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Abstract  Original Research Article 
 

This paper introduces a seventh-order linear multistep method for the numerical integration of fourth-order initial value 

problems. The method is derived by constructing a continuous scheme by carefully applying collocation and 

interpolation to the Chebyshev polynomial at chosen points, and evaluating it at a specific grid point. The stability of 

the method is analyzed, and its convergence is proven. Numerical examples are provided to demonstrate the accuracy 

and efficiency of the proposed method compared to existing methods. The results show that the new method is a viable 

alternative for solving fourth-order initial value problems. 
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1. INTRODUCTION 
Differential equations play a crucial role in 

numerous scientific and engineering disciplines, serving 

as fundamental tools for modeling and analyzing 

dynamic systems [1, 2]. Among these, fourth-order 

ordinary differential equations have garnered 

considerable interest due to their relevance in areas such 

as structural mechanics, fluid dynamics, and quantum 

mechanics [3, 4]. To address the challenges of solving 

such equations, researchers have developed various 

numerical approaches, including the linear multistep 

method [5]. Linear multistep methods are a class of 

numerical techniques that approximate solutions to 

differential equations by employing a linear combination 

of previously computed function values and their 

derivatives [6]. These methods are particularly 

advantageous, as they achieve higher-order accuracy 

compared to single-step methods like Runge-Kutta [7]. 

This characteristic makes them highly effective for 

tackling higher-order differential equations. 

 

This study focuses on numerical solution of ordinary 

differential equation of the form; 

 

 𝑦(4) = 𝑓(𝑥, 𝑦, 𝑦′, 𝑦″, 𝑦‴),   𝑦(𝑥0) = 𝜂0, 𝑦′(𝑥0) = 𝜂1, 𝑦″(𝑥0) = 𝜂2, 𝑦‴(𝑥0) = 𝜂3 (1) 

 

The function 𝑓 in equation (1) is assumed to be 

a continuous real-valued function, as noted in [8, 9]. 

Initially, the reduction approach was the preferred 

method for solving equations of the form (1), primarily 

due to the availability of established techniques for 

handling their equivalent first-order systems, as 

documented in [5, 10] and other studies. However, over 

time, the limitations of the reduction approach became 

apparent, particularly its complexity [11, 12] and 

inefficiency when applied to larger systems of 

differential equations [7, 13]. These challenges led to the 

exploration of direct approaches [8, 14-16] as more 

suitable alternatives for solving such problems. 

 

In the literature [3, 17-22], various authors have 

independently developed numerical methods for solving 

fourth-order ordinary differential equations (ODEs). A 

common feature of these methods is their use of implicit 

linear multistep techniques implemented in block form. 

While many of these methods boast an order of accuracy 

equal to or higher than the one proposed in this article, 

their performance often falls short in comparison. This 
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discrepancy may be attributed to the hybrid nature of the 

method presented here. 

 

Specifically, [9] introduced a fully hybrid linear 

multistep formula for solving equations of type (1). 

Although this method directly addresses equation (1), 

there remains room for improvement in terms of 

accuracy. Consequently, this article focuses on the 

development and implementation of an efficient 

numerical algorithm for directly solving fourth-order 

ODEs. Additionally, it aims to enhance the accuracy of 

existing methods, advancing the application of linear 

multistep method to numerically solve nonlinear fourth-

order ordinary differential equations. 

 

2. MATHEMATICAL FORMULATION 
This research provided an approximate solution 

to the general fourth order ordinary differential equations 

of the form in (1) using partial sum of Chebyshev 

polynomial of first kind denoted here as 

 

 

𝑦(𝑥) = ∑ 𝑎𝑗

(𝑝+𝑞)−1

𝑗=0

𝑇𝑗(𝑥)      

(2) 

where, 𝑦(𝑥) is considered an approximation to equation (1), and 𝑥 is assumed to be continuously differentiable. The fourth 

derivative of (2) gives 

 

 

𝑦(4)(𝑥) = ∑ 𝑎𝑗

(𝑝+𝑞)−1

𝑗=4

𝑇𝑗
(4)

(𝑥).  

(3) 

 

Equating equation (1) and equation (3) results in the differential system: 

 

𝑓(𝑥, 𝑦, 𝑦′, 𝑦″, 𝑦‴) = ∑ 𝑎𝑗

(𝑝+𝑞)−1

𝑗=4

𝑇𝑗
(4)

(𝑥). 

(4) 

 

Equations (2) and (4) are the interpolating and collocating equations respectively which shall be used to derive 

the propose methods. It is important to note that the parameters 𝑎𝑗’s must be uniquely determined. Substituting 𝑥 = 𝑥𝑛+𝑟 

for 𝑟 = 1(
1

2
)

5

2
 into equation (2), and 𝑥 = 𝑥𝑛+𝑟 for 𝑟 = 0(

1

2
)3 into equation (4), produces the following system of equations. 

 

 

𝑦𝑛+𝑟 = ∑ 𝑎𝑟

10

𝑟=0

𝑇𝑟
(4)

(𝑥),    𝑟 = 1(
1

2
)

5

2
, 

(5) 

and 

 

 

𝑓𝑛+𝑟 = ∑ 𝑎𝑟

10

𝑟=4

𝑇𝑟
(4)

(𝑥),    𝑟 = 0(
1

2
)3. 

(6) 

 

By applying the scaling function 𝑥𝑛+𝑖 = 𝑥𝑛 + 𝑖ℎ, the matrix representations of equations (5) and (6) are solved to 

determine the coefficients 𝑎𝑗’s for 𝑗 = 0(1)10. Substituting the parameters 𝑎𝑗’s into equation (2) and setting 𝑥 = 𝑥𝑛 + 𝑡ℎ, 

yields a continuous scheme of the form; 

 𝑦(𝑡) = ∑ 𝛼𝑗
2

5

𝑗=2

(𝑡)𝑦
𝑛+

𝑗
2

+ ℎ4 ∑ 𝛽𝑗
2

6

𝑗=0

(𝑡)𝑓
𝑛+

𝑗
2

 (7) 

 

with the following coefficients; 

 
𝛼1 = −

4𝑡3

3
+ 8𝑡2 −

47𝑡

3
+ 10, 

𝛼3
2

= 4𝑡3 − 22𝑡2 + 38𝑡 − 20, 

𝛼2 = −4𝑡3 + 20𝑡2 − 31𝑡 + 15, 
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𝑎5
2

=
4𝑡3

3
− 6𝑡2 +

26𝑡

3
− 4, 

10 9 8 7 6 54

0 4 3 2

128 2240 16800 70560 181888 296352

7257600 302400 183995 59469 7658 120

t t t t t th

t t t t


 − + − + −
=   + − + − + 

 

𝛽1
2

= −
ℎ4

3628800
(384𝑡10 − 6400𝑡9 + 44640𝑡8 − 167040𝑡7 + 350784𝑡6

−362880𝑡5 + 441520𝑡3 − 483423𝑡2 + 217965𝑡 − 35550),

 

𝛽1 =
ℎ4

1451520
(384𝑡10 − 6080𝑡9 + 39456𝑡8 − 132768𝑡7 + 235872𝑡6

−181440𝑡5 − 55219𝑡3 + 345108𝑡2 − 369783𝑡 + 124470),

 

𝛽3
2

= −
ℎ4

181440
(64𝑡10 − 960𝑡9 + 5808𝑡8 − 17856𝑡7 + 28448𝑡6

−20160𝑡5 + 19615𝑡3 − 54645𝑡2 + 71126𝑡 − 31440),

 

𝛽2 =
ℎ4

1451520
(384𝑡10 − 5440𝑡9 + 30816𝑡8 − 88416𝑡7 + 133056𝑡6

−90720𝑡5 + 10459𝑡3 + 84549𝑡2 − 139308𝑡 + 64620),

 

 
𝛽5

2
= −

ℎ4

3628800
(34560𝑡8 − 368640𝑡7 + 1532160𝑡6

−3144960𝑡5 + 3265920𝑡4 − 1451520𝑡3 + 144120𝑡 − 8706),

 

𝛽3 =
ℎ4

7257600
(11520𝑡8 − 115200𝑡7 + 456960𝑡6

−907200𝑡5 + 920640𝑡4 − 403200𝑡3 + 40050𝑡 − 3012).

 

 

 

Evaluating (7) at 𝑡 = 3 yields the main discrete method; 

 

 
𝑦𝑛+3 − 4𝑦

𝑛+
5
2

+ 6𝑦𝑛+2 − 4𝑦
𝑛+

3
2

+ 𝑦𝑛+1 =
ℎ4

241920
(5𝑓𝑛 − 30𝑓

𝑛+
1
2

+ 54𝑓𝑛+1

+2504𝑓
𝑛+

3
2

+ 10029𝑓𝑛+2 + 2574𝑓
𝑛+

5
2

− 16𝑓𝑛+3) 
 (8) 

 

Equation (8) is implemented in block mode by first evaluating equation (7) at 𝑡 = 0,
1

2
  Type equation here. and 

it first, second and third derivatives at 𝑡 = 0,
1

2
, 1,

3

2
, 2,

5

2
 and 3 to obtain a total of twenty-three formulas. These 

formulas are combined as a block inline with block matrix given in (9). This yields the block method written 

explicitly as (9) to (32) 
 

 

 

𝑦
𝑛+

1
2

+
ℎ3𝑦‴𝑛

48
+

ℎ2𝑦″𝑛

8
+

ℎ𝑦′𝑛

2
− 𝑦𝑛 =

ℎ4

58060800
(95929𝑓𝑛 + 112028𝑓

𝑛+
1
2

−115165𝑓𝑛+1 + 97320𝑓
𝑛+

3
2

− 53465𝑓𝑛+2 + 16876𝑓
𝑛+

5
2

− 2323𝑓𝑛+3)

 (9) 
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𝑦𝑛+1 +
ℎ3𝑦‴𝑛

6
+

ℎ2𝑦″𝑛

2
+ ℎ𝑦′𝑛 + 𝑦𝑛 =

ℎ4

226800
(4127𝑓𝑛 + 8782𝑓

𝑛+
1
2

− 6965𝑓𝑛+1

+5820𝑓
𝑛+

3
2

− 3175𝑓𝑛+2 + 998𝑓
𝑛+

5
2

− 137𝑓𝑛+3)

 (10) 

 

𝑦
𝑛+

3
2

+
9ℎ3𝑦‴𝑛

16
−

9ℎ2𝑦″𝑛

8
−

3ℎ𝑦′𝑛

2
− 𝑦𝑛 =

9ℎ4

716800
(5471𝑓𝑛 + 15228𝑓

𝑛+
1
2

−8775𝑓𝑛+1 + 8120𝑓
𝑛+

3
2

− 4455𝑓𝑛+2 + 1404𝑓
𝑛+

5
2

− 193𝑓𝑛+3)

 (11) 

 

 

𝑦𝑛+2 −
4ℎ3

3
𝑦‴𝑛 − 2ℎ2𝑦″𝑛 − 2ℎ𝑦′𝑛 − 𝑦𝑛 =

2ℎ4

14175
(1220𝑓𝑛 + 3904𝑓

𝑛+
1
2

−1580𝑓𝑛+1 + 1920𝑓
𝑛+

3
2

− 1015𝑓𝑛+2 + 320𝑓
𝑛+

5
2

− 44𝑓𝑛+3)

 (12) 

 

𝑦
𝑛+

5
2

−
125ℎ3

48
𝑦‴𝑛 −

25ℎ2𝑦″𝑛

8
−

5ℎ𝑦′𝑛

2
− 𝑦𝑛 =

125ℎ4

2322432
(6457𝑓𝑛 + 22460𝑓

𝑛+
1
2

−6325𝑓𝑛+1 + 11400𝑓
𝑛+

3
2

− 5225𝑓𝑛+2 + 1708𝑓
𝑛+

5
2

− 235𝑓𝑛+3)

 (13) 

 

𝑦𝑛+3 −
9ℎ3

2
𝑦‴𝑛 +

9ℎ2𝑦″𝑛

2
− 3ℎ𝑦′𝑛 − 𝑦𝑛 =

9ℎ4

2800
(191𝑓𝑛 + 702𝑓

𝑛+
1
2

−135𝑓𝑛+1 + 380𝑓
𝑛+

3
2

− 135𝑓𝑛+2 + 54𝑓
𝑛+

5
2

− 7𝑓𝑛+3)

 (14) 

  

 

𝑦′
𝑛+

1
2

−
1

8
ℎ2𝑦⁗𝑛 −

ℎ𝑦″𝑛

2
− 𝑦′𝑛 =

ℎ3

29030400
(343801𝑓𝑛 − 494715𝑓𝑛+1 − 226605𝑓𝑛+2

−9809𝑓𝑛+3 + 506604𝑓
𝑛+

1
2

+ 414160𝑓
𝑛+

3
2

+ 71364𝑓
𝑛+

5
2

)

 (15) 

 
𝑦′𝑛+1 −

1

2
ℎ2𝑦⁗𝑛 − ℎ𝑦″𝑛 − 𝑦′𝑛 =

ℎ3

226800
(13774𝑓𝑛 − 24465𝑓𝑛+1 − 11370𝑓𝑛+2

−491𝑓𝑛+3 + 35976𝑓
𝑛+

1
2

+ 20800𝑓
𝑛+

3
2

+ 3576𝑓
𝑛+

5
2

)
 (16) 

 

𝑦′
𝑛+

3
2

−
1

8
9ℎ2𝑦⁗𝑛 −

3ℎ𝑦″𝑛

2
− 𝑦′𝑛 =

9ℎ3

358400
(5877𝑓𝑛 − 8055𝑓𝑛+1 − 4905𝑓𝑛+2

−213𝑓𝑛+3 + 19188𝑓
𝑛+

1
2

+ 8960𝑓
𝑛+

3
2

+ 1548𝑓
𝑛+

5
2

)

 (17) 

 
𝑦′𝑛+2 − 2ℎ2𝑦⁗𝑛 − 2ℎ𝑦″𝑛 − 𝑦′𝑛 =

ℎ3

14175
(3863𝑓𝑛 − 3390𝑓𝑛+1 − 3255𝑓𝑛+2

−142𝑓𝑛+3 + 13992𝑓
𝑛+

1
2

+ 6800𝑓
𝑛+

3
2

+ 1032𝑓
𝑛+

5
2

)
 (18) 

 
𝑦′

𝑛+
5
2

−
1

8
25ℎ2𝑦⁗𝑛 −

5ℎ𝑦″𝑛

2
− 𝑦′𝑛 =

125ℎ3

1161216
(4045𝑓𝑛 − 2055𝑓𝑛+1 − 2865𝑓𝑛+2

−149𝑓𝑛+3 + 15564𝑓
𝑛+

1
2

+ 8560𝑓
𝑛+

3
2

+ 1092𝑓
𝑛+

5
2

)

 (19) 

 
𝑦′𝑛+3 −

1

2
9ℎ2𝑦⁗𝑛 − 3ℎ𝑦″𝑛 − 𝑦′𝑛 =

9ℎ3

2800
(198𝑓𝑛 − 45𝑓𝑛+1 − 90𝑓𝑛+2

−7𝑓𝑛+3 + 792𝑓
𝑛+

1
2

+ 480𝑓
𝑛+

3
2

+ 72𝑓
𝑛+

5
2

)
 (20) 

 

𝑦″
𝑛+

1
2

−
ℎ𝑦⁗𝑛

2
− 𝑦″𝑛 =

ℎ2

483840
(28549𝑓𝑛 − 51453𝑓𝑛+1 − 23109𝑓𝑛+2 − 995𝑓𝑛+3

+57750𝑓
𝑛+

1
2

+ 42484𝑓
𝑛+

3
2

+ 7254𝑓
𝑛+

5
2

)

 (21) 
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𝑦″𝑛+1 − ℎ𝑦⁗𝑛 − 𝑦″𝑛 =

ℎ2

7560
(1027𝑓𝑛 − 1680𝑓𝑛+1 − 873𝑓𝑛+2 − 38𝑓𝑛+3

+3492𝑓
𝑛+

1
2

+ 1576𝑓
𝑛+

3
2

+ 276𝑓
𝑛+

5
2

)
 (22) 

 

𝑦″
𝑛+

3
2

−
3ℎ𝑦⁗𝑛

2
− 𝑦″𝑛 =

3ℎ2

17920
(1265𝑓𝑛 − 801𝑓𝑛+1 − 1089𝑓𝑛+2 − 47𝑓𝑛+3

+4950𝑓
𝑛+

1
2

+ 2100𝑓
𝑛+

3
2

+ 342𝑓
𝑛+

5
2

)

 (23) 

 

𝑦″𝑛+2 − 2ℎ𝑦⁗𝑛 − 𝑦″𝑛 =
2

945
ℎ2(136𝑓𝑛 − 9𝑓𝑛+1 − 105𝑓𝑛+2 − 5𝑓𝑛+3

+564𝑓
𝑛+

1
2

+ 328𝑓
𝑛+

3
2

+ 36𝑓
𝑛+

5
2

)
 (24) 

 

𝑦″
𝑛+

5
2

−
5ℎ𝑦⁗𝑛

2
− 𝑦″𝑛 =

25ℎ2

96768
(1409𝑓𝑛 + 375𝑓𝑛+1 − 225𝑓𝑛+2 − 55𝑓𝑛+3

+6030𝑓
𝑛+

1
2

+ 4100𝑓
𝑛+

3
2

+ 462𝑓
𝑛+

5
2

)

 (25) 

 
𝑦″𝑛+3 − 3ℎ𝑦⁗𝑛 − 𝑦″𝑛 =

3ℎ2

280
(41𝑓𝑛 + 18𝑓𝑛+1 + 9𝑓𝑛+2

+180𝑓
𝑛+

1
2

+ 136𝑓
𝑛+

3
2

+ 36𝑓
𝑛+

5
2

)
 (26) 

 

𝑦‴
𝑛+

1
2

− 𝑦⁗𝑛 =
ℎ

120960
(19087𝑓𝑛 − 46461𝑓𝑛+1 − 20211ℎ𝑓𝑛+2 − 863𝑓𝑛+3

+65112𝑓
𝑛+

1
2

+ 37504𝑓
𝑛+

3
2

+ 6312𝑓
𝑛+

5
2

)
 (27) 

 
𝑦‴𝑛+1 − 𝑦⁗𝑛 =

ℎ

7560
(1139ℎ𝑓𝑛 + 33ℎ𝑓𝑛+1 − 807ℎ𝑓𝑛+2 − 37ℎ𝑓𝑛+3

+5640ℎ𝑓
𝑛+

1
2

+ 1328ℎ𝑓
𝑛+

3
2

+ 264ℎ𝑓
𝑛+

5
2

)
 (28) 

 

𝑦‴
𝑛+

3
2

− 𝑦⁗𝑛 =
ℎ

4480
(685𝑓𝑛 + 1161𝑓𝑛+1 − 729𝑓𝑛+2 − 29𝑓𝑛+3

+3240𝑓
𝑛+

1
2

+ 2176𝑓
𝑛+

3
2

+ 216𝑓
𝑛+

5
2

)
 (29) 

 
𝑦‴𝑛+2 − 𝑦⁗𝑛 =

ℎ

945
(143𝑓𝑛 + 192𝑓𝑛+1 + 87𝑓𝑛+2 − 4𝑓𝑛+3

+696𝑓
𝑛+

1
2

+ 752𝑓
𝑛+

3
2

+ 24𝑓
𝑛+

5
2

)
 (30) 

 

𝑦‴
𝑛+

5
2

− 𝑦⁗𝑛 =
ℎ

24192(3715𝑓𝑛 + 6375𝑓𝑛+1 + 11625ℎ𝑓𝑛+2 − 275𝑓𝑛+3

+17400𝑓
𝑛+

1
2

+ 16000𝑓
𝑛+

3
2

+ 5640𝑓
𝑛+

5
2

)
 (31) 

  
𝑦‴𝑛+3 − 𝑦⁗𝑛 =

1

280
(41ℎ𝑓𝑛 + 27ℎ𝑓𝑛+1 + 27ℎ𝑓𝑛+2 + 41ℎ𝑓𝑛+3

+216ℎ𝑓
𝑛+

1
2

+ 272ℎ𝑓
𝑛+

3
2

+ 216ℎ𝑓
𝑛+

5
2

)
 (32) 

 

2.1 Analysis of the Properties of the Derived Method 

This section explored the fundamental properties of the derived method. 

Error, Local truncation, and order of the derived method 

Proposition1 

If 𝑦(𝑥) is continuously differentiable and assumed to be 𝑠(𝑥) then, the Local Truncation Error (LTE) of each formula of 

the proposed (8) take the form; 𝜅 𝜌

42
{𝑠(𝑥): ℎ} = 𝑐𝑛+13𝑠(13)(𝑥𝑛)ℎ13 + 0(ℎ14). 

Proof 

Let begin by defining the LTE of the formulas in (8) as 
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𝜅𝜌
2

{𝑠(𝑥): ℎ} = 𝑠 (𝑥𝑛 +
𝜌

2
ℎ) − {∑ 𝛼𝑏

3

𝑏=1

𝑠(𝑏)(𝑥)ℎ𝑏 − ℎ4 ∑ 𝛽𝑟

6

𝜌=0

𝑠(4) (𝑥 +
𝜌

2
ℎ)} 

(33) 

 

whose Taylor series expansion about the point 𝑥 yields 

 

𝑇 𝑟
42

{𝑠(𝑥): ℎ} = 𝑐0𝑠(𝑥) + 𝑐1ℎ𝑠′(𝑥) + 𝑐2ℎ2𝑠″(𝑥) + ⋯ + 𝑐𝑝+3ℎ𝑝+3𝑠(𝑝+3)(𝑥) + 𝑐𝑝+4ℎ𝑝+4𝑠(𝑝+4)(𝑥),

= 𝑐𝑝+4ℎ𝑝+4𝑠(𝑝+4)(𝑥𝑛) + 𝑂ℎ𝑝+5.
 

 

Here the term 𝑐𝑝+4 is the error constant. The order, error constant and LTE of (8) were obtained in similar manner. 

Since 𝑐0 = 𝑐1 = ⋯ = 𝑐𝑝+3 = 0, 𝑐𝑝+4 ≠ 0, hence (8) has order 𝑝 = 8, (see [5, 9]). This procedure is repeated for the block 

formulas (9)-(32). The procedure revealed that the block formulas have uniform order 𝑝 = 7.  
 

Consistency of the Method 

Definition 1 (see [5, 9]) “The linear multistep method is said to be consistent if it has order 𝑝 ≥ 1. It is obvious that the 

present method is consistent." 

 

Zero Stability of the Block Method 

As claimed by [10], [16], and [23] zero stability of a numerical method imitates the dynamics of the methods as 

ℎ → 0. This required setting ℎ to zero in (9)-(32) which reduces to 

𝑈‾0𝑌‾ = 𝑈‾1𝑌𝑛                                                                                                                                                               (34) 

 

where, 𝑈0
‾  and 𝑈1

‾  are as defined before. 

 

Definition 2 (see [5]) A linear multistep method is said to be zero-stable if no root of the first characteristic polynomial 

has modulus greater than one, and if every root with modulus one is simple.  

The characteristic polynomial of (34) is, 

𝐷𝑒𝑡(𝜆𝑈‾0 − 𝑈‾1) = 0                                                                                                                                                        (35) 

 

This gives 𝜆21(𝜆1)3 = 0, that is 𝜆1 to 𝜆21 are error 1. Furthermore, other results indicated that the roots of the 

characteristics polynomial of the method are all equal to one (i.e not exceeding the order of the differential equation) and 

simple, hence by Def 2, the method is zero stable. 

 

Convergence 

We further the analysis by stating the fundamental Dahlquist theorem. (See [5, 9]) “The necessary and sufficient 

conditions for a linear multi- step method to be convergent are that it be consistent and zero-stable”. Having shown that 

the proposed method is consistent and zero stable, hence, it is also convergent. 

 

Region of Absolute Stability of the method 

We consider the stability polynomials written in general form: 

𝜋(𝑟, ℏ) = 𝜌(𝑟) − ℏ𝜎(𝑟) = 0                                                                                                                                         (36) 

 

where ℏ = ℎ2𝜆 and 𝜆 =
𝜕𝑓

𝜕𝑌
 is assumed to be a constant.  The stability polynomial of the main method (8) becomes 

 
(𝑟3 − 4𝑟

5
2 + 6𝑟2 − 4𝑟

3
2 + 𝑟) − ℏ(

5

241920
−

30

241920
𝑟

1
2 +

54

241920
𝑟 +

2504

241920
𝑟

3
2 +

10029

241920
𝑟2

+
2574

241920
𝑟

5
2 −

16

241920
𝑟3) = 0 

(37) 

 

Obviously, the first characteristics polynomial is, 

 

 
𝜌(𝑟) = 𝑟3 − 4𝑟

5
2 + 6𝑟2 − 4𝑟

3
2 + 𝑟 

(38) 

 

and the second characteristics polynomial is 

 

 
𝜎(𝑟) =

5

241920
−

30

241920
𝑟

1
2 +

54

241920
𝑟 +

2504

241920
𝑟

3
2 +

10029

241920
𝑟2 +

2574

241920
𝑟

5
2 −

16

241920
𝑟3 

         (39) 
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Adopting the boundary locus method, whose equation is given by 

 
ℏ =

𝜌(𝑟)

𝜎(𝑟)
 

(40) 

 

By inserting 𝜌(𝑟) and 𝜎(𝑟) into (40), the boundary locus equation is obtained for the method as: 

 

ℏ(𝑟) =
𝑟3 − 4𝑟

5
2 + 6𝑟2 − 4𝑟

3
2 + 𝑟

1
241920

(5 − 30𝑟
1
2 + 54𝑟 + 2504𝑟

3
2 + 10029𝑟2 + 2574𝑟

5
2 − 16𝑟3)

 

(41) 

 

 

using 𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃, we obtain after some simplification: 

ℏ(𝜃)

=
241920(39900 − 44868𝑐𝑜𝑠

1
2

𝜃 + 99𝑐𝑜𝑠𝜃 + 4726𝑐𝑜𝑠
3
2

𝜃 + 188𝑐𝑜𝑠2𝜃 − 50𝑐𝑜𝑠
5
2

𝜃 + 5𝑐𝑜𝑠3𝜃)

113480430 + 102039048𝑐𝑜𝑠
1
2

𝜃 + 13803526𝑐𝑜𝑠𝜃 − 378836𝑐𝑜𝑠
3
2

𝜃 − 55828𝑐𝑜𝑠2𝜃 + 26700𝑐𝑜𝑠
5
2

𝜃 − 160𝑐𝑜𝑠3𝜃
 

 

 
Figure 1: Region of absolute stability of the proposed method 

 

3. Numerical Experiment 

This section deals with the application of the methods to solve initial value problems of fourth-order ordinary 

differential equation to establish its usefulness. We adopted the following in 

 

Problem 1 

We first consider the fourth-order ordinary differential equation 

 

𝑦(4)(𝑥) = 𝑦′′′ + 𝑦′′ + 𝑦′ + 2𝑦, 𝑦(0) = 0, 𝑦′(0) = 1, 𝑦″(0) = 0,  𝑦‴(0) = 30, 
 

with exact solution in reference [17] as 𝑦(𝑥) = 2𝑒2𝑥 − 5𝑒−𝑥 + 3𝑐𝑜𝑠𝑥 − 9𝑠𝑖𝑛𝑥. The problem is solved numerically over 

the interval [0,2] in ten iterations. Table 1 compares the numerical results from our proposed method with the exact 

solution. Columns 4-6 present the absolute errors, while Figure 2 visually demonstrates the error behavior. The results 

show that our method achieves comparable accuracy to [3], confirming its effectiveness for solving high-order ODEs. 

 

Table 1: Comparison of results of problem 1 

X Numerical y(x) Exact y(x) Error in y(x) Error in [18]  Error in [17] 

0.2 0.0421714 0.0421714 8.70415 E-14 3.5129 E-13 2.3190 E-13 

0.4 0.3579 0.3579 8.04246 E-13 4.1833 E-12 2.2603 E-12 

1.8 62.9237 62.9237 2.93012 E-10 5.4334 E-10 9.1180 E-09 

2 99.0875 99.0875 5.11550 E-10 8.0796 E-10 1.7409 E-08 
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Figure 2: Solution curve of problem 1 

 

 

Problem 2 

Another fourth-order ordinary differential equation consider in this work is 

𝑦(4)(𝑥) = −𝑦″, 𝑦(0) = 0, 𝑦′(0) = −
1.1

72 − 50𝜋
, 𝑦″(0) =

1

144 − 100𝜋
,  𝑦‴(0) =

1.2

144 − 100𝜋
 

 

which has featured in with the exact solution 𝑦(𝑥) =
1−𝑥−cos(𝑥)−1.2sin(𝑥)

144−100𝜋
. 

 

Table 2: Comparison of results of problem 2 

x Numerical y(x) Exact y(x) Error in y(x) Error in [9] Error in [22] 

0 0 0 0 0 0 

0.2 0.00245928 0.00245928 4.33681 E -19 2.60208 E-18 3.40060 E-15 

0.4 0.00463309 0.00463309 1.73472 E-18 4.33680 E-18 7.40519 E-14 

1.6 0.0104037 0.0104037 2.77556 E-17 5.37764 E-17 5.09100 E-11 

1.8 0.010234 0.010234 3.46945 E-17 6.76542 E-17 9.85949 E-11 

2 0.00984378 0.00984378 4.16334 E-17 7.97972 E-17 1.83206 E-10 

 

 
Figure 3: Solution curve of the problem 2 

 

Problem 3 

Thirdly, we considered the nonlinear fourth-order ordinary differential of the type  

𝑦(4) − (𝑦′)2 − 𝑦𝑦‴ = −4𝑥2 + 𝑒𝑡(1 + 𝑥2 − 4𝑥), 𝑦(0) = 1, 𝑦′(0) = 1, 𝑦″(0) = 3, 𝑦 ‴(0) = 1,  
 

whose exact solution is given by: 𝑦(𝑥) = 𝑥2 + 𝑒𝑥. The solution was obtained in [0,1] over for 10 iterations. Table 3 and 

Figure 4 detailed the results of the problem.  

 

Table 3: Comparison of results of problem 3 

X Numerical y(x) Exact y(x) NDSolve y(x) Error in y(x) Error in NDSolve 

0 1 1 1 0 0 

0.1 1.11517 1.11517 1.11517 0 1.18048 E-8 
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0.2 1.2614 1.2614 1.2614 0 8.46974 E-9 

0.3 1.43986 1.43986 1.43986 2.22045 E-16 2.60246 E-8 

0.4 1.65182 1.65182 1.65182 2.22045 E-16 1.45802 E-8 

0.5 1.89872 1.89872 1.89872 2.22045 E-16 1.83166 E-8 

0.6 2.18212 2.18212 2.18212 2.22045 E-16 2.43914 E-8 

0.7 2.50375 2.50375 2.50375 4.44089 E-16 4.37086 E-8 

0.8 2.86554 2.86554 2.86554 4.44089 E-16 3.77695 E-8 

0.9 3.2696 3.2696 3.2696 4.44089 E-16 4.19098 E-8 

1 3.71828 3.71828 3.71828 8.88178 E-16 4.51259 E-8 

 

Figure 4: Solution curve of the problem 3 

 

Problem 4 

Finally, the inhomogeneous fourth-order initial value problem: 

 
𝑦(4) = 𝑦′(𝑥) − cos(𝑥) , 𝑦(0) = −

1

2
, 𝑦′(0) =

1

2
, 𝑦′′(0) =

1

2
, 𝑦′′′(0) =

1

2
 

 

 

whose exact solution 𝑦(𝑥) =
1

2
(sin(𝑥) − cos (𝑥)) was given by Saleh et al. [26]. The numerical solution, 

computed over [0,2] in 10 iterations, achieves a maximum absolute error of 1.15 × 10−14matching the error at 𝑥 = 2. This 

confirms the method’s stability and accuracy for such problems. Results are detailed in Table 4 and Figure 5. 

 

Table 4: Comparison of results of problem 4 

X Numerical y(x) Exact y(x) NDSolve y(x) Error in y(x) Error in NDSolve 

0 -0.5 -0.5 -0.5 0 0 

0.2 -0.390699 -0.390699 -0.390699 1.11022 E-16 2.3393 E-8 

0.4 -0.265821 -0.265821 -0.265821 3.05311 E-16 2.46752 E-8 

0.6 -0.130347 -0.130347 -0.130347 5.55112 E-16 2.12746 E-8 

0.8 0.0103247 0.0103247 0.0103247 8.88178 E-16 1.71087 E-8 

1 0.150584 0.150584 0.150584 1.55431 E-15 4.63302 E-10 

1.2 0.284841 0.284841 0.284841 2.60902 E-15 1.18341 E-8 

1.4 0.407741 0.407741 0.407741 4.05231 E-15 2.3636 E-8 

1.6 0.514387 0.514387 0.514387 5.82867 E-15 3.86825 E-8 

1.8 0.600525 0.600525 0.600525 8.43769 E-15 5.63421 E-8 

2 0.662722 0.662722 0.662722 1.16573 E-14 6.45155 E-8 
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Figure 5: Solution curve of the problem 4 

 

3.1 DISCUSSION OF RESULTS 
Four test problems were selected to evaluate the 

relevance and efficacy of the derived block method. The 

results, presented in Tables 2–5, demonstrate the 

superiority of the proposed method over those in [9], 

[17], [18], and [22]. Tables 1–2 further confirm that the 

new block method provides a more accurate 

approximation than the cited methods, as evidenced by 

smaller errors. Additionally, Tables 3–4 and Figures 4–5 

reveal that the proposed method achieves higher 

accuracy than Mathematica's NDSolve for test problems 

3 and 4. The recorded errors indicate that the block 

method yields solutions very close to the exact solutions 

in all cases. 

 

4. CONCLUSION 
In this paper, we have presented a novel 

seventh-order linear multistep scheme for the direct 

numerical integration of fourth-order initial value 

problems. The method's derivation, based on a 

continuous scheme and evaluation at a specific grid 

point, ensures its high order of accuracy. We have 

rigorously analyzed the stability properties of the 

proposed method, demonstrating its zero-stability and 

consistency, which are crucial for guaranteeing 

convergence. Numerical examples were provided to 

illustrate the method's better accuracy and efficiency 

when compared to existing numerical techniques for 

solving fourth-order ODEs. The results consistently 

show that this new seventh-order linear multistep scheme 

offers a robust, accurate, and computationally efficient 

alternative for tackling complex fourth-order initial value 

problems encountered in various scientific and 

engineering disciplines. Future work will focus on 

extending this method to handle stiff and oscillatory 

problems, as well as developing adaptive step-size 

control mechanisms to further enhance its practical 

utility. 
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