem though first accuracy is 

9.12∙10-4 [3, 4]. 2𝜋𝛿𝐹
2 ≃  2𝜋𝑅2 ≃ 𝑔1

⋮𝑔𝑛
 on a sphere for 

generator g1+…+gn renormalizes αf [5] [6]. In extension, 

a fractal zeta universe (FZU) describes charge quanta as 

δF -chaotic bifurcations as nontrivial zeros of zeta 

functions answering the Dirac monopole problem (DM) 

[7, 8]. FZU relates chaotic period-doublings and periods 

νSh due to the theorem of Sharkovkii to unified fields 

which are doubly-periodic invariants suffering 

Kronecker-Weber extensions. Local L-function minima 

yield gauge parameter as Gaussian periods in the 

regulator index 𝑙𝑛𝐺𝑤 = w! 2𝑤ln3
𝑤2 reflecting ratios in 

experiment [1]. This universe as an open thermodynamic 

system creates continuously matter with complex, 

positive and negative curvature. It contains closed 

thermodynamic systems with atoms and crystals as 

stable orbiting laps under the influence of pseudo-

congruent k-components. Equations for curvature-stress-

energy, one- and two-particle Green- function fit into 

linear relations for one-dimensional simplest cycle in 

Section 2. A finite Euclidean norm of iterated invariants 

leads to a spectral and geometric zeta function in Section 

3 for an oscillating fractal string. Section 4 confirms that 

binary invariants envelope unified fields. In Section 5 

simple nontrivial zeros of entire functions are local 

minima of L-functions. In Section 6 stable orbiting laps 

are Feynman diagrams of stable atoms and crystals. 

Section 7 proves a pseudo-congruence of bifurcating k-

components where fractal and atomic views are 

interdependent. A chaotic spacetime background 

susceptibility offers an alternative view to cosmological 

redshift (CR), expansion of the universe (EU), origin of 

cosmic rays (GCR), origin of cosmic microwave 

background (CMB), the phenomenon of quantum 

entanglement (QE) and the cosmological constant 

problem (CCP) [8, 1]. Some experiments confirming a 

continuously created matter are summarized in Section 

8. 

 

2. Spacetime Curvature and Simplest Cycles 

A Friedmann solution 𝑐𝜏 = ∫
√𝑅𝑢𝑑𝑅𝑢

√𝜙3(𝑅𝑢)
 confirms 

an elliptic integral in universe radius Ru which contains 

already a doubly-periodic time τ [9]. Real spacetime 

arises from an oscillation around its square discriminant 

Δ3 [8]. This oscillation is complex quadratic map γ of R, 

the chaotic bifurcations of which are under discussion. A 

period-3 cycle is a one-dimensional variable zk ∊[0,1] in 

a quadruple qsc={k+3,tsc} where z k+3 is in a triple tsc={k, 

k+1, k+2}. Period-3 specifically means f(f(f(z)))=z but 

z≠f(z) and z≠f(f(z)). In FZU quadruples qsc of simplest 

cycles is equated with Minkowski spacetime and speed 

https://saspublishers.com/sjpms/
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limit cl. Congruences k+μ→kμ for steps μ={0,1,2,3} of 

qsc yield a wave vector kμ-Fourier transform. A speed 

limit cl is equivalent to the simplest cycle rate. Similarly, 

the Hubble relation RH=Rln’R=cl corresponds to a self-

similar diffusion process (R2)’=D0 with cl=D0/R≃1/√ε0 

where D0 is the diffusion coefficient. Minkowski- 

spacetime averages a self-similar diffusion process 

R2≃Dot with universe radius R as a theta square. A 

symbolic complex quadratic map γ ◦z→z can be casted 

into a symbolic linear substitution (Hermite- 

Tschirnhausen) γ of cubic roots t,z 

𝐹(t, z) = 𝛾(ϕ3(t)) ◦ 𝑧 = ϕ3(t)/(t − z) − ⅓ϕ′
3

(t)    (1) 

 

It should be mentioned that the form (1) of a 

symbolic binary substitution γ is also valid for any nth 

order polynomial ϕn. A conjugate of γ(ϕ3(f(ω))) is the 

Mandelbrot map zk+1←zk
2+c which writes identically 

𝐑μν
4 + 2ℱ𝐑μν

𝟐 − 𝒢2 = 0                                (2) 

 

with skew curvature tensor 

Rμυ=χμυμ’υ’Rμ’υ’=Rezk, field density F=½ Re(c-

zk+1)=½(H2-E2), Poynting vector G=½ Im(c-zk+1)=EH, 

μ,ν=1,2,3,4 of gauge field E, H. Lorentz-invariance is a 

rotated cardioid normal n2 =2F+2iG =c-zk+1 as a three-

dimensional complex vector as a subset of (1) with 

𝑑𝑒𝑡 |
𝑧 + 𝑐𝑑𝜏 𝑥 + 𝑖𝑦
−𝑥 + 𝑖𝑦 𝑧 − 𝑐𝑑𝜏

| = 1 

 

Renormalization in (2) scales n→(eo/e)n with 

charges e0 and e and n≃zk [10]. Gauge parameter Gw are 

fixed points of invariant z≃f(ω)≃Rμυ z𝑘+𝑁 → G𝑤z𝑘 →
γ ∘. .∘ γ ∘ z𝑘  progressing into complex space ℂw, 

w=1,…,5 [11]. The universe radius Ru in ϕ3(Ru) is a 

Weierstrass ℘-function which is parametrized on a 

hyperelliptic Kummer surface and Weddle surface 

K(X(f)=(1,-f,f2,1)),W(Y(f)=1,-f,f2,-f3)) by the Weber 

invariant 𝑓(𝜔) = 1
−1

48
𝜂(

𝜔+1

2
)

𝜂(𝜔)
 with Dedekind eta function 

η(ω) [12]. A quadratic map γ(ϕ3(f(ω))) arising from a 

quartic polynomial ϕ4 with one quartic root xs shifted to 

a quadruple s=±∞,±i∞ is capable to explain spin indices. 

This generalized shift to +∞ yields a cubic invariant 

ϕ3(f(ω)). With δz≃(δxs)2 the four-component tensor Rμυ 

in μ→μ,s embeds into a 4∙4-component tensor Rμsυs’, 

susceptibility χμυμ’υ’ and χμsυs μ’sυ’s with 42, 44, 44 and 48 

components. A quadruple qsc≃s equivalent to four spin 

indices s is a bispinor ψs={1,δk,δkδk,δkδkδk}f(ω). In a kμ- 

Fourier transform triples tsc∊qsc are spatial indices ninj. 

Averages are components χ..ν..ν’..≃kνkν’ ≃gνν’. Tensor 

kνkν’ tends to the metric tensor gνν’ giving the Ricci tensor 

Rμμ’=χμυμ’υ’ gνν’ for k→∞. FZU predicts that a bispinor 

ψs≃zk ≃ Rμυ is curvature. The binary envelope is 

fundamental where 
1

𝑡−𝑧
|14 ≃ 𝐺12γ23

𝜇
𝐺34 is a two-linear 

Green’s function Gss’[ψs] mod ϕ3(f(ω)). Map (1) of 

invariant f(ω) envelopes Einstein, Dyson and Bethe-

Salpeter equations which are linear simplest cycle 

relations 

  (3) 

 

A cubic potential Aμ≃ϕ3(f(ω))≃ϕ3(ψs) in (3) is 

capable to reproduce the Ginzburg-Landau-like term. In 

the following stable γ-orbits where detγ=1 is called laps 

lω leading to equivalent periods ω in the Weber invariant 

f(ω). Inequivalent, unstable, bifurcating γ-orbits detγ≠1 

is called k-component. The quantum statistical 

Mandelstam plane s,t,u with s+t+u=0 is related to cubic 

roots ei of invariants f(ω) by δke=Λ2(ω)(λ,1,1-λ), ei= 

⅓Λ2(ω)(2-λ,2λ-1,-λ-1). The parameter s,t,u ≃λ in 

Mandelstam plane get proportional to λ for 

Λ(ω)=(2K/ω1)=1. Poles of the scattering amplitude 

𝔸(𝑠) = ∑
1

𝑠−𝑚𝑛
2(𝑛)  are simple, nontrivial zeros znt=½+imn 

of 

 

 𝜉(𝑧) = (
𝑧
2

) 𝜋−
𝑧

2𝛤 (
𝑧

2
) 𝜁(𝑧) = ½ ∏ (1 −𝑛

𝑧

𝑧𝑛𝑡
) ≃ 𝑬 [13]. A scattering amplitude M(s,t)=𝔸(s)+𝔸(u) 

in the S-matrix S(s, t) ≃ M(s, t) = ∫
ImM(𝑠′,𝑡)

𝑠′−𝑠−𝑖0
𝑑𝑠′ 

acquires a one-dimensional complex contour integral 

with current density ImM(s,t). Hieb’s conjecture is 

proven by setting λ=jn/mn+½ with a Dirac-like current 

𝑗𝑛𝑘 = �̅�𝑞𝑘 𝛾𝑛𝑞𝑞′𝜓𝑞′𝑘 ≃ 𝐼𝑚𝑀(𝑠, 𝑡). For triples tsc in 

ψs={1,δk,δkδk,δkδkδk}f(ω) the current gets jnk+1 ≃
1

2π𝛿𝐹
2 jnk where ∮ 𝑑𝑠𝔸(𝑠) = 2𝜋. An entire, holomorph 𝜉is 

E-field-like. For each interaction w=1,2,3,4,5 a 

conductivity plateau jn≃E is a holomorphic map of a 

simple nontrivial zero znt on a complex contour ∮ 𝑑𝑧
𝑧𝑛𝑡

Cg
 

producing an energy-gain of a Carnot cycle of 

time/entropy Re(dz) and temperature Im(dz). The 

integral over dz traverses contour circles with mean area 

2πδF
2 on a chaotic cloud in a dσ5- hypersurface. Only an 

average defines a S-matrix which defines charge quanta 

e by a chaotic traversed cloud around znt 

S =  T exp { −ie ∫ 𝑑𝜎5 (𝑗𝑛𝜇  𝐴𝜇}. (4) 

 

Iterates zk around the x=y axis is like a qsc- 

diffusion process with quadrupolar moment Qxy→Qij 

giving Q/R3≃1/εR in dσ5. In dependence on the average 

the quadrupolar qsc- background permittivity εij=ε0kikj/k2 

in 1/εR appears as a Coulomb- or Kepler singularity if 

ε=ε0R2. Note an equivalence between elastic, non-

radiative exchange scattering 1,2→1’,2’, a quadrupolar 

susceptibility εij=ε0kikj/k2 and the moment of inertia in 

gravitational waves. This can be motivated for the 

Poynting vector G≃½Im zk
2 for qsc where δkδkδk≃1 and 

zk≃zk+3. At the beginning of any definition of spacetime 

qsc give 𝑄𝜇𝜈 ≃ �̇�𝜇𝜈 ≃ 𝑄𝜇𝜈 for μ,ν=x,y a mass generation 

term where the stress-energy term G is a square of the 

third derivative 𝛿𝑘
3𝑄𝜇𝜈 = 𝑄 𝜇𝜈. 

 

3. Binary Invariance and Geometric Zeta Function 

Vibrations 

In elliptic theta ϑ(u,ω(λ)) the Legendre modular 

function λ is independent. The binary invariant cross-

ratio of four points λ is capable to start an invariant 

process while lattice periods ω fluctuate. Iterating 
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ϕ3(f(ω)) or ϕ4(f(ω)) one gets new invariant forms fk(ω). 

The cast (1) relates a shift-operator δk to as a discrete k-

derivative which substitutes cubic roots of f(ω) and δk 

produces a new invariant. The map fk+1=γ◦fk is equivalent 

to a form generating differential process fk+1 = δAfk with 

Aronhold derivative δA = 𝑐𝑘+1
𝜕

𝜕𝑐𝑘
 [14]. A new form fk+1 

yields new modules λk+1= λ[fk+1]. The algebra of 

invariants of any binary forms is always finitely 

generated where its order is limited by an iterated 

function 𝑘10𝑘3
 [15]. In ℂ5 which is a most general 

Riemann surface the degree of iterated optimal units 

increases as a tower 𝑔L ≃ 𝑏𝑏…𝛺𝑤−L
. The degree of the 

optimal L(z,χ)-function regulator index is lnbgL as shown 

in Section 6. A certain base b→2k competes with iterated 

𝑘10𝑘3
. With respect to k-components its order 22𝑘

 should 

be comparable with the degree of the coupling constant 

G𝑤 ≃ γ ∘. .∘ γ. An estimation yields 22𝑘
≃G𝑤 for k=10 

and w=5 which solves the cosmological constant 

problem by the existence of a generator 𝑔𝜆𝑘 = 1 as a root 

of unity [1]. The k→∞ tendency λk→0 is known as 

macrophysics where objects can be located with high 

precision. An estimation for e.g. ω→2ω (detγ=2) yields 

𝑔𝜆𝑘 ≃ 𝑔16𝑒−2𝑘𝜋𝐾′/𝐾
 with quarter periods K, K’ [16]. The 

classical limit K→0 corresponds to a plateau of the 

Heuman lambda function Λ(u=aω,ω). Physically a δA 

pseudo- congruence implies the existence of a finite 

time-thermal generation rate ∮ 𝑑𝑧
𝑧𝑛𝑡

Cg
 on a complex 

closed time -thermal contour Cg for a complex one-

dimensional current j. On contour Cg the Euler product 

of the holomorphic function ξ(z≃λ) up to a quadratic 

zk→zk+1 transformation 

𝜉(𝑧) = 𝑒∫ dz𝔸(z) = ∏
𝑝−½z

𝑠ℎ(½𝑧𝑙𝑛𝑝)
                                 (5) 

 

acquires a doubly-periodic oscillation. A partial factor of 

a triple tsc 
∏ 𝑠ℎ(𝜆𝑘)𝑡𝑠𝑐

= ∏ (𝑠ℎ𝜆𝑥𝑘
𝑐𝑜𝑠𝑦𝜆𝑦𝑘

+ 𝑖𝑐ℎ𝜆𝑥𝑘
𝑠𝑖𝑛𝜆𝑦𝑘

)𝑡𝑠𝑐
     (6) 

 

with λx=½lnpRez and λy=½lnpImz c. The real 

part of doubly-periodic vibrations has long-wave 

oscillations E(k)|k→0→0 and short-wave oscillations in 

minima of E(k)|k→c≠0 with wave vector k. For the 

imaginary part of doubly-periodic vibrations the 

temperature oscillates in reverse T(k)|k→0≠0 and 

T(k)|k→c→0. Two of three strings oscillate with fixed 

end-points and the third string oscillates freely. Strings 

with time and temperature reversed. A pseudo-congruent 

differential shift operator δA  ≃
𝑑

𝑑𝑧
 is related to a 

differential shift operator where e−h
𝑑

𝑑𝑧ζ(z) =  ζ(z − h) 

[17, 18] Proves spectral vibrations of fractal strings 

described by an infinite Dirichlet Laplacian ΔD. 

Eigenvalues of ΔD are strings 𝓛={ls,ms} and ν=kslsj
-1 

entering geometric zeta function𝑠 𝜁(𝑧, ℒ) =

∑ 𝑚𝑠
𝑗

𝑗∈ℕ 𝑙𝑠
−(𝑗  + 1)𝑧

 and spectral zeta functions ζ(z,ν) ) 

[17, 18]. 

 

4. Field Equations as Simplest Cycles 

A Feigenbaum renormalization equation -

αFg(g(-z/αF))=g(z) is a generator shift -αFz2k=zk [19]. A 

measured second Feigenbaum constant δF implies a 

linear relation ckzk + ck+1zk+1 + ck+2zk+2 = 0 between 

zk, zk+1, zk+2∊ tsc which is equivalent 

γ(ren) = γ + γ ∘ Γ(ren) ∘ γ(ren)                      (7) 

 

and charge conserving where ck≃(δF-1) and 

ck+1≃δF. Maxwell, Dyson, Bethe-Salpeter and Einstein 

equation can be are arranged in (4) where zk, zk+1, zk+2 are 

field tensor Fμν , Ricci tensor Rμν, Green function G, mass 

operator Σ, polarization function P, vertex Ξ. Ricci 

curvature R, stress-energy T and cosmological constant 

Λ yield e.g. 4Λ-R=κ4T with 𝜅𝑤 ≃
8𝜋𝐺𝑤

𝑐𝑙
4 . However, an 

external charge and mass requires a linear relation 

between four independent functions e.g. 𝜕𝜇𝐹𝜇𝜈 = 𝑗𝜈. 

Lagrange conditions for a whole set of stable orbiting 

laps result in at least a quadruple 𝑐𝑞𝑧𝑞 = 0. One-

dimensional bifurcating lines are superposed by its zoom 

giving Huygens-Fresnel wavelets. Wavelets combine to 

van der Waals interacting massive clouds on a 

hypersurface dσ5. This constitutes a charge quantum e in 

Equation (4) around one iterated nontrivial zero znt where 

the map contains the whole set of Feynman diagrams. 

 

5. Period-Doubling Fields and Doubly-Periodic 

Elliptic Invariants 

Regular chaotic orbits of (1) are stable Newton- 

Cayley solutions which emphasize a cubic invariant f(ω) 

and class number one fields hΔ=1 [20] [21]. For arbitrary 

class fields a quartic factor in f(ω) can be extracted from 

the elliptic invariant j(ω). Envelope (3) relates binary 

invariants e.g. also to a quadratic Green’s function 

expansion quantum statistics. Period-doubling is 

equivalent to a split of periods ωk→ωk+1,ωk+2 and 

fk+1=f(ωk+1) and fk+2=f(ωk+2). In conjunction with 

enveloping periods νSh the map (3) forces complex 

multiplication (CM). Laps lω as well as k-components 

exhibit simplest cycles qsc in real interval [0,1]. A 

bispinor ψs is a frozen quadruple 𝑓𝑞𝑠𝑐
 with Euclidean 

norm ∑ 𝑓𝑞
−2

𝑞 = ∑ 𝑓𝑞
′𝑓𝑞

′′
𝑞  and bicubic norm 

Nm(f(ω),𝕂[∂])=f(ω)f’(ω)f’’(ω) of c.c. conjugates f’,f’’. 

Optimal k-components of degree 𝑏𝑏...𝛺𝑤−ℒ
(detγ≠1) are 

assigned to ultra-high-energy particles. Stable atoms are 

assigned to stable orbiting laps γ ∘. .∘ γ ∘ f of degree 2k 

which yield a path on Mandelstam plane z,s,t,u≃λ[fk]. 

 

6. Regulator-Index Process to Gauge Coupling 

On Mandelstam plane the inverse Riemann zeta 

function z=ζ-1(z) is viewed as a Legendre modular 

invariant λ which depends again on an invariant f(ω). A 

self-similarity is implemented from the beginning in 

elliptic theta with f(ω). An entire factor ξ(z) satisfies a 

hyperbolic Laplace equation Δh=y2Δxy=(Imλ)2Δxy. The 

Dirichlet-Hecke L-function L(z,χ) of character χ in  
𝜁(𝑧,𝕂)

𝜁(𝑧)
=

𝛤(𝑧/2)𝑧(𝑧−1)𝜁(𝑧,𝕂)

2𝜋𝑧/2𝜉(𝑧)
= L(z, χ))                   (8) 
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is taken as a holomorphic complex action 

functional L(z,χ)≃hΔRΔ/√Δ ≃Ωw-L. A function that is 

holomorphic throughout the finite plane is generally 

called an entire function, and a distinction is made 

between entire rational and entire transcendental 

functions, depending on whether their power series 

expansions have finite or infinite terms. A Hecke L-

series is an L-series for a character on a group that is a 

generalization of both residue class and ideal class 

groups and is an entire transcendental function. The 

transformation of Hecke L-series into a linear 

combination of Epstein zeta functions 

𝜁[𝑔ℎ](2𝑧) = 𝜋𝑧𝛤−1(𝑧)𝑧−1 ∫ 𝑑𝜔𝑧
∞𝑧

0

𝜗[𝑔ℎ](0, 𝜔) 

 

shows that the quotient of the Dedekind zeta 

function ζ(z,𝕂)/ζ(z) can be extended holomorphically to 

the entire complex plane [22] [23] [24]. The Epstein zeta 

function ζ[gh](2z) contains theta constants 𝜗[gh] =

𝜂(𝜔)𝑓𝑖
2(𝜔) with [00]=``,[10]=1,[01]=2 and 𝑓8(𝜔) =

𝑓1
8(𝜔) + 𝑓2

8(𝜔). 

Claim: Near simple, nontrivial zeros z≃znt of ξ(z) in (8) 

minima of L(z,χ)- functions exhibit doubly-periodic 

oscillations of the complex variable z. While scanning znt 

by the map f→γ◦f the oscillations correspond to feasible 

solutions of the regulator index of number field 𝕂 

extensions. 

 

ξ(znt) in (8) requires a vanishing Epstein zeta 

function ζ[gh](2z). Algorithmically accessible ζ[gh](2z)=0 

imply cubic integrands for γ=γ(ϕ3(f(ω))) and z, ω, ωz∊𝕂 

in ζ(z,𝕂). Linearizing γ ∘. .∘ γ in f→λ, ξ→γξ, z→γz, 

λ→γλ, ω→γω the power tower ωz≃ff in L(z,χ) minima 

oscillates. Oscillations with wave vector kμ due to 

simplest cycles qsc depend adiabatically on doubly-

periodic vibrations on contour Cg[qsc]. A feasible 

solution of regulator index RΔ elements l=lnbf≃ lnbE is 

shown to have congruences for a non-periodic sum 

N(E)ζ(z, 𝓛) with Euclidean norm N(E) = ∑ 𝐸𝑞𝑠𝑐
−2

𝑞𝑠𝑐
=

∑ ψ𝑞𝑠𝑐
ψ̄𝑞𝑠𝑐𝑞𝑠𝑐

 similar to a vibrating fractal string [17] 

[18] [25]. Also, variable z≃λ[jn[f]] oscillates as a current 

density jn. ζ[gh](2z)≃ ζ(z,𝕂) is capable to vanish for a pure 

cubic field z,ω∊𝕂[∂] with ∂=2⅓ and normal field 

ℕ[(√Δ2]=𝕂[∂] 𝕂’[∂] 𝕂’’[∂] where Δn is the discriminant 

of an nth order field. The finiteness condition for non-

periodic iterates N(E)ζ(z,𝓛) and the existence condition 

of units yield a quadratic form ∑(μ1l2 + μ2l +
 μ3b2𝑙ζ(l, ℒ)) with Lagrange parameter μ1, μ2, μ3. This 

quadratic from in l=RΔij is appropriate for local L- 

minima oscillations in dσ5 in the iterated regulator index 

RΔ = 𝑑𝑒𝑡𝑙 [25]. Local L-minima contain three terms, a 

mean density μ1≃Ωw[λ[jn[f]]], a low but finite μ2 net rate 

and a low count rate μ3 of GCR events 

2𝜇1𝑙 + 2𝜇2𝜁( l, ℒ)e2l  + 𝜇3N(bl)𝜁’( l, ℒ)  = 0)    (9) 

 

An optimal regulator index L-function 

processes an equilibrium holomorphic action 

(conductivity plateau), air ionization (finite net rate) and 

GCR bifurcation (scattering) on complex non-

equilibrium contour Cg. In the classical limit K’/K→∞ 

the Heuman lambda function Λ(u,ω) gets constant and 

λ→0 or λ→1. The Dirac-like representation λ[jn[f]]= 

jn/mn+½ contains as well a product of four sigma 

functions U□≃exp(iΛ(u,ω)u) (cross ratio). For K→0 a 

lattice gauge continuum with Lagrange condition μ0(1- 

U) reproduces a plaquette [26]. Thus, the equilibrium 

contribution μ1lnbE ≃lnbλ(1-λ) is capable to reproduce an 

action in lattice gauge theory including the spinor term. 

The second and third terms μ2, μ3 belong to an k-

processed open universe. With λ(1-λ)=24/f24 invariant 

f(ω) relates to mass. 

 

7. Densities for Open Universes 

L-functions (8) subjected to the process f→λ, 

ξ→γξ, z→γz, λ→γλ, ω→γω describe contours Cg of 

open thermodynamic systems. If the spacetime -density 

(jn) is not an independent variable while f(ω) gets iterated 

experiments on CR, GCR, EU, CCP, CMB, QE can be 

easily explained. If the vacuum density contains the 

infinity of γ-processes around znt one gets the concept of 

quantum statistics of charge quanta with CCP. If 

individual k-components are resolved the vacuum 

density is lowered up to 2210
 giving a rare count of GCR 

and CMB in agreement with experiment. QE is 

equivalent to spacetime built from correlated γ-processes 

γ ∘. .∘ γ with a quadrupolar susceptibility due to chaotic 

bifurcations giving an apparent EU. 

 

8. Greens Functions, Charges, Atoms, Nuclei and 

Crystals 

Fixing nontrivial zeros ξ(znt) and masses 

mn=Imλ by Lagrange parameter μs and μc up to a factor 

mn
2 a γ-invariant hyperbolic Laplacian Δhξ(z)=0 turns 

out to be a one-dimensional Poisson equation where 

Δxy(L(z, χ)ξ(z)) + μ𝑠L(z, χ)ξ(z) = μ𝑐(Imλ − m𝑛) (10) 

 

Homogeneous solutions of (10) with string 

eigenvalues μs≃𝓛,ν recover the relation 
𝜁(𝑧,ν)

𝜁(𝑧)
= 𝜁(𝑧, ℒ) 

analogous to (8). Geometric zeta functions ζ(z, 𝓛) are 

confirmed by an infinite-dimensional Dirichlet 

Laplacian ΔD [18, 17]. In L-function minima z-

oscillations of units z≃l occur in (10) for a definite set of 

characters χ. The road to achieve coordinates are rational 

solutions and fixpoints of periods n of the γ-parametrized 

singular determinant of a Kummer surface and Weddle 

surface K(X(f)=(1,-f,f2,1)),W(Y(f)=1,-f,f2,-f3)) of points 

X,Y in projective space. Rational Rμυ require square 

rational discriminants Δ2, Δ3, Δ4 in the time integral dτ for 

cubic polynomials and elliptic theta. Square 

discriminants Δ2 and Δ3 require rational Legendre 

modules λ. Rational λ require rational invariants f(ω). 

The fundamental hyperelliptic addition is a vanishing 

condition on Kummer surface K(X) and Weddle surface 

W(Y) 

s+(u,v)s-(u,v)=X(fk)jX(fk+1)→0            (11) 

 

where s+(u,v)=ϑ(u+v)/ϑ2(u), s-(u,v)=ϑ(u-

v)/ϑ2(v) depend on hyperelliptic characteristics [gh]. In 
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(11) hyperelliptic theta functions, with j2=-1 are 

parametrized by hyperelliptic ℘-functions X(f) up to an 

orthogonal hyperelliptic substitution. For a definite 

substation fk+1=γ◦fk expression (11) vanishes 

quadratically in f. Atoms and nuclei are defined by γ ∘. .∘
γ ∘ f(ω) = gf(ω) for a rational period n in the generator 

gn=1. Due to f12(ω)≃m equation (11) is quadratic in 

masses m like the well-known Edington equation for the 

electron-to-proton-mass ratio. Statistical occurrences of 

characteristics [gh] and fixed points γ ∘. .∘ γ yield a large 

homogeneous factor in (11). The symbolic linear- 

quadratic map (1) offers simple criteria to differentiate 

between crystals and atoms. A complex γ is capable to 

describe crystals with all 32 crystallographic classes G32 

[27]. If γ-fixpoints in the iterated qsc- quadruple ψs[fq] 

depend on G32 the bispinor ψs[f] belongs to a crystalline 

state. Subsets are called nuclei if γ◦f induces a rational 

transform of periods ω. An existing k-pseudo-

congruence predicts a finite number of particles within 

the universe confirming the Eddington number. Further 

on, the n=3 transform of periods of theta constants is 

compatible with the ⅓ transform. This inflection point 

corresponds to period-3 cycles of chaotic bifurcations. In 

total one has 36 combinations of ⅓ transforms 

confirming the standard model of particle physics. There 

is strong indication that 120 stable combinations of 

hyperelliptic characteristics [gh] yield a vanishing of 

(11) which may explain the periodic table of elements 

[28, 29]. This simple theory of complex four-component 

curvature ψs extends to all interactions w=1,2,3,4,5. A 

coupling constant Gw is simply a scaling z→ Gwz or 

Rμν→GwRμν of field z or curvature Rμν which is f(ω)→ 

Gwf(ω) or γ◦…◦γ◦f(ω). Parabolic γ or hyperbolic γ in a 

bispinor have large periods n→∞ with j(ω)→∞ realizing 

the rational case Δ2=Δ3=Δ4→0 where detγ=ϕ3. So far 

fixed points of symbolic γ arose either from stable 

orbiting laps for detγ=1. Unstable orbits called k-

components arise for arbitrary discriminants Δγ  =

discγ =  ¼ ( ⅓ϕ3
′ + 𝑓)2 − 𝜙3. In this case the fixpoint 

can be any generator gi as a root of unity. Stable regions 

with coupling constants are sums in the matrix RΔ with 

vanishing Gaussian periods. With √Δ3=λ(1-

λ)=24/f24≃η12(ω) the classical case is singular with Δ3- a 

square. For n→∞ invariant f(ω) and real algebraic unit E 

tend to a constant. Then Eh
Δ=½f3(√Δ) or RΔ≃lnE→0 is 

proportional to Gw→0 if lnf≃f. Stability of the proton 

and atoms is explainable by a γ-invariance of equation 

(11). A constant vacuum energy density throughout in 

the universe is understandable by a compensation of k-

components by the presence of atoms in those regions 

where rational fixpoints are absent. It is assumed that this 

holds even for organic matter which must be surrounded 

by ionized atmospheres. 

 

9. RC Circuit Model of a Fractal Cosmic-Ray-

Charge-Cloud-Superfluid 

A pseudo-congruence of cubic iterates can be 

demonstrated by an atmospheric active RC circuit with 

negative differential resistance Rg. Rg acts as an active 

resistance in a Gunn diode with drift-diffusion clouds. 

Superfluid-dynamical cloud points X(f) obeys two waves 

of entropy and temperature surrounding each massive 

shell as a Carnot heat engine. Iterated invariants f(ω) 

yield Kirchhoff equations of an ideal fluid in discrete 

form X(fk), X(fk+1) and X(fk+2) [1]. Chaotic f(ω)- 

bifurcations develop period-doubling doubly-periodic 

oscillations of temperature and entropy. With invariant 

vacuum energy density, a higher massive density region 

is compensated by CMB, plant growth and atmospheric 

clouds coupled to cosmic rays which makes a non-

ergodic bifurcation. In the following a self-similarity 

ratio of 1020 for relative information density 10-167 proves 

to be essential. The stable part of the system as a whole 

is holomorphic and infinitely differentiable. The CM 

invariant λgi
2≃GwMw

2 contains a generator gi which is a 

modular unit in an invariant dimensionless energy 

density [11]. Pseudo-congruence means Gw ≃ 22.k
 at 

G5=10-167 and k=10. With background volumetric mass 

Mw≃gi the mass ratio √G1/G5≃M5/M1≃1083 is 

comparable to the Large Number Hypothesis [30]. The 

corresponding Born-Oppenheimer parameter 

κBO=(M5/M1)¼≃1020 is viewed as a cloud moving in a 

cloud of w=5 bifurcations equivalent to elastic non-

radiative exchange scattering 1,2→1’,2’ as a basic 

property of any spacetime as shown in Section 2. Pseudo-

congruence implies a map for the Born-Oppenheimer 

parameter κBO→κBO
4 which follows from λ = −

𝜗[10]
4

𝜗[01]
4 . 

Physically the Millikan experiment, the quantized Hall 

conductivity (QH), an atmospheric cloud-to-earth-mass 

behavior and a solar-system-to-universe mass behavior 

should show self-similarity each of ratio 1020 [8]. Then 

iterated fluid dynamics on K(X(f)) for a cubic invariant 

f(ω) allows a RC circuit model in open hypersurfaces 

dσ5. A Carnot cyclic lateral current jlateral ≃dQ/dt 

alternates in a spherical shell between low- and high-

pressure areas d(pV) under influence of an altitude 

gradient of temperature ∇T and pressure p for variable 

volume. Lateral fields ∇T≃Ealtitude and lateral currents 

jlateral≃Ealtitude of clouds are projectable onto zeta zeros 

znt∊Cg on Mandelstam plane giving one-dimensional 

relations Qg=CU≃CT, U=RgIg between charge Qg, 

capacity C between critical stripes, negative differential 

resistance Rg and current Ig. Pseudo-congruence Gw ≃

22.k
 means alternating fields Ealtitude and alternating low 

count rates of ultra-high energy GCR as the origine of 

capacity C. A dσ5 current in ∂F=j is caused by variations 

of iterates γ◦…◦γ where the cubic invariant f(ω) causes 

negative differential resistances Rg. Like the Gunn effect 

the appearing negative differential resistance Rg is 

responsible for the formation of clouds, e.g. atmospheric 

clouds driven by zeta zeros. An altitude capacitor C 

subjected to k- pseudo congruent alternating currents and 

negative resistance is a chaotic RC circuit. This model 

considers a critical stripe of ζ(z) containing a seasonal 

growth of organic matter together with a cosmic-ray-

charge-cloud-superfluid as a capacitor as a weather- 

climate- model. 
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10. Experiments in Natural History 

The FZU model suggests a net persistent 

creation of organic and non-organic matter from a zeta-

zero-energy-universe. Seasonal sun radiation is rather a 

catalyst to set the loop γ◦…◦γ◦f(ω) in motion. K-

components with very low GCR count rate induce air 

ionization. The seasonal variation of GCR counts has 

been proven over a large period of time [31]. A predicted 

influence of cosmic rays on earth's climate as well 

atmospheric cloud-cosmic ray- global temperature 

correlations has been proven and is under discussion [32-

36]. The plateau-like Qg≃CT, U=RgIg transition between 

the next fixpoints predicts oscillations of temperature in 

agreement with statistical data over 108 years [37]. 

Microwave emission at QH stands for a continuous 

creation of CMB on earth [38]. Diurnal variations of air 

ionization in vegetation areas seem to indicate the 

presence of continuously created organic matter and 

GCR [39, 40]. A superfluid contains the number of 

segmental displacements up to reaching a congruence 

level. The bifurcating potential from the lowest up to the 

highest GCR energies is replaced by a continuous 

potential with a gauge parameter e which originates from 

znt. Pseudo-congruence of k-components γ ∘. .∘ γ implies 

a highly correlated spacetime on earth up to the 

exosphere. This is simply the criterion of atmospheric 

stability. Correlated signals of large array GCR- 

detectors are equivalent to a surface stability. A 

superfluid is a perfect fluid having a first and a second 

sound. A second sound in cosmic-ray-charge-cloud-

superfluid is trivially proven by flash bang and thunder 

in atmospheric excitations. Moreover, a seasonal and a 

diurnal variation is a doubly-periodic oscillation present 

in the whole universe. FZU is realized by a doubly-

periodic oscillation of time τ in the Friedmann solution. 

Accordingly, the notion of a superfluid is equivalent to 

iterating Kirchhoff equations in terms of doubly-periodic 

elliptic invariants. The validity of the binary substitution 

(1) in creating new binary invariants is compared to 

continuous creation of organic matter where a one-to-one 

correspondence exists between binary forms and organic 

molecules [41]. The superfluid as a chaotic bifurcating 

perfect liquid is non-turbulent, non-dissipative, non-

radiative where emission is secondary process. The 

chaotic RC circuit model is felt by seasonal 

superimposed by diurnal changes of plant growth. Also, 

for organic matter and atmospheric clouds a continuous 

creation of matter is suspected. Existing matter is a 

catalyst for a van-der Waals-like minimum for a cloud of 

n→∞ particles with a nonlinear quadrupolar, non-

radiative, non-dissipative but highly-correlated 

interaction potential. This ultra-high energy limit is 

realized as an ultra-large mass near a simple nontrivial 

zero znt in (6) which is invariant for simultaneous 

changes of γ ∘. .∘ γ ∘ ξ and γ ∘. .∘ γ ∘ z. [42-44]. 

 

11. CONCLUSIONS 
The prerequisite for unified fields is a solution 

of CCP, QE, DM which is easily achieved by a bifurcated 

correlated spacetime. The connection between the 

algebra- mathematical definition of spinors and unified 

fields as four-component simplest cycles of spacetime 

curvature offers a new framework to connect uniformly 

zeta and L- functions with field-theoretic action 

functionals for all interactions. Dark matter is the all-

pervading bifurcation of the simplest cycles felt as tidal 

forces, a quadrupole-like doubly-periodic wave of 

Carnot cycles which gains energy. In this respect chaotic 

bifurcation is the prerequisite for stability. Biopower 

plants use the massive content of matter. A radiational 

part of matter migrates into the higher atmosphere. The 

measured diurnal variations of air ionization in 

vegetation areas confirm a possible a new technological 

use of radiational biopower. The question is whether 

emitting a low count rate of ultra-high particles can 

compete with the use of the molecular part of biopower. 

The measured ionization rate of 104-105 ions∙cm-3 in 

vegetation areas is much higher than the GCR vacuum 

energy density of a few protons per cm3 in the higher 

atmosphere layers. From CMB and GCR with energy 

density of ≃1eV∙cm-3 energy hardly can be extracted. 

However, a charge quantum requires an environment 

cloud mass as large as a Planck energy. This indicates 

that a GCR-like energy density generated by bifurcated 

spacetime can be much higher than that in higher 

atmosphere layers. Moreover, using nanolayers the 

predicted GCR and CMB emission can be controlled by 

QH-like experiments. FZU as an open universe is a 

stationary non-equilibrium open thermodynamic state. 

Spacetime as a texture of simplest cycles alone yields an 

apparent expansion via cosmological redshift caused by 

the increasing background permittivity in the Rydberg 

constant. This is equivalent to drift-diffusion around a 

point with a compensating electric field. A point radius 

(universe radius) as theta square ϑ(u,ω) is surrounded by 

constant diffusion Do if the Gaussian kernel of ϑ(u,ω) has 

standard deviation δF. This chaotic k→∞ limit explains a 

finite speed limit. 
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