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Abstract  Original Research Article 
 

In civil engineering projects, the strength of soil, particularly its cohesion, is pivotal for the stability of building foundations 

and slopes. Traditionally, determining cohesion (c) involves labor- intensive methods such as unconfined compression 

tests, direct shear tests, and triaxial tests, which require collecting soil samples. However, these methods are often 

constrained by time and cost considerations, exacerbated by the diverse nature of soil types. This research initiative aims 

to introduce a simplified approach for assessing the cohesion strength parameter of cohesive soil. Our proposal entails 

leveraging statistical correlations and machine learning techniques to establish connections between soil properties such 

as liquid limit, plastic limit, moisture content, % fine particle content, and the strength parameter. These laboratory tests 

are comparatively straightforward, rapid, and cost-effective when juxtaposed with conventional methodologies. 
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INTRODUCTION 
Soft soil is a common geotechnical challenge 

faced in many construction projects. The strength 

properties of soft soil are crucial for designing 

foundations, determining bearing capacities, and 

ensuring the stability of structures. Soft soil exhibits low 

strength characteristics, which can lead to settlement, 

instability, and failure of structures. Traditional methods 

of determining the strength properties of soft soil are 

time-consuming and expensive. Therefore, there is a 

need to develop a reliable and efficient prediction model 

that can estimate the strength properties of soft soil using 

easily measurable soil parameters. Important soil 

parameters for assessing geotechnical properties are 

SPT-N value, Dry Density, Moisture content, Particle 

size distribution (Cu, Cc), Liquid limit, Plastic Limit etc. 

The resistance property of soil can be measured by its 

SPT-N value during the soil penetration test. Dry Density 

refers to the mass of soil per unit volume when it is 

completely in a dry state. Moisture content, expressed as 

a percentage of the dry weight of soil, indicates the 

amount of water present in the soil. Particle size 

distribution provides in- formation about the distribution 

and composition of soil particles across different size 

ranges. Atterberg limits such as Liquid limit which is the 

moisture con- tent at which fine grained soil transitions 

from a liquid- like to a plastic state and Plastic limit 

which is the moisture content at which fine-grained soil 

transitions from a plastic state to a semi-solid state. The 

stability and capability of a soil to adjust when facing 

overburden loads and loading from structures, are greatly 

impacted by the shear strength of soil. This shear strength 

parameter is important in terms of soil stability which 

denotes how much shear stress a soil can take before 

sliding down. The shear strength parameter, especially 

the cohesion value of soil is of prime importance in the 

case of different foundation designs. 

 

In the field of civil engineering, accurately 

predicting cohesion strength parameters in soft soils is 

crucial for ensuring the stability of various structures, 

including foundations and embankments. Traditionally, 
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determining cohesion requires complex and expensive 

laboratory tests, such as unconfined compression tests 

and triaxial tests, which are time-consuming and 

resource intensive. To address these challenges, this 

research aims to propose a more efficient approach for 

estimating cohesion strength parameters in cohesive 

soils, with a specific focus on the city of Bangladesh 

(Dhaka). By leveraging statistical correlations and 

machine learning techniques, this approach seeks to 

establish relationships between soil properties such as 

liquid limit, plastic limit, moisture content, and the 

percentage of fines, and cohesion strength. By utilizing 

simpler and more cost- effective laboratory tests, this 

research endeavors to provide civil engineers with a 

practical tool for accurately assessing cohesion strength 

parameters, ultimately contributing to the stability and 

safety of civil engineering projects in the Bangladesh. 

 

Soil parameter assessments are crucial for 

geotechnical engineers and builders, guiding decisions 

related to soil bearing capacity, slope stability, 

foundation design, and other critical aspects of 

construction. These parameters serve as fundamental 

indicators of soil behavior and directly influence the 

safety and stability of structures. 

 

Key soil parameters include dry density, 

moisture content, particle size distribution (Cu and Cc), 

liquid limit, plastic limit, and SPT-N value. The SPT-N 

value, obtained from soil penetration tests, offers insights 

into soil resistance properties, while dry density and 

moisture content reflect soil composition and water 

content. Particle size distribution provides valuable 

information about soil particle distribution, while 

Atterberg limits (liquid and plastic limits) characterize 

soil behavior at different moisture levels. 

 

Problem Statement 

Soft soil poses a challenge for construction 

because it lacks the strength needed for stability. Before 

building on it, we must accurately predict its strength. 

However, traditional testing methods are slow and 

expensive. 

 

To address this, we aim to develop a computer 

program that can predict soil strength quickly and 

affordably. We'll use advanced math techniques like 

Support Vector Machine (SVM), Long Short- Term 

Memory (LSTM), and Artificial Neural Networks 

(ANN) to build this program. These techniques are like 

special tools that help us make accurate predictions while 

saving time and money. 

 

By creating this program, we hope to make 

construction on soft soil safer and more cost-effective. 

Builders can use it to make informed decisions, reducing 

the risks associated with soft soil construction projects." 

Significance 

Cost and Time Efficiency 

Traditional methods for assessing soil strength 

properties often involve extensive laboratory testing, 

which can be time-consuming and costly. By utilizing 

simple soil parameters, engineers can develop predictive 

models that offer quick and cost-effective assessments of 

soil strength properties. This efficiency can lead to 

reduced project timelines and lower overall costs. 

 

Improved Site Characterization 

Soft soils pose unique challenges due to their 

low bearing capacity and high compressibility. 

Understanding the strength properties of these soils is 

critical for site characterization and foundation design. 

By incorporating simple soil parameters into predictive 

models, engineers can gain valuable insights into soil 

behavior, enabling more accurate site assessments and 

foundation designs. 

 

Research Organization 

Predicting the strength properties of soft soil 

entails a systematic process relying on empirical 

correlations or mathematical models derived from 

experimental data. Here's a breakdown of the steps 

involved in predicting soil strength properties using 

easily obtainable soil parameters. 

 

Identify Simple Soil Parameters 

Begin by pinpointing straightforward soil 

parameters that are readily accessible or easily 

measurable. These parameters encompass factors like 

grain size distribution, Atterberg limits (including liquid 

limit, plastic limit, and plasticity index), soil moisture 

content, density (both bulk and dry density), pH level, 

organic matter content, and soil classification (such as 

clay, silt, or sand). 

 

Collect Experimental Data 

Compile a comprehensive dataset containing 

both the identified simple soil parameters and 

corresponding strength properties. This dataset should 

cover a diverse range of soil types and conditions 

representative of soft soils under examination. Data 

collection may involve conducting laboratory tests, field 

investigations, or utilizing existing databases. 

 

Develop Empirical Correlations or Mathematical 

Models 

Utilize statistical analysis techniques or 

machine learning algorithms to establish empirical 

correlations or mathematical models. These models 

elucidate the relationships between the simple soil 

parameters and soil strength properties. Common 

modeling approaches encompass Artificial Neural 

Network (ANNs), Lasso Regression Method, Recursive 

Features Elimination, LSTM. 

 

Verify the constructed models by employing 

separate datasets that were not involved in the model 
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creation process. The validation of models aims to assess 

their precision, dependability, and ability to generalize, 

facilitating the detection of any potential constraints and 

uncertainties associated with them. 

 

Validate the Models 

Validate the developed models using 

independent datasets that were not utilized in the model 

development phase. Model validation serves to gauge the 

accuracy, reliability, and generalization capacity of the 

predictive models, aiding in identifying potential 

limitations and uncertainties associated with them. 

 

MATERIAL AND METHODS 
Study Area 

Our research focused on the collection of soil 

samples from various sites within Dhaka city 

(Bangladesh), where we identified the prevalence of silty 

clay soil. These samples were primarily sourced from 

locations exhibiting a predominance of fine particles, 

surpassing other soil components by a factor of 8 to 9. 

Emphasis was placed on obtaining undisturbed soil 

samples. Collection was carried out at varying depths, 

including 2.5 m, 5 m, 10 m, and 15 m below the surface. 

Following collection, samples were carefully placed in 

sturdy, labeled, and sealed polythene bags before 

transport to the laboratory for analysis. 

 

Methods 

Support Vector Machine 

Support Vector Machine (SVM) stands out as 

one of the most powerful machine learning algorithms 

for both regression and classification tasks. It operates by 

identifying the optimal hyperplane that best separates 

different classes within a high-dimensional space, 

effectively delineating data points. The key objective of 

SVM is to maximize the margin, which represents the 

distance between the hyperplane and the nearest data 

points from each class. This margin optimization strategy 

enhances the algorithm's ability to generalize well to 

new, unseen data. SVM finds extensive applications 

across various domains, including image recognition, 

text classification, and bioinformatics, thanks to its 

remarkable performance, especially with complex 

datasets. The versatility of SVM is further amplified by 

the incorporation of kernel functions, which empower it 

to handle intricate non-linear relationships with ease. 

 

Long Short Term Memory (LSTM) 

Long Short-Term Memory (LSTM) models, a 

type of recurrent neural network (RNN), are increasingly 

recognized as invaluable tools in civil engineering due to 

their unique ability to capture temporal dependencies and 

handle sequential data. Within the realm of civil 

engineering, where understanding and forecasting 

temporal trends are crucial, LSTM models find 

applications across a spectrum of tasks. Whether it's 

predicting structural behavior over time, forecasting 

traffic flow patterns, or optimizing energy consumption 

in buildings, LSTM models excel at extracting 

meaningful patterns from sequential data, thereby 

empowering engineers to make more informed decisions 

and optimize the performance of infrastructure systems. 

 

By leveraging LSTM models, civil engineers 

can gain deeper insights into the dynamic behavior of 

infrastructure systems and make proactive decisions to 

enhance their efficiency, resilience, and sustainability. 

These models enable engineers to analyze historical data, 

identify trends, and forecast future scenarios with greater 

accuracy. For instance, in transportation engineering, 

LSTM models can predict traffic congestion patterns 

based on historical traffic data, allowing for better traffic 

management strategies. Similarly, in structural 

engineering, LSTM models can forecast the deterioration 

of bridges or buildings over time, facilitating timely 

maintenance and ensuring structural integrity. In 

essence, LSTM models offer a powerful computational 

framework that equips civil engineers with the tools 

needed to address the complex temporal dynamics 

inherent in civil infrastructure systems. 

 

Artificial Neural Networks (ANNs) 

In civil engineering, Artificial Neural Networks 

(ANNs) have found various applications due to their 

ability to learn complex patterns and relationships from 

data. Here's how ANNs are utilized in civil engineering; 

 

Predictive Modeling 

ANNs are used for predictive modeling in civil 

engineering tasks such as estimating structural loads, 

predicting material properties, and forecasting 

environmental factors like rainfall and temperature. 

These models help engineers make informed decisions 

during the design and construction phases of projects. 

 

Application in Geotechnical Engineering 

ANNs are utilized in geotechnical engineering 

for tasks such as predicting soil behavior, slope stability 

analysis, and groundwater modeling. By analyzing 

historical data on soil properties, ANNs can assist in site 

characterization, risk assessment, and optimization of 

construction processes. 

 

Overall, ANNs offer a powerful tool for 

analyzing complex data in civil engineering applications, 

enabling engineers to make more accurate predictions, 

optimize designs, and improve the efficiency and safety 

of civil infrastructure projects. In civil engineering, Long 

Short-Term Memory (LSTM) models, a type of recurrent 

neural network (RNN), can be applied to various tasks 

due to their ability to capture temporal dependencies and 

handle sequential data. Top of Form. 

 

Recursive Feature Elimination 

Recursive Feature Elimination (RFE) is a 

technique used for feature selection, particularly in 

machine learning tasks where there are a large number of 

features or predictors. 
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Recursive Feature Elimination 

Recursive Feature Elimination (RFE) is a 

technique used for feature selection, particularly in 

machine learning tasks where there are a large number of 

features or predictors. Its primary goal is to identify the 

most relevant features that contribute the most to the 

predictive performance of a model. 

 

The key idea behind Recursive Feature 

Elimination is that by iteratively removing the least 

important features and re-evaluating the model's 

performance, it progressively identifies and retains only 

the most relevant features for the task at hand. This helps 

in reducing the dimensionality of the feature space, 

improving model interpretability, and potentially 

enhancing predictive performance by focusing on the 

most informative features. 

 

It's worth noting that the choice of the initial 

model and the stopping criterion are crucial aspects of 

the RFE process, and they may vary depending on the 

specific problem and the chosen algorithm. Additionally, 

RFE can be computationally expensive, especially with 

a large number of features, but it often provides a 

powerful and interpretable feature selection method. 

 

Lasso Regression Method 

Lasso regression, short for Least Absolute 

Shrinkage and Selection Operator, is a regularization 

technique used in linear regression models to prevent 

overfitting and improve model performance. It achieves 

this by introducing a penalty term to the standard linear 

regression objective function, which encourages the 

model coefficients to be sparse (i.e., many coefficients 

become exactly zero). This sparsity feature of lasso 

regression makes it useful for feature selection, where 

only the most important predictors are retained in the 

model. Mathematically, lasso regression minimizes the 

following objective function: 

 

Lasso regression is particularly useful when 

dealing with datasets containing a large number of 

predictors, as it can automatically select the most 

relevant features while discarding the irrelevant ones. 

However, it is important to tune the regularization 

parameter λ carefully to balance between model 

simplicity and predictive performance. Cross-validation 

techniques are often employed to find the optimal value 

of λ. 

 

Performance Evaluators 

R-Square 

A statistical metric known as R-squared, or the 

coefficient of determination, quantifies the extent to 

which the independent variables in a regression model 

account for the fraction of the dependent variable's 

variance that is explained. The R-squared value can be 

anywhere from 0 to 1, with larger values suggesting that 

the model fits the data better. It is a measure of how much 

of the total variation in the dependent variable can be 

explained by the regression model. Although R-squared 

shows how well the model accounts for the data, it 

doesn't show whether the model was accurate or whether 

there is a causal relationship between the variables. 

 

Root Mean Square Error 

When gauging the accuracy of a predictive 

model, the Root Mean Squared Error (RMSE) is 

frequently utilized in statistics and machine learning 

domains. It serves a similar function to Mean Absolute 

Error (MAE) by quantifying the average discrepancy 

between predicted and actual values. However, RMSE 

accentuates larger errors by squaring the average squared 

deviations. Lower RMSE values indicate superior model 

performance, reflecting the model's ability to predict 

numerical outcomes effectively. RMSE proves 

particularly useful in evaluations where larger errors 

should be penalized more severely. 

 

Relative Root Mean Square Error 

In statistical analysis, assessing the 

performance of a predictive model often involves 

considering its RRMSE, or relative root mean squared 

error, especially in regression tasks. RRMSE offers a 

normalized version of the RMSE by dividing it by the 

mean of the observed values. This metric proves valuable 

for comparing models across different datasets or scales 

due to its percentage form and relative assessment of 

model performance. A lower RRMSE indicates a better 

fit of the model to the data, taking into account the 

magnitude of the observed values. 

 

Mean Average Error 

The Mean Average Error (MAE), also referred 

to as Mean Absolute Error, serves as a measure to assess 

the accuracy of a predictive model. It quantifies the 

average absolute disparity between the predicted values 

and the actual values. Mathematically, it computes the 

average of the absolute discrepancies between predicted 

and actual values: MAE offers a straightforward 

evaluation of the Proximity between predictions and 

actual outcomes, with smaller MAE values indicating 

higher accuracy. It is especially beneficial when the 

errors need to be interpreted directly in the units of the 

target variable. 

 

RESULTS AND DISCUSSION 
This study is centered around utilizing two 

advanced machine learning techniques, Long Short- 

Term Memory (LSTM) and Artificial Neural Network 

(ANN), to predict the undrained shear strength of soft 

soil in Dhaka, Bangladesh. Soft soil presents unique 

challenges in construction and engineering due to its low 

bearing capacity and susceptibility to settlement, making 

accurate predictions of its strength crucial for ensuring 

the stability and safety of structures built upon it. 

 

To begin the research process, the input data 

related to soft soil characteristics, including wet basis, 

liquid limit (LL), plastic limit (PL), and fines, undergoes 
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preprocessing. This step involves cleaning the data, 

handling missing values, and standardizing or 

normalizing the features to ensure uniformity and 

optimal performance during modeling. Furthermore, 

feature engineering techniques may be applied to extract 

relevant information from the dataset, potentially 

uncovering hidden patterns or relationships that can 

enhance the predictive capabilities of the models. For 

instance, combining certain features or creating new 

features based on domain knowledge can contribute to 

the overall effectiveness of the predictive models. 

 

Subsequently, both LSTM and ANN models are 

implemented and trained using the preprocessed data. 

These models are then evaluated based on their ability to 

accurately predict the undrained shear strength of soft 

soil. Through rigorous experimentation and analysis, the 

performance of the models is assessed across various 

metrics such as R², Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), and Mean Absolute Error 

(MAE). Hyperparameter tuning plays a pivotal role in 

optimizing the performance of the LSTM and ANN 

models. Parameters such as the number of hidden layers, 

number of nodes in each layer, choice of activation 

functions (e.g., sigmoid, tanh, ReLU), and optimization 

algorithms (e.g., Adam, RMSprop, SGD) are 

systematically adjusted and fine-tuned to achieve the 

best possible predictive accuracy. 

 

By focusing exclusively on LSTM and ANN 

techniques, this study aims to provide a thorough 

understanding of their applicability in predicting the 

undrained shear strength of soft soil. The insights 

gleaned from this research can prove invaluable for 

engineers, geotechnical experts, and researchers 

involved in construction, infrastructure development, 

and urban planning, facilitating better decision-making 

processes and ultimately contributing to the safety and 

stability. 

 

Results of the Long-Short Term Memory (LSTM) 

The LSTM model is built with an input layer, a 

single LSTM layer, and an output layer. The input data 

is reshaped to fit the LSTM's format with one time step 

and three input features (Wet basis, Liquid Limit, Plastic 

Limit, and Fines). The hidden layer consists of 64 

neurons with a Leaky ReLU activation function, and the 

output layer has a single unit. 

 

Performance metrics such as R², MSE, NSE, 

and RMSE are used for evaluation, with Mean Squared 

Error (MSE) as the selected loss function due to its easy 

interpretability. The model is evaluated across 28 

combinations of activation functions (Relu, tanh, 

sigmoid, ELU, SoftMax, and leaky Relu) and optimizers 

(Adam, Sgd, Rmsprop, Adagrad, and Nadam), varying 

the number of hidden layers, nodes in each layer, batch 

size, and epochs. 
 

The results of all trials were ranked using 

compromise programming, which identified Leaky 

ReLU as the optimal activation function and Adam as the 

optimal optimizer, with 1000 epochs and a batch size of 

128. Graphs are utilized to visualize the outcomes, 

including scatter plots, line plots, and swarm plots. The 

scatter plots show the relationship between predicted and 

actual undrained shear strength values for both training 

and testing datasets, highlighting the model’s ability to 

capture the general trend with some deviation at higher 

values. 

 

The LSTM model's performance was evaluated 

using key statistical metrics: R², MSE, RMSE, and MAE. 

These metrics provide insights into the model's accuracy 

and reliability in predicting the undrained shear strength 

of soil. The performance evaluation metrics for both 

training and testing phases are summarized in the table 

below: 

 

Table 3.1 Performance evaluation metrics of LSTM 

model 

Performance Metrics Training Testing 

R² 0.628 0.529 

MSE 5044.00 7563.15 

RMSE 71.02 86.97 

MAE 51.03 66.91 

 

The results indicate that the LSTM model has a 

moderate level of accuracy in predicting the undrained 

shear strength of soil. The R² values suggest a reasonable 

fit for both training and testing datasets, with a slightly 

higher accuracy during the training phase. The lower 

values of MSE, RMSE, and MAE during training 

demonstrate the model's ability to learn the underlying 

patterns in the data effectively. However, the increased 

error metrics in the testing phase highlight the challenges 

in generalizing the model to unseen data, suggesting 

potential areas for further optimization and refinement. 

 

These metrics underscore the importance of 

careful hyper parameter tuning and model validation to 

enhance predictive performance. The findings from this 

study indicate that while the LSTM model is robust, 

incorporating additional data and refining model 

parameters could further improve its accuracy and 

reliability in practical applications. 

 

This scatter plot visualizes the predictions made 

by the LSTM model developed as part of this thesis. Each 

point on the plot represents a data point from the testing 

dataset, with the x-axis indicating the actual values and 

the y-axis showing the corresponding predicted values 

by the LSTM model. 
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Figure 3.1: LSTM model’s training scatter plot for undrained shear strength prediction 

 

The scatter plot showcases the relationship 

between the predicted and actual values of the target 

variable on the testing dataset. Each point on the plot 

represents a data point from the testing dataset, with its 

position reflecting the model's prediction and the actual 

value. The distribution of points relative to the diagonal 

line (y = x) offers insights into the generalization ability 

of the model to unseen data. Close alignment between 

predicted and actual values suggests effective model 

performance on the testing dataset. 

 

 
Figure 3.2: LSTM model’s testing scatter plot for undrained shear strength prediction 

 

The line plot illustrates the performance metrics 

of the LSTM model on the training dataset across 

multiple epochs. The x-axis represents the number of 

epochs, while the y-axis displays the values of the 

performance metrics. Performance metrics such as Mean 

Squared Error (MSE) or Loss are commonly plotted to 

assess the model's training progress over time. A 

decreasing trend in the plotted metrics indicates the 

model's improvement in fitting the training data as 

training progresses. 
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Figure 3.3: LSTM model’s training line plot for undrained shear strength prediction 

 

The line plot showcases the performance 

metrics of the LSTM model on the testing dataset across 

multiple epochs. Similar to the training plot, the x-axis 

represents the number of epochs, while the y-axis 

displays the values of the performance metrics. These 

metrics provide insights into how well the model 

generalizes to unseen data as training progresses. 

Consistent or decreasing trends in the plotted metrics 

indicate the model's ability to maintain or improve its 

performance on the testing dataset over time. 

 

 
Figure 3.4: LSTM model’s testing line plot for undrained shear strength prediction 

 

The swarm plot visually presents the 

distribution of predicted discharge values generated by 

the LSTM model developed as part of this study. Each 

dot on the plot represents a predicted discharge value, 

with the x-axis representing the range of discharge values 

and the y-axis indicating the frequency or density of 

occurrences. The plot provides insights into the model's 

accuracy in predicting discharge across the entire range 

of values. 
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Figure 3.5: LSTM model’s training swarm plot for undrained shear strength prediction 

 

 
Figure 3.6: LSTM model’s testing swarm plot for undrained shear strength prediction 

 

The color-coded dots differentiate between 

observed discharges values from the training and testing 

datasets. The proximity of the dots to the observed values 

indicates the model's ability to accurately predict 

discharge rates. A dense cluster of dots around specific 

discharge values suggests a high frequency of 

occurrences in the dataset, while outliers may indicate 

instances where the model's predictions deviate from the 

observed values. 

 

Results of the Artificial Neural Networks (ANNs) 

The ANN model is constructed with an input 

layer, a single hidden layer, and an output layer. The 

input data is formatted to accommodate the ANN's 

structure with three input features (Wet basis, Liquid 

Limit, Plastic Limit, and Fines). The hidden layer 

comprises 64 neurons with Leaky ReLU activation 

function, while the output layer consists of a single unit. 

 

Evaluation metrics such as R², MSE, NSE, and 

RMSE are utilized, with MSE serving as the chosen loss 

function due to its interpretability. The model undergoes 

evaluation across 28 combinations of activation 

functions (ReLU, tanh, sigmoid, ELU, SoftMax, and 

Leaky ReLU) and optimizers (Adam, SGD, RMSprop, 

Adagrad, and Nadam), varying parameters like the 

number of hidden layers, nodes per layer, batch size, and 

epochs. 
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The results of these evaluations are ranked 

using compromise programming, leading to the 

identification of Leaky ReLU as the optimal activation 

function and Adam as the optimal optimizer. The model 

is trained for 1000 epochs with a batch size of 128. 

Graphical representations including scatter plots, line 

plots, and swarm plots are employed to visualize 

outcomes. Scatter plots depict the relationship between 

predicted and actual undrained shear strength values for 

both training and testing datasets, illustrating the model’s 

ability to capture the general trend albeit with some 

deviation at higher values. 

 

The performance of the ANN model is assessed 

using key statistical metrics: R², MSE, RMSE, and MAE, 

providing insights into its accuracy and reliability in 

predicting the undrained shear strength of soil. 

Performance evaluation metrics for both training and 

testing phases are summarized in the following table: 

 

Table 3.2: Performance evaluation metrics of ANN 

model 

Performance Metrics Training Testing 

R² 0.84 0.46 

MSE 2091.55 8657.94 

RMSE 34.14 93.04 

MAE 45.73 76.39 

 

The scatter plot visualizes the relationship 

between the predicted and actual values of the target 

variable during the training phase of the ANN model. 

Similar to the testing scatter plot, each point represents a 

data point from the training dataset, with the x-axis 

indicating the actual values and the y-axis representing 

the corresponding predicted values by the ANN model. 

The alignment of the points relative to the diagonal line 

(y = x) reflects the model's performance in fitting the 

training data. Ideally, points should cluster closely 

around the diagonal line, indicating accurate predictions 

and a good fit of the model to the training data. 

 

 
Figure 3.7: ANN model’s training scatter plot for undrained shear strength prediction 

 

The scatter plot illustrates the relationship 

between the predicted and actual values of the target 

variable during the testing phase of the ANN model. 

Each point on the plot represents a data point from the 

testing dataset, with the x-axis indicating the actual 

values and the y-axis representing the corresponding 

predicted values generated by the ANN model. The 

proximity of the points to the diagonal line (y = x) 

provides insights into the accuracy of the model's 

predictions. Points that cluster closely around the 

diagonal line indicate accurate predictions, while 

deviations from the line suggest discrepancies between 

the predicted and actual values. 
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Figure 3.8: ANN model’s testing scatter plot for undrained shear strength prediction 

 

The line plot illustrates the performance metrics 

of the ANN model on the training dataset across multiple 

epochs. The x-axis represents the number of epochs, 

while the y-axis displays the values of the performance 

metrics such as Mean Squared Error (MSE) or Loss. The 

plot demonstrates how these metrics evolve over the 

course of training, providing insights into the model's 

learning process. A decreasing trend in the plotted 

metrics indicates improvement in the model's 

performance as training progresses. 

 

 
Figure 3.9: ANN model’s training line plot for undrained shear strength prediction 

 

The line plot showcases the performance 

metrics of the ANN model on the testing dataset across 

multiple epochs. Similar to the training plot, the x-axis 

represents the number of epochs, while the y-axis 

displays the values of the performance metrics. These 

metrics offer insights into how well the model 

generalizes to unseen data as training progresses. 

Consistent or decreasing trends in the plotted metrics 

indicate the model's ability to maintain or improve its 

performance on the testing dataset over time. 
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Figure 3.10: ANN model’s testing line plot for undrained shear strength prediction 

 

CONCLUSION 
The outcome of this research provides valuable 

insights into the behavior of soft soil in Dhaka and the 

potential for accurately predicting its strength properties 

using advanced machine learning techniques. By 

developing prediction models and establishing 

correlations among various soil parameters and their 

shear strength, we aimed to enhance the understanding 

of soil behavior in this region. This study employed three 

machine learning techniques: Support Vector Regression 

(SVR), Artificial Neural Networks (ANNs), and Long 

Short-Term Memory (LSTM) networks. Through 

rigorous experimentation and evaluation, LSTM 

emerged as the most accurate model for predicting the 

undrained shear strength of soil. 

 

The LSTM model was developed using inputs 

that included wet basis, liquid limit, plastic limit, and 

fines content. These inputs were selected due to their 

significant influence on soil properties. The model's 

output was the undrained shear strength (cu) of the soil. 

Initially, individual correlations between soil index 

properties and undrained cohesion were found to be 

insignificant. However, when these parameters were 

combined, the LSTM model significantly improved in 

predictive accuracy. 

 

The LSTM model demonstrated superior 

performance with higher R² values, indicating its 

robustness in capturing the nonlinear relationships 

between the input features and the target variable. The 

model performance indicators such as Mean Absolute 

Error (MAE), Mean Squared Error (MSE), and Root 

Mean Squared Error (RMSE) were also lower for the 

LSTM model compared to SVR and ANN, further 

validating its accuracy. 

 

These findings suggest that the LSTM model 

can effectively predict the undrained shear strength of 

soil using plasticity properties and moisture content, 

potentially reducing the need for extensive strength 

testing. This can facilitate faster and more cost-effective 

soil analysis for civil engineering projects. 

 

Despite the promising results, this study was 

conducted with data from 100 boreholes in a specific 

region, focusing on silty clay soil. Future research should 

extend this approach to a broader range of soil types, 

including sandy soils, and incorporate data from deeper 

bore logs and larger geographical areas. Additionally, 

incorporating other machine learning methods such as 

LASSO Regression, Recursive Feature Elimination 

(RFE), and further exploration of ANN models could 

strengthen the correlations established in this study. 

Long-term monitoring and data collection from diverse 

soil conditions will enhance the predictive capabilities 

and generalizability of the models. By implementing 

these steps, the findings of this research can be applied 

to various civil engineering projects, improving the 

accuracy of soil strength predictions and aiding in the 

design and construction of stable structures. 

 

REFERENCES 
• Akan, A., Yilmaz, I., & Kaya, A. (2015). Prediction 

of Unconfined Compressive Strength of Clayey 

Soils Using Physical Properties. Measurement, 62, 

116-125. 

• Griffiths, D., G.A. Fenton, and N. Manoharan, 

Bearing capacity of rough rigid strip footing on 

cohesive soil: probabilistic study. Journal of 

Geotechnical and Geoenvironmental Engineering, 

2002. 128(9): p. 743-755. 

• Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. 

(2002). Gene selection for cancer classification 



 

    

Muhammad Aqib et al, Sch J Phys Math Stat, Jun, 2025; 12(5): 149-160 

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          160 

 

 

using support vector machines. Machine learning, 

46(1-3), 389-422. 

• Haykin, S. (1999). Neural networks: A 

comprehensive foundation (2nd ed.). Prentice Hall. 

• Leshchinsky, B., Bearing capacity of footings 

placed adjacent to c′-ϕ′ slopes. Journal of 

geotechnical and geoenvironmental engineering, 

2015. 141(6): p. 04015022. 

• Ly, H.-B. and B.T. Pham, Prediction of shear 

strength of soil using direct shear test and support 

vector machine model. The Open Construction & 

Building Technology Journal, 2020. 14(1). 

• McGann, C.R., et al., Development of an empirical 

correlation for predicting shear wave velocity of 

Christchurch soils from cone penetration test data. 

Soil Dynamics and Earthquake Engineering, 2015. 

75: p. 66-75. 

• Omotoso, O.A., O.J. Ojo, and E.T. Adetolaju, 

Engineering properties of lateritic soils around Dall 

quarry in Sango Area, Ilorin, Nigeria. Earth Science 

Research, 2012. 1(2):p. 71 

• Poodt, M., A. Koolen, and J. Van der Linden, FEM 

analysis of subsoil reaction on heavy wheel loads 

with emphasis on soil preconsolidation stress and 

cohesion. Soil and Tillage Research, 2003. 73(1-2): 

p. 6776. 

• Roy, S. and S.K. Bhalla, Role of geotechnical 

properties of soil on civil engineering structures. 

Resources and Environment, 2017. 7(4): p. 103-109. 

• Sarker, D. and M.Z. Abedin, Applicability of 

Standard Penetration Test in Bangladesh and 

Graphical Representation of SPT-N Value. 

International Journal of Science and Engineering 

Investigations, 2015. 4(41): p. 55-59. 

• Sta, A., Shamsabadi, A., & Huang, S. (2021). 

Support Vector Machine and Long Short- Term 

Memory Network Models for Predicting 

Liquefaction and Seismic Hazard from Standard 

Penetration Test Data. Journal of Geotechnical and 

Geoenvironmental Engineering, 147(2), 04020115. 

• Suljić, N. Importance of Soil Cohesion on the 

Stability of Retaining Reinforced Concrete Wall. 

2013. The 17th International Research/Expert 

Conference:” Trends in the …. 

• Tabarsa, A., Khodaparast, H. H., & Fakharian, P. 

(2021). Prediction of Unconfined Compressive 

Strength of Fine-Grained Soils Using Artificial 

Neural Networks. Geotechnical and Geological 

Engineering, 1-17. 

• Temiz, C., et al. Soil Cohesion Development under 

Different Pore and Size Characteristics. in EGU 

General Assembly Conference Abstracts. 2020. 

• Tibshirani, R. (1996). Regression shrinkage and 

selection via the lasso. Journal of theRoyal 

Statistical Society: Series B (Methodological), 

58(1), 267-288. 

• Torri, D., M. Sfalanga, and M. Del Sette, Splash 

detachment: runoff depth and soil cohesion. Catena, 

1987. 14(1-3): p. 149-155. 

• Yokoi, H., Relationship between soil cohesion and 

shear strength. Soil Science and Plant Nutrition, 

1968. 14(3): p. 89-93. 

• Zaman, M. M., Rahman, M. A., & Hossain, M. M. 

(2016). Correlation Between Soil Consolidation 

Properties and Index Properties Using Statistical 

Analysis. International Journal of Civil Engineering 

and Technology, 7(5), 17-27. 

 


