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Abstract  Review Article 
 

This research explores the application of the Homotopy Analysis Method (HAM) to address selected highly nonlinear 

boundary value problems (BVPs) commonly found in physical and engineering sciences. Traditional approaches such 

as the perturbation method, homotopy perturbation method (HPM), and other semi-analytical techniques often face 

limitations due to the requirement for small parameters or lack of control over convergence. In contrast, HAM provides 

a flexible framework that introduces an auxiliary parameter, enabling convergence control of the solution series without 

relying on the existence of small parameters. The study is structured into three core chapters. The first chapter lays a 

comprehensive foundation, introducing key fluid dynamics concepts, heat transfer principles, types of differential 

equations, and mathematical laws pertinent to the subsequent analyses. Chapter two investigates the nonlinear 

convection-radiation heat transfer equation, applying HAM and comparing its effectiveness with the perturbation 

method and HPM. The analysis reveals that HAM maintains high accuracy even for large parameter values, where 

perturbative techniques fail due to asymptotic divergence. Using Mathematica, the convergence behavior is examined, 

and error profiles are plotted to validate the results. Section three presents a novel application of HAM to solve second- 

and fourth-order Sturm–Liouville eigenvalue problems, which are critical in modeling vibrations, thermal analysis, and 

elastic stability. The study introduces new algorithmic formulations and solution profiles, capturing multiple eigenvalue 

solutions and validating them through the appearance of λ-plateaus. These results showcase HAM’s capacity to yield 

multiple accurate eigenfunctions from a single initial approximation, highlighting its robustness and broader 

applicability compared to traditional methods. The outcomes confirm that the Homotopy Analysis Method is a powerful 

and adaptable tool for solving complex nonlinear differential systems, offering both analytical precision and 

computational efficiency. 

Keywords: Homotopy Analysis Method (HAM), Nonlinear Differential Equations, Boundary Value Problems (BVPs), 

Heat Radiation Equation, Convection-Radiation, Sturm–Liouville Problem, Eigenvalue Problems, Homotopy 

Perturbation Method (HPM), Perturbation Methods, Semi-analytical Methods. 
Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 

author and source are credited. 

 

1. INTRODUCTION 
The majority of problems encountered in 

science and engineering are expressed in terms of linear, 

nonlinear, ordinary, or partial differential equations. 

Because such an equation cannot be solved analytically 

due to its various completions. There are several 

numerical methods that have been developed to solve 

equations. Shijun Liao [1], is credited with inventing the 

Homotopy Analysis Method which has proven to be a 

highly effective approach for solving a wide range of 

nonlinear differential equations. The HAM is a semi-

analytical technique for solving nonlinear ordinary or 

partial differential equations. It is based on the concept 

of homotopy in topology, which is a continuous 

deformation of one function into another. The HAM 

approach has been shown to be an extremely efficient 

way of tackling a large range of nonlinear differential 

equations. It has been used for the equations of physics, 

chemistry, engineering and other fields. As a result, 

Homotopy Analysis Methods are applicable to solve 
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nonlinear problems. The auxiliary parameter ħ in 

Homotopy Analysis Methods controls how quickly the 

HAM series solution converges. Abbasbandy [2], and 

other researchers have used it extensively in the past ten 

years to approximate solutions of highly nonlinear 

differential equations that have appeared in various fields 

of research. One of the widely used techniques for 

solving nonlinear problems is the perturbation approach, 

which is dependent on the presence of large or small 

parameters. However, many nonlinear problems do not 

have a readily available perturbation parameter, which 

restricts the applicability of perturbation-based 

approaches. In such cases, alternative non-perturbation 

techniques, such as the δ-expansion technique discussed 

by A.V. Karmishin [3], and the homotopy perturbation 

method discussed by Abbasbandy [4], can be employed. 

Nevertheless, both perturbation and non-perturbation 

approaches lack a straightforward strategy for adjusting 

and controlling the convergence region and rate of an 

approximate series. Abbasbandy demonstrated the 

significance of predicting multiple solutions while 

employing the auxiliary parameter h, which governs the 

convergence behavior of HAM solutions in general [5, 

6]. 

 

Section 1 Includes certain prerequisites and 

essential definitions of fluid, fluid flow, heat, 

fundamental laws, differential equations, types of 

differential equation, fundamental concepts of basic 

terminologies and parameters that are used in the thesis. 

Also discussed are the fundamental concepts of the 

homotopy analysis method and the homotopy 

perturbation method. 

 

Section 2 is a discussion of the non-linear 

boundary value problem by utilizing the Homotopy 

analysis method to identify numerous solutions. After 

introducing the concept of the Homotopy Analysis 

Method, research is done on how it applies to the heat 

radiation equation. Additionally, Abbasbandy [7], used 

the homotopy analysis method (HAM) to solve a heat 

radiation equation and compare the results to those 

obtained by Ganji [8], using the numerical solution, 

perturbation method, and homotopy perturbation 

method. The solutions of the Homotopy Perturbation 

method and the perturbation method are frequently the 

same. The HAM is used to solve the heat radiation 

equation, which has two small parameters𝜖1, 𝜖2 and ℒ, 

which is a linear operator. In this method, the auxiliary 

parameter h allows for adjustment and control of the 

convergence of the approximation series solution 

obtained by the Homotopy Analysis Method. Actually, 

in many cases, especially for the situation studied in [9], 

the solutions derived using the perturbation approach and 

the HPM are identical. 

 

In Section 3, we calculate several solutions to 

the Sturm-Liouville Problem using the auxiliary 

parameter ħ. For several papers that deal numerically 

with the Sturm-Liouville Problem discuss by Attili BS 

[10]. The HAM was described by Liao as handling 

nonlinear second- order and fourth-order eigenvalue 

problems. However, in this chapter, we discuss the new 

application of the homotopy analysis method presented 

by Abbasbandy [11], and compute the eigenvalue and 

eigenfunction by initiating HAM with the same initial 

guess, and ℒ is the linear operator. This chapter consists 

of some fundamental laws related to fluid flows and heat 

transfer, as well as some basic properties regarding fluids 

and flows. Additionally, discussed the basic concepts 

regarding the solution methodology (HAM) that is used 

to find out the solution to the proposed problem in the 

next chapter. 

 

1.1 Differential Equation and its Types 

A differential equation is a mathematical 

equation that consists of functions and their derivatives. 

Generally, it can be defined as follows: 

𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑛)) = 0. (1.1) 

 

1.1.1 Ordinary Differential Equation 

A differential equation is said to be ordinary 

differential equation, if it contains derivative of 

dependent variable with respect to one independent 

variable. 

 

For example 
𝑑𝑦

𝑑𝑥
= 7x + 3. 

(1.2) 

 

1.1.2 Partial Differential Equation 

An equation that contains partial derivatives of 

a dependent variable with respect to two or more 

independent variables is called a partial differential 

equation, for example 
𝜕𝑦

𝜕𝑥
+

𝜕𝑦

𝜕𝑡
= 7. 

(1.3) 

 

1.1.3 Linear and Non Linear Differential Equation 

i. Coefficient of the derivative of the dependent 

variable should be either constant or a function 

of independent variable. 

ii. The power of dependent variable and it’s all 

derivatives must be one. 

 

For example 
𝑑𝑦

𝑑𝑥
= 7xy + 3. 

(1.4) 

 

The differential equation is not a linear is called 

nonlinear differential equation, such as 

𝑦
𝑑𝑦

𝑑𝑥
= 7xy + 3. 

(1.5) 
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1.2 Basic Fundamentals 

1.2.1 Fluid Mechanics 

Fluid mechanics is the branch of science 

concerned with the mechanics of fluids (gases, liquids, 

and plasmas), internal and external forces acts on them. 

Normally fluid mechanics can be divided into static fluid 

and dynamic fluid. 

 

1.2.2 Fluid 

A substance that may have the potential to flow 

is called fluid when the external force is applied to it.  

 

1.2.3 Newton's Law of Viscosity 

Newton's law of viscosity tells us that the shear 

stress(τ) is directly proportional to the 

deformation/shear rate at given pressure and 

temperature. Mathematically it can be written as 

 

τ ∝ (
du

dy
), (1.6) 

τ = μ (
du

dy
), (1.7) 

 

where 
du

dy
 is the shear rate, μ is the viscosity and τ is the 

shear stress. 

 

1.3 Types of Fluids 

Fluids can be separated into two types.  

 

1.3.1 Ideal Fluid 

A fluid is said to be ideal fluid or perfect fluid if its 

viscosity 𝜇 = 0. 
 

1.3.2 Real Fluid 

A fluid is said to be real fluid if its viscosity 𝜇 ≠
0. Real fluids are further classified into two major 

categories. 

 

1.3.3 Newtonian Fluids 

A fluid that follows Newton's law of viscosity 

is called Newtonian fluid. Well-known Newtonian fluids 

include air, alcohol, water, glycerol, and thin motor oil. 

 

1.3.4 Non-Newtonian Fluids 

Fluids that do not adhere to Newton's law of 

viscosity are called Non-Newtonian fluids. Such as soap 

solutions, toothpaste, jam, butter, yogurt, gum, paint, 

shampoo, silly putty, molten plastic, and honey are all 

examples of Non-Newtonian fluids. Biological fluids, 

such as blood, saliva, mucus, and sperm, are also Non-

Newtonian fluids. 

 

1.4 Flow and its Types 

Flow is a branch of fluid mechanics that studies 

the motion of fluids subject to various forces. There are 

various flow types, expressed as steady flow and 

unsteady flow. 

 

1.4.1 Steady Flow 

In steady flow, the fluid characteristics such as 

pressure, density, velocity, and temperature remain 

constant at all points in the fluid over time. It can be 

written as: 
𝜕𝑉

𝜕𝑡
 =  0, 

(1.8) 

where, 𝑉 represents the velocity of fluid flows. 

 

1.4.2 Unsteady Flow 

The flow is unsteady if the fluid characteristics 

change over time. The flow of water in the dam is an 

example of unsteady flow. Mathematically, it is 

expressed as: 
𝜕𝑉

𝜕𝑡
≠  0. 

(1.9) 

 

1.5 Heat 

Heat is the form of thermal energy and transfer 

due to the temperature difference. It involves the 

transport of kinetic energy due to the temperature 

difference between the two mediums. Heat can be 

transferred in three different ways: 

 

1.5.1 Convection 

In the convection mode, the fluid 

velocities/movements are involved in heat transfer from 

one place to another. When a fluid is heated, the warmer 

fluid moves upward and the cooler fluid moves 

downward, due to density change. 

 

1.5.2 Conduction 

In the conduction mode, the direct contact 

between objects or substances is caused by heat transfer. 

When objects of different temperatures collide, higher-

energy particles transmit energy to lower-energy 

particles through molecular collisions. This type of heat 

transfer occurs within solid materials. For instance, when 

you touch a hot metal surface, heat is transferred from 

the metal to your hand. 

 

1.5.3 Radiation 

Radiation is the mode of transfer of heat from 

one place to another in the form of waves. The radiation 

is emitted by all bodies. The rate at which radiation is 

emitted depends upon various factors such as the color 

and texture of the surface, surface temperature, and 

surface area. 

 

1.6 Specific Heat 

The amount of heat energy necessary to 

increase the temperature of one kilogram of substance up 

to one Celsius or Kelvin is called specific heat. It is 

measured in joules per kilogram per Kelvin (J/kg/K). 

 

1.7 Fluid Properties 

1.7.1 Pressure 

Pressure is defined as the force applied per unit 

area perpendicular to the surface on which the force is 

acting. In mathematical terms, it can be represented by 

an equation: 
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𝑷 = 
𝑭

𝑨
, 

(1.10) 

where 𝑷 represents pressure, 𝑭 indicates force, and 𝑨 

denotes area. 

 

1.7.2 Shear Stress 

The amount of shear stress is proportional to the 

force applied and the area of the surface that is being 

deformed. Shear stress is denoted by the Greek letter tau 

(τ). The formula for shear stress can be written as: 

 

𝝉 =  
𝑭

𝑨
, 

(1.11) 

where 𝑭 indicates force, and 𝑨 denotes area. 

 

1.7.3 Density 

Density is defined as mass per unit volume. It is 

represented by 𝛒, its SI unit is kg/m3, and mathematically 

written as: 

 

𝛒 =
 𝐌 

𝐕
, 

(1.12) 

where 𝑉 is volume and M is mass. 

 

1.7.4 Viscosity 

Viscosity is a measure of a fluid's resistance to 

flow. The ratio of shear stress and rate of strain in the 

fluids motion is referred to as viscosity. 

 

μ =
τ

du
dy

, (1.13) 

where 
𝑑𝑢

𝑑𝑦 
 is the rate of deformation is, 𝜇 is the dynamic 

viscosity, and 𝜏 is the shear stress. 

 

1.7.5 Kinematic Viscosity 

The ratio of dynamic viscosity to the fluid 

density is called kinematic viscosity.It is mathematically 

defined as: 

ν =
μ

ρ
, (1.14) 

where 𝜇 is the viscosity,ρ is density and ν is kinematic 

viscosity. 

 

1.8 Boundary Layer and Its Thickness 

Boundary layer theory is a branch of fluid 

mechanics that studies the behaviour of fluid flows near 

solid surfaces. Boundary layer theory aims to understand 

and predict the behaviour of fluid flows in the boundary 

layer region, including the thickness of the boundary 

layer, the velocity and temperature profiles within the 

boundary layer, and the forces acting on the surface. This 

information is useful for a wide range of applications, 

including the design of aircraft wings, ships, and heat 

exchangers. Boundary layer flow is the term for a thin 

layer of fluid that is present close to a solid body's/walls 

and interacts with a stream that is moving in that 

direction. The boundary layer thickness is the distance 

from the solid surface to the point where the fluid 

velocity is attained 99% of the free stream velocity. 

There are two main types of boundary layer flows: 

laminar and turbulent. Laminar boundary layer flows are 

characterized by smooth, orderly flow patterns. 

Turbulent boundary layer flows are characterized by 

chaotic, disordered flow patterns. 

 

1.9 Some Basic Laws 

1.9.1 Law of Conservation of Mass 

The law of conservation of mass is a 

fundamental principle of nature is states that mass cannot 

be created or destroyed. It means that the fluid's mass 

will remain constant during flows over a control volume. 

This is an essential principle for understanding the 

behaviour of fluids, for their applied in many different 

applications, from engineering to environmental science. 

 

1.9.2 Law of Conservation of Momentum 

The law of conservation of momentum states 

that the total momentum of an isolated system remains 

constant. This means that the sum of the momentum of 

all the particles in the system does not change over time, 

mathematically it can be defined as 

𝜌
𝐷𝑉

𝐷𝑡
+  𝛻. 𝜏 + 𝑓 = 0, (1.15) 

𝜏 is the Cauchy stress tensor, which varies and depending 

on the fluid. 

 

1.9.3 Law of Conservation of Energy 

This law indicates that the energy of the entire 

system cannot be created or destroyed; this means the 

total amount of energy in the system is also constant. It 

is mathematically defined as, 

 

ρcp

𝐷θ

𝐷𝑡
 =  T. L − ∇. q. 

(1.16) 

 

Here, 𝑇 is the temperature at the boundary, 𝐿 is the vector 

normal to the boundary and ∇. q represents the 

divergence of the heat flux within the material. 

 

1.10 Sturm-Liouville Problem 

In mathematics, Sturm-Liouville 

problem/eigenvalue problem is a certain class of partial 

differential equations (PDEs) subject to additional 

constraints, known as boundary values. The current 

study examined the determination of eigenvalues and 

eigenfunctions for 2nd order linearly homogeneous 

differential equation, is known as the Sturm-Liouville 

equation. The general form of the Sturm-Liouville 

equation is given as: 

 
𝑑

𝑑𝑥
{𝑔(𝑥)

𝑑𝑦

𝑑𝑥
} + ℎ(𝑥)𝑦 = 𝜆v(𝑥)𝑦. 

(1.17) 
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Here,ℎ(𝑥), 𝑔(𝑥), 𝑔′(𝑥) and v(𝑥) are continue on close 

interval [a, b], ℎ(x), 𝑔(x)and v(𝑥) all are positive, and λ 

is parameter not depends on 𝑥. 

 

The goal of the Sturm-Liouville problem is to 

determine the eigenvalues and the relevant 

eigenfunction 𝑦(𝑥) that satisfies the Sturm-Liouville 

equation and the specified boundary conditions. 

 

1.11 The Fundamental Concept of the Homotopy 

Perturbation Method 

The homotopy perturbation method is a 

powerful mathematical technique for solving nonlinear 

differential equations that combine the homotopy 

method with traditional perturbation techniques. It 

provides an iterative method for finding approximate 

solutions to a wide range of nonlinear problems. We take 

a certain nonlinear differential problem into 

consideration to explain the basic idea of the homotopy 

perturbation method for solving nonlinear differential 

equations. 

𝐶(v)  −  𝑓 (𝑠)  =  0, 𝑠 ∈ 𝛺, (1.18) 

 

where, 𝑓 is a known function, 𝐶 is a differential 

operator and Ω represents the domain of the problem. To 

solve equation(1.18) using the HPM, we introduce the 

concept of a homotopy. We split the operatorinto two 

components: a linear component 𝐿(v) and a nonlinear 

component 𝑁(v), so equation(1.18) can be written as: 

𝐿(v)  +  𝑁(v)  − 𝑓 (𝑠)  =  0, (1.19) 

 

We construct the homotopy equation by adding 

and subtracting the linear component evaluated at an 

initial guess v0. The homotopy equation is given by: 

H( v, p) = L (v) − L (v0 ) + pL(v0)
+ pN(v) − 𝑓 (s) =  0, 

(1.20) 

 

Here, p is a homotopy parameter. The 

approximate solution of equation (1.20) can be written 

as a series of powers of p by using the homotopy 

perturbation method, i.e. 

v =  v0 + pv1 + p2v2 + ⋯, (1.21) 

 

This series represents an iterative process where 

each term represents an approximation of the solution at 

a specific order. As p approaches 1, the series simplifies 

to approximation solution given in equation (1.20). 
v =  v0 + v1 + v2 + ⋯, (1.22) 

 

The above convergence is discussed in [12, 13]. 
 

1.12 Homotopy Analysis Method 

The Homotopy Analysis is a powerful 

mathematical tool for solving nonlinear differential 

equations and system of equation. The HAM [14], is 

applied to a nonlinear system represented by: 

N[v(δ) ] =  0, (1.23) 

ℕstands for the nonlinear operator, and δis the 

independent variable. In the context of the broadened 

scope of the conventional HAM, the zero-order 

deformation equation as presented by Liao follows. 

 

(1 − 𝑝) ℒ[ψ(δ;  𝑝) − v0(δ)]
=  𝑝ħH(δ)ℕ[ψ(δ; 𝑝)], 

(1.24) 

 

where ℏ ≠  0 denotes an auxiliary parameter, 𝑝 

represents the embedding parameter for the range0 ≤
 𝑝 ≤ 1,H(x) ≥ 0 is auxiliary function, v0(δ) is an initial 

estimate of v(δ), ℒ represents an auxiliary linear 

operator, and ψ (𝛿;  𝑝) is solution function. At 𝑝 = 0 and 

𝑝 = 1, theequation (1.24) becomes as 

ψ(δ;  0) = v0(δ), ψ(δ;  1) = v(δ), 

 

when 𝑝 𝜖 (0, 1) the solution 𝜓 (𝛿;  𝑝) changes from the 

initial approximation v0 (δ),and solution function 

𝜓 (𝛿;  𝑝) can be generalized as Taylor's series, and one 

has 

ψ(δ;  𝑝) =  v0(δ)  + ∑ vm

+∞

m=1

(δ)𝑝𝑚, 
(1.25) 

where 

v𝑚(δ) = 
1

𝑚!

𝜕𝑚ψ(δ; 𝑝))

𝜕𝑝𝑚 │𝑝=0, 
(1.26) 

 

the series (1.25) converges at 𝑝 = 1. 

𝑢(δ) =  v0(δ) + ∑ v𝑚

+∞

𝑚=1

(δ), 
(1.27) 

Based on Liao's evidence, this solution seems to be one 

of the possible solutions to the original nonlinear 

equation. 

Asℎ =  −1 and 𝐻 (𝛿)  =  1, equation (1.24) becomes 
( 1 −  𝑝) ℒ [𝜓 (𝛿;  𝑝)  −  v0(𝛿)]  =  (𝑝)(−1)(1) ℕ [𝜓 (𝛿;  𝑝)], 

( 1 −  𝑝) ℒ [𝜓 (𝛿;  𝑝)  − v0(𝛿)]  +  𝑝 ℕ [𝜓 (𝛿;  𝑝)  =  0, 

 

According to equation (1.26)the zero-order deformation 

equation(1.24)provides the governing equation is 

defining a vector 

vn⃗⃗⃗⃗ = { v0 (𝛿), v1(𝛿), v2 (𝛿), … , v1(𝛿)}. 

 

At 𝑝 =  0 and after dividing by m!, the zero-order 

deformation equation differentiates m-times with regard 

to the embedding parameter p, then the equation 

becomes the mth-order deformation equation is given as: 

ℒ [v𝑚(𝛿) − v𝑚−1(𝛿)]  =  ħH(𝛿)Ɍm(v𝑚−1), (1.28) 

Ɍm(v⃗ 𝑚−1) is the Residual function. 
 

Ɍm(v⃗ 𝑚−1)

=
1

(𝑚 − 1)!

𝜕𝑚−1ℕ[ψ(δ;  𝑝) ]

𝜕𝑝𝑚−1
│𝑝= 0, 

(1.29) 

𝜒𝑚 = {
0 , 𝑓𝑜𝑟𝑚 ≤  1,
1 , 𝑓𝑜𝑟𝑚 >  1,

 
(1.30) 

 

It is worth emphasizing that the linear boundary 

conditions from the original problem are applied to 
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vm(𝛿) for 𝑚 ≥  1. Equation(1.29) can be effectively 

solved using various symbolic computation programs, 

such as Mathematica or Maple. These programs offer 

powerful tools for finding solutions to mathematical 

equations and can handle the given linear equation 

against the specified boundary conditions. In HAM, a 

convergence parameter, commonly referred to as "ħ" is 

offered to regulate and modify the convergence behavior 

of the series solution obtained by using HAM. 

 

2. Homotopy Analysis Technique for Radiative 

Heat Transfer 

The goal of this chapter is to revise the study of 

heat radiation equations as discussed by Saied 

Abbasbandy [7], and compare the results with those 

obtained by Ganji [8]. The study of heat radiation 

equations plays a significant role in understanding and 

analyzing various thermal phenomena. Saied 

Abbasbandy which makes an additional contribution to 

the advancement of Homotopy Analysis Method. Liao 

created the Homotopy Analysis Method to find out the 

solution to a nonlinear problem. Recently, HAM became 

a very effective method to find out the solution to the 

non-linear problem. The other approaches such as the 

Method of Adomian Decomposition, the Method of 

Lyapunov Small Artificial Parameters, Homotopy 

Perturbation Method [15], and δ-Expansion Method, etc. 

are also well-known approaches to finding the solution 

to the problem. Expansion Method is very simple. This 

method was also used for the solution of the linear 

problem by Liao SJ. In order to tackle heat transfer 

problems characterized by a high degree of nonlinearity, 

the HAM is utilized. The Perturbation and Homotopy 

Perturbation Methods are also used to compare the 

results. In fact, the solutions of the Homotopy 

Perturbation technique and the perturbation technique 

are frequently the same. The HAM is used to solve the 

under consider problem, which has two small 

parameters 𝜖1, 𝜖2 and ℒ, which is a linear operator. In 

this method, the auxiliary parameter ℏ allows for 

adjustment and control of the convergence of the 

approximation series solution obtained by the Homotopy 

Analysis Method. This flexibility allows for fine-tuning 

the solution process and enhancing the accuracy of the 

results. 

 

2.1 The Fundamental Concept of the Homotopy 

Analysis Method: 

The Homotopy Analysis Method is an effective 

mathematical method for simplifying nonlinear 

differential equations. In the context of this method, the 

HAM is used to solve a particular nonlinear system 

represented by an equation given as: 

ℕ[v(δ) ] =  0, (2.1) 

 

 

ℕ stands for the nonlinear operator, δ stands for the 

independent variable, and v(𝛿) is the unknown function. 
 

2.1.1 Zero-Order Deformation Equation 

In the expanded framework of the Homotopy Analysis 

Method, Liao introduces the zero-order deformation 

equation can be formulated as follows: 

(1 − 𝑝)ℒ[ψ(δ;  𝑝) − v0(δ)]
=  𝑝ħH(δ)ℕ[ψ(δ; 𝑝)], 

(2.2) 

 

The embedding parameter 𝑝 controls the 

deformation from the known linear problem (𝑝 =  0) to 

the desired nonlinear problem (𝑝 =  1). Where ħ ≠
 0 denotes an auxiliary parameter, 𝑝 represents the 

embedding parameter with range 0 ≤ 𝑝 ≤ 1, and v0(δ) 

is an initial estimation of v(δ). 

 

2.1.2 Mth-Order Deformation Equation 

The zero-order deformation equation is differentiated m 

times with respect to the establishing parameter 𝑝 when 

𝑝 is set to zero, creating the mth-order deformation 

equation after dividing by m! can be written as: 

ℒ [vm(δ) − vm−1(δ)]  =  ħH(δ)Ɍm(vm−1),  (2.3) 

 

The auxiliary linear operator denoted by the 

letter ℒ is defined based on a well-known linear problem 

connected to the original nonlinear problem. 

 

2.1.3 Residual Function 

The term Ɍₘ(vₘ₋₁) in the HAM indicates the 

mth order residual function, which is utilized to create 

the mth order deformation equation is represented as 

Ɍm(𝑢⃗ m−1)

=
1

(m − 1)!

𝜕m−1ℕ[ψ(δ;  𝑝) ]

𝜕𝑝m−1
│𝑝= 0 

 

(2.4) 

 

2.2 Nonlinear Unsteady Convection-Radiation 

Equation 

In a lumped system with simultaneous 

convective and radiation heat exchanges, the specific 

heat coefficient is linearly related to temperature is 

discussed in [8] can be written as: 

𝑐 = 𝑐𝑎[1 + 𝛽(𝑇 − 𝑇𝑎)], (2.5) 

𝑐𝑎 is the specific heat at 𝑇𝑎 , and 𝛽 is the constant.  

 

𝜌V𝑐
𝑑𝑇

𝑑𝑡
 + ℎ𝐴( 𝑇 − 𝑇𝑎 )  +  EσA(𝑇4 − 𝑇𝑠

4)  =  0, 

here, E is the emissivity 𝜌 is the density, and 

V is the volume.  

 

(2.6) 

𝑇(0)  =  𝑇𝑖 ,  

(2.7) 

by utilizing  

 u =  
𝑇

𝑇𝑖
, 𝑢𝑎 =

𝑇𝑎

𝑇𝑖
, δ =  

t(hA)

ρVca
,  𝜖1 =  𝛽𝑇𝑖  ,  𝜖2  

=  
 E𝜎𝑇𝑖

3

ℎ
 , 𝑢𝑠 =  

𝑇𝑠

𝑇𝑖
, 

(2.8) 

 

We have 
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 [1 + 𝜖1(u − 𝑢𝑎)]
𝑑𝑢

𝑑𝛿
 + (u − 𝑢𝑎)  

+  𝜖2(𝑢
4 − 𝑢𝑠

4)  
=  0, u (0)  =  1, 

(2.9) 

 

Currently, a fundamental issue is determining 

how to estimate 𝜖1𝑎𝑛𝑑 𝜖2. By using the homotopy 

analysis approach, we may select auxiliary parameters in 

the HAM and arrive at a suitable solution for each of the 

𝜖1 and 𝜖2.However; only for small values of 

𝜖1 and 𝜖2 are acceptable for the solution using HPM or 

the perturbation approach, so assumed that 𝑢𝑎 = 𝑢𝑠  =
 0. The resultant equation (2.9) becomes; 

 

 [1 + 𝜖1𝑢]
𝑑𝑢

𝑑𝛿
 + 𝑢 + 𝜖2𝑢

4  =  0, 
(2.10) 

 

2.3 Perturbation Method  

In equation (2.10) there are two different parameters 𝜖1𝑎𝑛𝑑 𝜖2, expressed as 

𝑢(𝛿) = 𝑢00(𝛿) + 𝜖1𝑢01(𝛿) + 𝜖2𝑢10(𝛿) + 𝜖1
2𝑢02(𝛿)+𝜖1𝜖2𝑢11(𝛿) + 𝜖2

2𝑢20(𝛿).  (2.11) 

 

Substituting equation (2.11) into equation (2.10) and arranging it according to coefficients of 1, 𝜖1, 𝜖2, 𝜖1 
2 , 𝜖2

2 and 𝜖1𝜖2. 

For coefficient 1: 
𝑑𝑢00(𝛿)

𝑑𝛿
+ 𝑢00(𝛿)  =  0, 𝑢00(0)  =  1, 

 𝑢00(𝛿) =  c𝑒−𝛿 , c =  1, 𝑢00(𝛿)  =  𝑒−𝛿 ,     (2.12) 

 

Equating the coefficients of 𝜖1: 
𝑑𝑢01(𝛿)

𝑑𝛿
+ 𝑢00(𝛿)

𝑑𝑢00(𝛿)

𝑑𝛿
+ 𝑢01(𝛿)  =  0, 𝑢01(0)  =  0, 

𝑑𝑢01(𝛿)

𝑑𝛿
 + e−𝛿

𝑑(𝑒−𝛿)

𝑑𝛿
+ 𝑢01(𝛿)  =  0,  

 
𝑑𝑢01(𝛿)

𝑑𝛿
+ 𝑢01(𝛿) = 𝑒−2𝛿, 

 𝑢01(𝛿) =  e−𝛿 − e−2𝛿 , (2.13) 

 

Equating the coefficients of ϵ2: 
𝑑𝑢10(𝛿)

𝑑𝛿
+ 𝑢10(𝛿) =  − (𝑢00(𝛿) )4,  𝑢10(0)  =  0,  

 
𝑑𝑢10(𝛿)

𝑑𝛿
+ 𝑢10(𝛿) =  − 𝑒−4𝛿 ,  

𝑢10(𝛿)𝑒𝛿 = 
𝑒−3𝛿

3
 +  c, c =  

−1

3
,  

𝑢10(𝛿) =
𝑒−4𝛿

3
−

𝑒−𝛿

3
, 

     (2.14) 

 

Equating the coefficients of 𝜖1
2: 

 
𝑑𝑢02(𝛿)

𝑑𝛿
+ 𝑢01(𝛿)

𝑑𝑢00(𝛿)

𝑑𝛿
+𝑢00(𝛿)

𝑑𝑢01(𝛿)

𝑑𝛿
+ 𝑢02(𝛿) =  0, 𝑢02(0) = 0, 

 
𝑑𝑢02(𝛿)

𝑑𝛿
+ 𝑢02(𝛿) = 2 𝑒−2𝛿 − 3𝑒−3𝛿 , 𝑢02(δ)𝑒

𝛿 = −2 𝑒−𝛿 +
3𝑒−2𝛿

2
 +  c, c =  

1

2
,  

 𝑢02(𝛿) =  
𝑒−𝛿

2
−  2 𝑒−2𝛿  +

3𝑒−3𝛿

2
 ,  

(2.15) 

 

Equating the coefficients of 𝜖2
2: 

 
𝑑𝑢20(𝛿)

𝑑𝛿
+ 4𝑢10(𝛿)(𝑢00(𝛿))

3
+ 𝑢20(𝛿) = 0, 𝑢20(0) = 0, 

𝑑𝑢20(𝛿)

𝑑𝛿
+ 

4

3
(𝑒−7𝛿 − 𝑒−4𝛿) + 𝑢20(𝛿) = 0, 

𝑑𝑢20(𝛿)

𝑑𝛿
+ 𝑢20(𝛿) = −

4

3
(𝑒−7𝛿 − e−4𝛿), 

𝑑𝑢20(𝛿)

𝑑𝛿
+ 𝑢20(𝛿) = −

4

3
(𝑒−7𝛿 − 𝑒−4𝛿), 

 𝑢20(𝛿)𝑒𝛿 = 
4

3 
(
𝑒−2𝛿

6
−

𝑒−3𝛿

3
) + c, 

𝑢20(𝛿) =  
2𝑒−𝛿

9
−

4𝑒−4𝛿

9
 +

2𝑒−7𝛿

9
,  (2.16) 
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Equating the coefficients of ϵ1ϵ2: 
𝑑𝑢11(𝛿)

𝑑𝛿
+ 𝑢10(𝛿)

𝑑𝑢00(𝛿)

𝑑𝛿
+ 𝑢00(𝛿)

𝑑𝑢10(𝛿)

𝑑𝛿
+ 𝑢11(𝛿) + 4𝑢01(𝛿)(𝑢00(𝛿))

3
= 0, 

𝑑𝑢11(𝛿)

𝑑𝛿
+ 𝑢11(𝛿) −

1

3
(𝑒−5𝛿 − 𝑒−2𝛿) +

1

3
(−4𝑒−5𝛿 + 𝑒−2𝛿)  + (4𝑒−4𝛿 − 4𝑒−5𝛿)  =  0,  

𝑑𝑢11(𝛿)

𝑑𝛿
 + 𝑢11(𝛿) −

17e−5𝛿

3
 +

2𝑒−2𝛿

3
+ 4𝑒−4δ =  0,  

𝑢11(𝛿)𝑒𝛿 = 
2𝑒−𝛿

3
+

4

3
𝑒−3𝛿 −

17𝑒−4𝛿

12
+  c,

2

3
 +

4

3
−

17

12
+ c =  0, c = −

7

12
,  

𝑢11(𝛿) =  
1

12
[−7𝑒−𝛿 + 8𝑒−2𝛿 +  16𝑒−4𝛿 − 17𝑒−5𝛿]. (2.17) 

 

Substituting equations (2.12−2.17) into equation (2.11) so the perturbation solution is obtained as; 

𝑢(𝛿) =  𝑢00(𝛿) +  𝜖1𝑢01(𝛿) + 𝜖2𝑢10(𝛿) + 𝜖1
2𝑢02(𝛿)+ 𝜖1𝜖2𝑢11(𝛿) + 𝜖2

2𝑢20(𝛿), 

𝑢(𝛿) = e−𝛿 +  𝜖1(e
−𝛿 − e−2𝛿) + 𝜖2( 

e−4𝛿

3
−

e−𝛿

3
)+ 𝜖1

2 (
e−𝛿

2
−  2e−2𝛿 +

𝑒−3𝛿

2
) + 

  𝜖1 𝜖2[− 7𝑒−𝛿 + 8𝑒−2𝛿 +  16𝑒−4𝛿 − 17𝑒−5𝛿] + 𝜖2
2 (

2𝒆−𝛿

9
−

4𝒆−𝟒𝛿

9
 +

2𝒆−𝟕𝛿

9
), 

𝑢(𝛿) = e−𝛿 (+ 𝜖1(𝑒
−𝛿 − 𝑒−2𝛿)) + 𝜖2 (

e−4𝛿

3
−

e−𝛿

3
) + 𝜖1

2 (
e−𝛿

2
−  2 e−2𝛿 +

 3𝑒−3δ

2
) + 

 𝜖1 𝜖2

12
[−7𝑒−𝛿 + 8𝑒−2𝛿 +  16𝑒−4𝛿 −

17𝑒−5𝛿]  + 𝜖2
2 (

2𝒆−𝛿

9
−

4𝒆−𝟒𝛿

9
 +

2𝒆−𝟕𝛿

9
)                                     (2.18)  

 

2.4 Homotropy Perturbation Method: 

In equation (2.9), 𝑢𝑎 = 𝑢𝑠  =  0, the resultant equation become, 

 [
𝑑𝑢

𝑑δ 
+  𝑢]  + [𝜖1𝑢

𝑑𝑢

𝑑δ 
+𝜖2𝑢

4]  =  0,                   (2.19) 

 

Now applying homotopy perturbation to equation (2.19), 

𝐿 (𝑢) − 𝐿 (𝑢 0) + 𝑞𝐿(𝑢 0 ) + 𝑞𝑁(𝑢) =  0. (2.20) 

Where 𝐿 (𝑢) =
𝑑𝑢

𝑑δ
+ 𝑢, 𝐿 (𝑢 0) =

𝑑𝑢 0

𝑑δ
+ 𝑢 0, 𝑁(𝑢) = 𝜖1𝑢

𝑑𝑢

𝑑δ
+𝜖2𝑢

4, 

 

Here, q is a homotopy parameter. The approximate solution of equation (2.20) can be written as a series of powers of q 

by using the homotopy perturbation method, i.e. 

𝑢 = 𝑣0 + 𝑞𝑣1 + 𝑞2𝑣2                                    (2.21)  

 

This series represents an iterative process where each term represents an approximation of the solution at a specific order.  

Where, 𝑣0 = 𝑢 0 = 𝑒−δ are the initial approximations. 

 

Putting equation (2.21) into equation(2.20) get the following 
𝑑

𝑑δ
(𝑣0 + 𝑞𝑣1 + 𝑞2𝑣2) + 𝑣0 + 𝑞𝑣1 + 𝑞2𝑣2) − (

𝑑𝑢 0

𝑑δ
+ 𝑢 0) + 𝑞(

𝑑𝑢 0

𝑑δ
+ 𝑢 0) + 𝑞(𝜖1(𝑣0 + 𝑞𝑣1 + 𝑞2𝑣2)

𝑑

𝑑δ
(𝑣0 + 𝑞𝑣1 +

𝑞2𝑣2)+𝜖2(𝑣0 + 𝑞𝑣1 + 𝑞2𝑣2)
4) =  0,  

 

Arranging it using coefficient of, 1, 𝑞 and 𝑞2, equating the coefficients of 1: 
𝑑𝑣0

𝑑δ
+ 𝑣0 −

𝑑𝑢 0

𝑑δ
− 𝑢 0 = 0. 

 

Following initial approximation satisfied the above equation. 

𝑣0 = 𝑒−δ, (2.22) 

 

Equating the coefficient 𝑞: 
𝑑𝑣1

𝑑δ
+ 𝑣1 +

𝑑𝑢 0
𝑑δ

+ 𝑢 0 + 𝜖1𝑣0

𝑑𝑣0

𝑑δ
+ 𝜖2𝑣0

4 = 0, 𝑣1(0) = 0, 

𝑑𝑣1

𝑑δ
+ 𝑣1 − 𝑒−δ + 𝑒−δ − 𝑒−2δ𝜖1 + 𝜖2𝑒

−4δ = 0,
𝑑𝑣1

𝑑δ
+ 𝑣1 − 𝑒−2δ𝜖1 + 𝜖2𝑒

−4δ = 0, 

𝑑𝑣1

𝑑δ
+ 𝑣1 − 𝑒−2δ𝜖1 + 𝜖2𝑒

−4δ = 0,
𝑑𝑣1

𝑑δ
+ 𝑣1 = 𝑒−2δ𝜖1 − 𝜖2𝑒

−4δ, 

𝑑(𝑒δ𝑣1) = (𝑒−δ𝜖1 − 𝜖2𝑒
−3δ)𝑑δ, 𝑒δ𝑣1 = ∫(𝑒−δ𝜖1 − 𝜖2𝑒

−3δ)𝑑δ +  𝑐, 

𝑒δ𝑣1 = −𝑒−δ𝜖1 +
1

3
𝜖2𝑒

−3δ + 𝑐, 𝑐 = 𝜖1 −
1

3
𝜖2,  
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𝑒δ𝑣1 = −𝑒−δ𝜖1 +
1

3
𝜖2𝑒

−3δ + 𝜖1 −
1

3
𝜖2,𝑣1 = −𝑒−2δ𝜖1 +

1

3
𝜖2𝑒

−4δ + 𝑒−δ (𝜖1 −
1

3
𝜖2),  

𝑣1 = 𝑒−δ (𝜖1 −
1

3
𝜖2) − 𝑒−2δ𝜖1 +

1

3
𝜖2𝑒

−4δ, 
(2.23) 

 

Equating the coefficient 𝑞2: 
𝑑𝑣2

𝑑δ
+ 𝑣2 + 𝜖1𝑣0

𝑑𝑣1

𝑑δ
+ 𝜖1𝑣1

𝑑𝑣0

𝑑δ
+ 4𝜖2𝑣1𝑣0

4 = 0, 𝑣2(0) = 0, 

 
𝑑𝑣2

𝑑δ
+ 𝑣2 − 𝜖1𝑒

−2δ (𝜖1 −
1

3
𝜖2) + 2𝜖1

2𝑒−3δ −
4

3
𝜖1𝜖2𝑒

−5δ − 𝜖1𝑒
−2δ (𝜖1 −

1

3
𝜖2) +  𝑒−3δ𝜖1

2 − 
1

3
𝜖1𝜖2𝑒

−5δ + 4𝜖2𝑒
−4δ (𝜖1 −

1

3
𝜖2) − 4𝑒−5δ𝜖1𝜖2 +

4

3
𝜖2

2𝑒−7δ = 0, 

 
𝑑𝑣2

 𝑑δ
+ 𝑣2 = 2𝜖1𝑒

−2δ (𝜖1 −
1

3
𝜖2) − 3𝜖1

2𝑒−3δ +
5

3
𝜖1𝜖2 − 4𝜖2𝑒

−4δ (𝜖1 −
1

3
𝜖2) +  

 4𝑒−5δ𝜖1𝜖2 −
4

3
𝜖2

2𝑒−7δ, 

 ∫ 𝑑 (𝑒δ𝑣2) = ∫ (2𝜖1𝑒
−δ (𝜖1 −

1

3
𝜖2) − 3𝜖1

2𝑒−2δ +
5

3
𝜖1𝜖2𝑒

−4δ − 4𝜖2𝑒
−3δ (𝜖1 −

1

3
𝜖2) +  4𝑒−4δ𝜖1𝜖2 −

4

3
𝜖2

2𝑒−6δ) 𝑑δ + c,  

 𝑒δ𝑣2 = −2𝜖1𝑒
−δ (𝜖1 −

1

3
𝜖2) +

3

2
𝜖1

2𝑒−2δ −
5

12
𝜖1𝜖2𝑒

−4δ +
4

3
𝜖2𝑒

−3δ (𝜖1 −
1

3
𝜖2) − 𝑒−4δ𝜖1𝜖2 +

4

18
𝜖2

2𝑒−6δ + 𝑐,  

 0 = −2𝜖1 (𝜖1 −
1

3
𝜖2) +

3

2
𝜖1

2 −
5

12
𝜖1𝜖2 +

4

3
𝜖2 (𝜖1 −

1

3
𝜖2) − 𝜖1𝜖2 +

4

18
𝜖2

2 + 𝑐, 

 𝑐 =  2𝜖1 (𝜖1 −
1

3
𝜖2) −

3

2
𝜖1

2 +
5

12
𝜖1𝜖2 −

4

3
𝜖2 (𝜖1 −

1

3
𝜖2) + 𝜖1𝜖2 −

4

18
𝜖2

2, 

 𝑒δ𝑣2 = −2𝜖1𝑒
−δ (𝜖1 −

1

3
𝜖2) +

3

2
𝜖1

2𝑒−2δ −
5

12
𝜖1𝜖2𝑒

−4δ +
4

3
𝜖2𝑒

−3δ (𝜖1 −
1

3
𝜖2) −  𝑒−4δ𝜖1𝜖2 +

4

18
𝜖2

2𝑒−6δ + 2𝜖1 (𝜖1 −
1

3
𝜖2) −

3

2
𝜖1

2 +
5

12
𝜖1𝜖2 −

4

3
𝜖2 (𝜖1 −

1

3
𝜖2) + 𝜖1𝜖2 −

4

18
𝜖2

2, 

 𝑣2 = −2𝜖1𝑒
−2δ (𝜖1 −

1

3
𝜖2) +

3

2
𝜖1

2𝑒−3δ −
5

12
𝜖1𝜖2𝑒

−5δ +
4

3
𝜖2𝑒

−4δ (𝜖1 −
1

3
𝜖2) −  𝑒−5δ𝜖1𝜖2 +

2

9
𝜖2

2𝑒−7δ + 𝑒−δ(2𝜖1 (𝜖1 −
1

3
𝜖2) −

3

2
𝜖1

2 +
5

12
𝜖1𝜖2 −

4

3
𝜖2 (𝜖1 −

1

3
𝜖2) + 𝜖1𝜖2 −

4

18
𝜖2

2 ),                                    (2.24) 

 

Putting 𝑣0, 𝑣1 and 𝑣2  in above series given in equation (2.21) and 𝑞 approach to 1, get the following form 

 𝑢(𝛿)= e−𝛿(1 +  𝜖1(e
−𝛿 − 𝑒−2𝛿)) + 𝜖2 (

e−4𝛿

3
−

e−𝛿

3
) + 𝜖1

2 (
e−𝛿

2
−  2 e−2𝛿  +

3𝑒−3𝛿

2
) + 

 𝜖1 𝜖2

12
[−7𝑒−𝛿 + 8𝑒−2𝛿 +

 16𝑒−4𝛿 − 17𝑒−5𝛿]  + 𝜖2
2 (

2𝒆−𝛿

9
−

4𝒆−𝟒𝛿

9
+

2𝒆−𝟕𝛿

9
) (2.25) 

 

This is the required solution of equation(2.10) gives the behavior of heat transfer. That is the same as obtained by Ganji 

[8] in his problem. 

 

2.5 Homotopy Analysis Method 

The answer can be described by a collection of base functions using the unstable nonlinear convection-radiation equation 

and the initial condition given in equation (2.9). 

{𝑒−𝑛𝛿│n = 1,2,3, … . }, 
such as 

u(𝛿) = ∑ 𝑎𝑛
∞
𝑛=1 𝑒−𝑛𝛿, (2.26) 

 

where 𝑎𝑛 is the unknown coefficients to be found out later. It indicates that the solution of equation (2.10) must 

be expressed similarly to equation (2.26) and their alternative forms such as 𝛿𝑚𝑒−𝑛𝛿 must be ignored. Using the HAM [7], 

the auxiliary linear form is written as 

ℒ[(𝛿;  𝑝)] =
𝜕ϕ(𝛿;  𝑝)

𝜕𝛿
+ 𝜙(𝛿;  𝑝), 

(2.27) 

 

with property  

ℒ [𝑐1𝑒
−𝛿]  =  0, (2.28) 

and defining the non-linear operator as 

ℕ[(𝛿; 𝑝)] = (1 + 𝜖1𝜙(𝛿; 𝑝))
𝜕ϕ(𝛿;  𝑝)

𝜕𝛿
+ (𝛿;  𝑝) + 𝜖2𝜙

4(𝛿;  𝑝), 
 (2.29) 

 

Choose 𝑢0(𝛿) = 𝑒−𝛿 is the simplicity initial approximation of u(𝛿). Clearly, 𝑢0(𝛿) = 𝑒−𝛿  automatically satisfies the 

boundary condition given in equation (2.9). Therefore, the zero-order deformation of general equation (2.2) and the related 

limit conditions also expressed as: 

𝜙(0;  𝑝)  =  1, 
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From equation (2.4) and (2.29) following is obtained 

Rm(um−1(𝛿) = um−1
′ (𝛿)+ϵ1 ∑ un(𝛿)m−1

n=0 um−1−n
′ (𝛿)+um−1(𝛿) +

ϵ2 ∑ (∑ ui(𝛿)n
i=0

m−1
n=0 um−i(𝛿))(∑ uj(𝛿)m−1−n

j=0 um−1−n−j(𝛿)), 

(2.30) 

 

where, prime represents the differentiation with respect to δ. The solution of the mth-order deformation equation (2.3) for 

m ≥ 1 becomes: 

um(𝛿) = χmum−1(𝛿) + ħe−𝛿 ∫ e𝛿𝛿

0
H (ξ)Rm(um−1(ξ) d ξ + c1e

−𝛿 , (2.31) 

 

Integration constant c1 can be determined by using initial condition given in equation (2.9), 𝐻(𝛿)  =  𝑒−𝑘𝛿  is the 

auxiliary parameter and 𝑘 representsthe integer. For 𝑘 = 0, the auxiliary parameter 𝐻(𝛿)  = 1, according to solution 

expression in equation (2.3). 

For m = 1, the equation (2.31) becomes: 

 um(𝛿) = χm um−1(𝛿) +ħe−𝛿 ∫ eξ𝛿

0
𝐻 (𝜉)Rm(um−1(ξ)) d ξ + c1e

−𝛿,  

 u1(𝛿) = (0) u1−1(𝛿) +ħe−𝛿 ∫ eξ𝛿

0
 (1)R1(u1−1(𝜉) d ξ + c1e

−𝛿 , 

 u1(𝛿) = ħe−𝛿 ∫ eξ𝛿

0
(u0

′ (𝜉)  +  ϵ1 u0(𝜉)u0
′ (ξ)  +  u0(ξ)  +  ϵ2u0

4(ξ)) d ξ + c1e
−𝛿, 

 u1(𝛿) = ħe−𝛿 ∫ eξ𝛿

0
(−e−𝜉  +  ϵ1 (−e−2ξ)  + e−𝜉  +  ϵ2e

−4ξ) dξ + c1e
−𝛿 ,  

 u1(𝛿) = ħe−𝛿 ∫ (− ϵ1 e
−𝜉  +  ϵ2e

−3ξ) d 𝜉
𝛿

0
+  c1e

−𝛿,  

 u1(𝛿) = ħe−𝛿  ( ϵ1 e
−𝛿 −

 ϵ2e−3𝛿

3
− (ϵ1 −

 ϵ2

3
 )) + c1e

−𝛿 ,  u1(0) = 1, 

 u1(𝛿) = ħe−𝛿  ( ϵ1 e
−𝛿  −

 ϵ2e−3𝛿

3
− (ϵ1 −

 ϵ2

3
 )) +e−𝛿 , 

 u1(𝛿) =  (ħϵ1 )e
−2𝛿  −

ħϵ2e−4𝛿

3
− ħe−𝛿  (ϵ1 −

 ϵ2

3
) + e−𝛿 , 

 u1(𝛿) = e−𝛿(1 −ħ ( ϵ1 −
 ϵ2

3
 )) +e−2𝛿((ħϵ1 )  − e−4𝛿(

ħϵ2

3
 ), (2.32) 

 

and m = 2, get the equation (2.24) in following form 

u2(𝛿) = (1) u2−1(𝛿) +ħe−𝛿 ∫ eξ𝛿

0
 (1)R2(u2−1(ξ)) d ξ + c1e

−𝛿 , 

u2(𝛿) = (1) u1(𝛿) +ħe−𝛿 ∫ eξ𝛿

0
R2(u1(ξ))) d ξ + c1e

−𝛿 , 

u2(𝛿) = (1) u1(𝛿) +ħe−𝛿 ∫ eξ𝛿

0
R2(u1(ξ))) d ξ + c1e

−𝛿 , 

 u2(𝛿)=e−𝛿(1-ħ)(2+ħ)( ϵ1 −
 ϵ2

3
 ) + ħ2(

ϵ1
2

2
−

7

12
 ϵ1ϵ2 +

2

9
ϵ2
2))+ e−2𝛿 (ϵ1 (2ħ + ħ2) −

2ħ2 ϵ1( ϵ1 −
 ϵ2

3
 )) + e−3𝛿(

3

2
ϵ1
2ħ2) + e−4𝛿(

 ϵ2

3
(−2ħ − ħ2) +  

 4

3
 ϵ2ħ

2( ϵ1 -
 ϵ2

3
)) −

e−5𝛿(
17

12
 ϵ1ϵ2 ħ

2) +e−7𝛿(
2

9
ϵ2
2ħ2), 

 

 

 (2.33) 

putting ħ = −1 into equation (2.33) obtained following relation  

 𝑢(𝛿) = e−𝛿(1 +  𝜖1(e
−𝛿 − 𝑒−2𝛿)) + 𝜖2 (

e−4𝛿

3
−

e−𝛿

3
) + 𝜖1

2 (
e−𝛿

2
−  2 e−2𝛿  +

3𝑒−3𝛿

2
) + 

 𝜖1 𝜖2

12
[−7𝑒−𝛿 + 8𝑒−2𝛿 +

 16𝑒−4𝛿 − 17𝑒−5𝛿]  + 𝜖2
2 (

2𝒆−𝛿

9
−

4𝒆−𝟒𝛿

9
+

2𝒆−𝟕𝛿

9
)                                          (2.34) 

 

The similar solution given in equation (2.34) 

has also been yielded by using the Homotopy 

perturbation method and the perturbation method. 

Hence, the mth-order approximation 𝑢(𝛿) can be 

generally expressed by 

 

𝑢(𝛿)  =  ∑ 𝑎𝑚,𝑛(

3𝑚+1

𝑛=1

ħ)𝑒−𝑛𝛿 , 
 (2.35) 

 

Where 𝑎𝑚,𝑛 is a coefficient that depends on ħ. 

Equation (2.35) is a family of solution expression in the 

auxiliary parameter ħ. The homotopy analysis method 

includes an auxiliary parameter ħ that provides an easy 

way to adjust and control the convergence region of the 

solution series. First we plot the ħ − curves 𝑢′(0) and 

𝑢"(0) as shown in Figure 1. The valid range of ħ can be 

easily explored for different values of 𝜖1 and 𝜖2.  
 

Here, equation (2.9) is solved using 

Mathematica software and is also used to calculate the 

error. We can see that the optimal value of ħ is not −1, 

but depends on 𝜖1 and 𝜖2. In Figure 2, we can see that it 

is better to use other values for ħ than −1, especially 

when 𝜖1 and 𝜖2 are large. In Figure 3, we compared the 

approximate solution of order 5 with the exact solution 

in 𝛿 =  1 for different values of ħ where 𝜖1 = 𝜖2 =
ϵ. Briefly speaking Homotopy Analysis Method's ability 

to modify and manage the convergence zone and rate of 

approximation series makes it a valuable technique in 
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handling nonlinear problems, providing more control 

and flexibility compared to some other traditional 

analytical and numerical methods. 

 

Clearly, 𝑢′(0) =  −
1+𝜖2

1−𝜖1
, the homotopy analysis 

method solution using exactly this solution shows 

accuracy for large values of 𝜖1 and 𝜖2, see Figure 4 when 

2𝜖1 = 𝜖2 = ϵ. The perturbation method and the 

homotopy perturbation method are invalid for large 

values of 𝜖1 and 𝜖2. The perturbation method and the 

homotopy perturbation method are both asymptotic 

methods, which means that they are only valid for small 

values of the perturbation parameters. For large values of 

the perturbation parameters, the asymptotic expansions 

become inaccurate and the methods break down. Figure 

5 and 6 show the error at 𝛿 =  1 and 𝛿 = 2, respectively, 

with respect to ħ for various 𝜖1 and 𝜖2. 

 

 
Figure 2.1: ħ- curve obtain by using equation (2.28) for m=15,δ=0,ϵ_1= 0.7 and ϵ_2=0.3. The dotted line represents 

the 15th order approximation of u''(0) and the solid line represents the 15th order approximation of u^' (0) 

 

 
Figure 2.2: 5th-order approximation of solution error of homotopy analysis method at 𝜹 = 𝟏,  𝛜𝟏 = 𝛜𝟐 = 𝛜 against 

different value of ħ, solid line plotted at ħ = −𝟏, dotted line at ħ = −𝟎. 𝟖 and dashed line at ħ = −𝟎. 𝟗 

 

 
Figure 2.3: The obtained solution by HAM, solid line: ħ = −𝟎. 𝟕; dashed line: 5th order HPM solution 
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Figure 2.4: The graph of 𝒖′(𝟎) with respect to 𝝐 obtained for ħ =
−𝟏

𝟏+𝝐
, bold circle:exact values; solid line: 1st–order 

homotopy analysis method; dotted line: second order homotopy perturbation method; dashed line: 5th order 

homotopy perturbation method 

 

 
Figure 2.5: Error of 5th-order homotopy analysis method solution at 𝜹 = 𝟏, solid line; 𝝐𝟏 =  𝟏 and 𝝐𝟐 = 𝟐; dashed 

line: 𝛜𝟏 =  𝟎. 𝟖 and 𝝐𝟐 = 𝟏. 𝟔 

 

 
Figure 2.6: Error of 5th-order homotopy analysis method solution at 𝜹 = 𝟐, solid line; 𝝐𝟏 =  𝟏 and 𝝐𝟐 = 𝟐; dashed 

line: 𝛜𝟏 =  𝟎. 𝟖 and 𝝐𝟐 = 𝟏. 𝟔 
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The homotopy analysis method HAM [11], is 

used in this paper to solve the heat radiation equations. 

HAM has been successfully applied to solve various 

types of nonlinear problems, including ordinary 

differential equations and partial differential equations. 

With the homotopy analysis method, we can quickly 

change how approximation series converge; the 

homotopy analysis method and other approaches have a 

basic qualitative difference in analysis. It has also been 

demonstrated that the homotopy perturbation technique 

and the perturbation method are only applicable for small 

values, but the homotopy analysis approach allows us to 

select h in a suitable way. The outcomes demonstrate the 

usefulness and great potential of the HAM for nonlinear 

problems in science and engineering. 

 

3. A New Application of the Homotopy Analysis 

Method: Solving the Sturm-Liouville Problems 

The purpose of this chapter is to create a 

numerical technique for determining the eigenvalue and 

corresponding eigenfunction of Sturm-Liouville 

Problems [11]. Equations of this nature commonly arise 

in engineering applications, particularly in vibrating 

elastic stability problems. The Sturm-Liouville problem 

is a fundamental topic in mathematical physics that arises 

in a variety of scientific and engineering fields. It is 

concerned with the investigation of eigenvalue problems 

for second-order ordinary differential equations with 

specific boundary conditions. To address such problems, 

the Homotopy Analysis Method can be extended to 

compute eigenvalues and eigenfunction associated with 

second-order and fourth-order Sturm-Liouville 

problems. Many straight plateaus come about; each one 

corresponds to a Sturm-Liouville problem of eigenvalue. 

This extension involves utilizing a modified linear 

operator L and an initial guess to facilitate the calculation 

of these eigenvalues. These eigenvalues are unique; they 

are multiple solutions. The HAM uses the auxiliary 

parameter ħ to adjust how quickly the approximation 

series solution converges. The results show that this 

method is more valid, has higher accuracy, and requires 

less iteration. 

 

3.1 Basic Concept of the Homotopy Analysis Method 

3.1.1 Zero-Order Deformation Equation 

This chapter investigated the following nonlinear systems to investigate the concept of the homotopy analysis method: 

ℕ[v(δ)] =  0, (3.1) 

ℕ Stands for the nonlinear operator, v(𝛿) is the undefined function and δ is the independent variable. To broaden the scope 

of the conventional HAM, Shijun Liao invented the idea of the zero-order deformation equation, is formulated as: 

(1 − 𝑝)ℒ[ψ(δ;  𝑝) − v0(δ)] =  𝑝ħH(δ)ℕ[ψ(δ; 𝑝)], (3.2) 

 

3.1.2 Mth-Order Deformation Equation 

By differentiating the zero-order deformation equation m times with respect to 𝑝 at 𝑝 =  0, and then dividing it 

by m!, the mth-order deformation equation can be derived from the zero-order deformation equation. As a result, the 

following occurs: 

ℒ [vm(δ) − vm−1(δ)]  =  ħɌm(vm−1), (3.3) 

where 

Ɍm(v⃗ m−1) =
1

(m − 1)!

𝜕m−1ℕ[ψ(δ;  𝑝) ]

𝜕𝑝m−1
│𝑝= 0, 

(3.4) 

 

3.2 Second order Sturm-Liouville Problems 

The general form of a second order Sturm-Liouville problem [10] can be written in the following equation: 
𝑑

𝑑𝑥
{𝑓(𝑥)

𝑑𝑦

𝑑𝑥
} + 𝑔(𝑥)𝑦 = λv(𝑥)y. 

𝑓(𝑥), 𝑔(𝑥), 𝑓′(𝑥) and v(𝑥) are positive and continue on the close interval [a, b], λ is the parameter it does not depend on 

x. 

 

Example 3.2.1 Regular eigenvalue problem [11] 

y"(𝑥) +  λy(𝑥)  =  𝟶. 𝑥 Є (0, 1), (3.5) 

having the boundary conditions 

𝑦′( 𝟶 ) =  𝟶, 
y( 1 )  =  𝟶. 

(3.6a) 

(3.6b) 

 

Suppose that the solution of the above equation (3.5) may be represented by a collection of base functions given as 

v(𝑥) =  ∑di

∞

i=0

𝑥2i,  
(3.7a) 
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where, 𝑑𝑖 are the unknown coefficients that will be find later. By using HAM, choose auxiliary linear operator such as: 

ℒ[ϕ(𝑥;  𝑝)]  =  ϕ"(𝑥;  𝑝),  

 

and defining the non-linear operator such as: 

𝒩 [𝜙(𝑥;  𝑝)]  =  𝜙"( 𝑥;  𝑝), +𝜆𝜙(𝑥;  𝑝).  (3.7b) 

 

Choose v0(𝑥) = 1 for the simplicity initial approximation of v(𝑥). Clearly, v0(𝑥)  = 1 automatically satisfies the 

boundary condition given in equation ((3.6) i.e. v′(0) =  𝟶). The general equation (3.2) and related limit conditions also 

expressed as: 

(1 −  𝑝)ℒ[𝜙(𝑥;  𝑝)) − v0(𝑥)]  =  𝑝 ħ𝒩[𝜙(𝑥;  𝑝)],  

𝜙′(𝟶;  𝑝)  =  0.  (3.8)  

From equations (3.4) and (3.7b) get the following:  

𝑅m(vm−1(𝑥))  =  vm−1
′′ (𝑥)  +  𝜆(vm−1(𝑥)),  (3.9) 

 

where, (′′) prime represents differentiation with respect to 𝑥. The mth-order deformation equation (3.3) for m ≥ 1 is 

becomes: 

vm(𝑥) =  𝜒mvm−1(𝑥)  +  ħ∫ ∫ Rm

η

0

𝑥

0

(vm−1(𝜏))𝑑𝜏𝑑𝜂. 
(3.10) 

 

Putting m = 𝟷 from above equation (3.9) and (3.10) and setting λ =  a: 

v1(𝑥) = 𝜒1(v1−1(𝑥)) +  ħ∫ ∫ R1

𝜂

0

𝑥

0

(v1−1(τ)) dτd𝜂,  

v1(𝑥) = (0)(v0(𝑥)) +  ħ∫ ∫ R1

𝜂

0

𝑥

0

(v0(τ)) dτd𝜂,  

v1(𝑥) =  ħ∫ ∫ R1

𝜂

0

𝑥

0

(v0(τ)) dτd𝜂, 

v1(𝑥)  =  ħ∫ ∫ (v"0(τ) +  a(v0(τ)))
𝜂

0

𝑥

0

dτd𝜂, 

v1(𝑥)  =  ħ ∫ ∫  a(v0(τ))
𝜂

0

𝑥

0
dτd𝜂, v1(𝑥) =  aħ ∫ ∫  (1)

𝜂

0

𝑥

0
dτd𝜂,  

 

v1(𝑥) = ħa ∫ η
𝑥

0
d𝜂, v1(𝑥) = ħa (

𝑥2

2
),  

v1(𝑥)  =  
1

2
aħ𝑥2, (3.11) 

 

For m =  2 

v2(𝑥) = 𝜒2(v2−1(𝑥)) +  ħ∫ ∫ R2

𝜂

0

𝑥

0

(v2−1(τ)) dτd𝜂,  

v2(𝑥) = (1)(v1(𝑥)) +  ħ∫ ∫ R2

𝜂

0

𝑥

0

(v1(τ)) dτd𝜂,  

v2(𝑥) =
1

2
a ħ𝑥2  +  ħ∫ ∫ (v"1(τ) + a(v1(τ)))

𝜂

0

𝑥

0

dτd𝜂, 

v2(𝑥) =  
1

2
a ħ𝑥2  + ħ∫ ∫ (aħ + a (

1

2
aħτ2))

𝜂

0

𝑥

0

dτd𝜂, 

v2(𝑥)  =  
1

2
aħ𝑥2  + aħ2 ∫ ∫ (1 +  a(

1

2
τ2))

𝜂

0

𝑥

0

dτd𝜂, 

v2(𝑥)  =  
1

2
a ħ𝑥2 + 

1

2
aħ2𝑥2  +  

1

 24
a2ħ2𝑥4,  (3.12) 

 

For m =  3 

v3(𝑥) = 𝜒3(v3−1(𝑥)) +  ħ∫ ∫ R3

𝜂

0

𝑥

0

(v3−1(τ)) dτd𝜂,  

v3(𝑥) = (1)(v2(𝑥)) +  ħ∫ ∫ R3

𝜂

0

𝑥

0

(v2(τ)) dτd𝜂,  

v3(x) = v2(x) + ∫ ∫ (aħ +  aħ2 +
1

2
a2ħ2τ2 +  a((

1

2
aħ +  

1

2
aħ2) τ2 +

𝜂

0

𝑥

0

1

 24
a2ħ2τ4)dτd𝜂, 

v3(x) = (
aħ3

2
+  aħ2 +

aħ

2
)x2 + ( 

1

 12
a2ħ2 + 

1

 12
a2ħ2)x 4+

1

 720
a3ħ3x 6,  (3.13) 
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The given below series solution of equation (3.10) from m =  1 until the order m =  4 

v1(𝑥)  =  
1

2
aħ𝑥2, 

v2(𝑥)  =  
1

2
a ħ 𝑥2 + 

1

2
aħ2𝑥2  +  

1

 24
a2ħ2𝑥4,  

 v3(x) = (
aħ3

2
+  aħ2 +

aħ

2
)x2 + ( 

1

 12
a2ħ2 + 

1

 12
a2ħ2)x 4+

1

 720
a3ħ3x 6,  

v4(x) =
1

2
aħ𝑥2 +

3

2
aħ2𝑥2 +

3

2
aħ3𝑥2 +

1

2
aħ4𝑥2 +

1

8
a2ħ2𝑥4 +

1

4
a2ħ3𝑥4 + 

1

8
a2ħ4𝑥4 + 

1

240
a3ħ3𝑥6 +

1

240
a3ħ4𝑥6 +

a4ħ4𝑥8

40320
,  

 

As a result, the series solution of the mth-order approximation homotopy analysis method 𝑢m(𝑥), takes the following form: 

𝑢m(𝑥)  =  ∑vi(𝑥).

m

𝑖=0

 
(3.14) 

 

To the mth-order approximation solution (3.14), which still depends on the eigenvalue 𝜆 and auxiliary parameter ħ, 

condition (3,6b) reads 

𝑢m(1) ≈  Um(1; 𝜆, ħ)  = 1. (3.15) 

 

The relationship between the 𝜆 and ħ is shown in equation (3.15). Equation (3.15) is still dependent on the 

auxiliary variable ħ and the eigenvalue 𝜆. Figure 3.2.1(a) shows the profile of 𝜆 against ħ with range [-2, 0] plotted in 

accordance with the equation (3.15) for m =  25. Eigenvalue λ can be determined by using equation (3.15) for m = 25 

by setting ħ = −0.9 given in table(3.2.1). 

 

Table No 3.2.1: 

k 𝝀𝒌 

1 2.4674011 

2 22.2066099 

3 61.6850275 

4 120.9026680 

5 199.8563351 

6 298.3136496 

 

Figures 3.2.1(b − d) show the first three distinct λ-plateaus. Figure 3.2.1(e) shows the estimated eigenfunction 

for the λ3 = 61.6850275, which was obtained against ħ = −0.9 , m = 25 according to equation (3.5). Figure3.2.1(f) 

shows the eigenfunction error corresponding to the third eigenvalue λ3 = 61.6850275,m = 25. 

 

 
Figure 3.2.1(a): According to Equation (3.15), the ħ -curve is constructed with a range of 𝝀 values from 𝟐 to 𝟏𝟐𝟓 

and a range of ħ values from −𝟐 to 𝟎. This construction is specifically for the case when m is set to 25 
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Figure 3.2.1(b): λ –plateau corresponding to 𝛌𝟏= 2.4674 

 

 
Figure 3.2.1(c): λ –plateau corresponding to 𝛌𝟐= 22.2066 

 

 
Figure 3.2.1(d): λ –plateau corresponding to 𝛌𝟑= 61.6850 
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Figure 3.2.1(e): Eigenfunction corresponding to 𝛌𝟑= 61.6850 

 

 
Figure 3.2.1(f): Eigenfunction error corresponding to 𝛌𝟑= 61.6850 

 

Example 3.2.2 Singular eigenvalue problem [11]. 

𝑦"(𝑥)  + ( 
1

𝑥
 +  λ)𝑦(𝑥)  =  𝟶, 𝑥 Є (0, 1), 

(3.16) 

The boundary conditions are 

y(𝟶)  =  𝟶, (3.17) 

y(𝟷)  =  𝟶. (3.18) 

 

Suppose that the solution of the above equation (3.16) may be represented by a collection of base functions. 

v(𝑥)  =  ∑𝑑𝑖

∞

𝑖=0

𝑥i, 
(3.19) 

Where 𝑑𝑖 are the unknown coefficients to be found out later. By using HAM technique we select auxiliary linear operator 

as following 

ℒ[ф(𝑥; 𝑝)]  =  ф"( 𝑥;  𝑝). 
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1.0
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h
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With the non-linear operator being defined as follows 

𝑁[ф(𝑥; 𝑝)]  =  ф"( 𝑥;  𝑝)  +  ( 
1

𝑥
 +  λ)ф(𝑥; 𝑝),  

(3.20) 

 

Choose v0(𝑥)  =  𝑥 for the simplicity of the initial approximation of v(x). Clearly, v '0(𝑥)  =  1 automatically satisfies 

boundary condition given in equation (3.17). The general equation (3.2) and the related limit conditions, also expressed as: 

(1 − p)ℒ[ф(𝑥; 𝑝) − v0(𝑥)]  =  pħ𝑁[ф(𝑥; 𝑝)] , (3.21) 

ф (𝟶;  𝑝)  =  𝟶. 
  

Putting equation (3.20) into equation (3.2) the residual function is written as 

Rm(vm−1(𝑥))  =  vm−1
′′ (𝑥)  +  ( 

1

𝑥
 +  λ)(vm−1(𝑥)), 

(3.22) 

 

where, the prime (′′)indicates the differentiation with respect to x, the mth-order deformation equation (3.3) for 𝑚 ≥ 1 

now becomes 

vm(𝑥)  =  𝜒𝑚(vm−1(𝑥))  +  ħ∫ ∫ 𝑅𝑚

𝜂

0

𝑥

0

(vm−1(𝜏))d𝜏dη. 
(3.23) 

 

Putting m =1 from above equation (3.22) and equation (3.23) and using 𝜆 =  a:  

v1(𝑥) = 𝜒1(v1−1(𝑥))  +  ħ∫ ∫ 𝑅1

𝜂

0

𝑥

0

(v1−1(τ))dτd𝜂, 

v1(𝑥) = (0)(v0(𝑥))  +  ħ∫ ∫ 𝑅1

𝜂

0

𝑥

0

(v0(τ))dτd𝜂, 

v1(𝑥) = ħ∫ ∫ (v"0(τ)  +  ( 
1

τ
 +  a)(v0(τ)))

𝜂

0

𝑥

0

dτd𝜂, 

v1(𝑥) =  ħ∫ ∫ (0 +  ( 
1

τ
 +  a)(τ))dτd𝜂,

𝜂

0

𝑥

0

 

v1(𝑥) =  ħ∫ ∫ (1 + aτ)dτd𝜂,
𝜂

0

𝑥

0

 v1(𝑥)  =  
ħ𝑥2

2
 +

𝑎ħ𝑥3

3
, 

For m =  2 

v2(𝑥) = 𝜒2(v2−1(𝑥))  +  ħ∫ ∫ 𝑅2

𝜂

0

𝑥

0

(v2−1(τ))dτd𝜂, 

v2(𝑥) = (1)(v1(𝑥))  +  ħ∫ ∫ 𝑅2

𝜂

0

𝑥

0

(v1(τ))dτd𝜂, 

v2(𝑥) =
ħ𝑥2

2
+

𝑎ħ𝑥3

3
+  ħ∫ ∫ (v"1(τ) + ( 

1

τ
 +  a)(v1(τ)))dτdη,

η

0

x

0

 

v2(𝑥) =
ħ𝑥2

2
+

ħ2𝑥2

2
 +  

aħ𝑥3

6
+ 

aħ2𝑥3

6
+

ħ2𝑥3

6
+

aħ2𝑥4

18
+

a2ħ2𝑥5

120
, 

For m =  3 

v3(𝑥) = 𝜒3(v3−1(𝑥))  +  ħ∫ ∫ 𝑅3

𝜂

0

𝑥

0

(v3−1(τ))dτd𝜂, 

v3(𝑥) = (1)(v2(𝑥))  +  ħ∫ ∫ 𝑅3

𝜂

0

𝑥

0

(v2(τ))dτd𝜂, 

v3(𝑥) =
ħ𝑥2

2
+ ħ2𝑥2 +

ħ3𝑥2

2
+

1

6
aħ𝑥3 +

ħ2𝑥3

6
+

1

3
aħ2𝑥3 +

ħ3𝑥3

6
+

1

6
aħ3𝑥3 + 

1

9
aħ2𝑥4 + 

ħ3𝑥4

144
+

1

9
aħ3𝑥4 +

1

60
a2ħ2𝑥5 +

1

144
aħ3𝑥5 +

1

60
a2ħ3𝑥5 + 

23a2ħ3𝑥6

10800
+

a3ħ3𝑥7

5040
, 

The below series solution of the equation (3.23) for m = 1, 2, 3. 

v1(𝑥)  =  
ħ𝑥2

2
 +

𝑎ħ𝑥3

3
,  

v2(𝑥) =
ħ𝑥2

2
+

ħ2𝑥2

2
 +  

aħ𝑥3

6
+ 

aħ2𝑥3

6
+

ħ2𝑥3

6
+

aħ2𝑥4

18
+

a2ħ2𝑥5

120
, 

v3(𝑥) =
ħ𝑥2

2
+ ħ2𝑥2 +

ħ3𝑥2

2
+

1

6
aħ𝑥3 +

ħ2𝑥3

6
+

1

3
aħ2𝑥3 +

ħ3𝑥3

6
+

1

6
aħ3𝑥3 + 

1

9
aħ2𝑥4 + 

ħ3𝑥4

144
+

1

9
aħ3𝑥4 +

1

60
a2ħ2𝑥5 +

1

144
aħ3𝑥5 +

1

60
a2ħ3𝑥5 + 

23a2ħ3𝑥6

10800
+

a3ħ3𝑥7

5040
, 
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To the mth-order approximation solution (3.24), which still depends on the eigenvalue 𝜆 and auxiliary parameter h, 

condition (3,18) reads 

um(1)  ≈   Um(1;  λ , ħ)  = 1. (3.25) 

 

The equation (3.25) shows that the λ is a 

function of ħ. There are multiple straight plateaus, all of 

which correspond to a specific Sturm-Liouville 

eigenvalue problem. The equation (3.25) still depends on 

the auxiliary parameter ħ and eigenvalue λ. In Figure 

3.2.2(a) show that the λ is plotted according to equation 

(3.25) for m = 25. Against the specific eigenvalue and 

setting ħ = −0.8 in the solution obtained by using HAM 

possible to obtain the corresponding approximate 

eigenfunction. Figures3.2.2(b − d) show the first three 

distinct λ-plateaus. Eigenvalue λ can be determined by 

using equation (3.25) for m = 25 by setting ħ = −0.8 

given in table(3.2.2). 

 

 

Table 3.2.2: Shows the first six eigenvalues 

k 𝝀𝒌 

1 7.37398501 

2 36.33601851 

3 85.29251075 

4 154.10192997 

5 352.47100980 

6 568.16321224 

 

In each figure, these plateaus represent the 

ranges of eigenvalues where the behavior of the system 

remains relatively stable and distinct from other ranges. 

Figure 3.2.2(e) presents an approximate eigenfunction 

for the second eigenvalue (i.e.λ2 = 36.33601851), 

calculated at ħ = −0.8. Figure 3.2.2(f) shows the 

inaccuracy of the eigenfunction corresponding to the 

second eigenvalue is obtained by using equation (3.16). 

 

 
Figure 3.2.2(a): ħ -curve according to equation (3.25) for m = 25 
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Figure 3.2.2(b): λ –plateau corresponding to 𝛌𝟏= 7.3739 

 

 
Figure 3.2.2(c): λ –plateau corresponding to 𝛌𝟐= 36.3360 

 

 
Figure 3.2.2(d): λ –plateau corresponding to 𝛌𝟑= 85.2925 
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Figure 3.2.2(e): Eigenfunction corresponding to 𝛌𝟐= 36.33601851 

 

 
Figure 3.2.2(f): Error of eigenfunction corresponding to 𝛌𝟐= 36.33601851 

 

3.3 Fourth-order Sturm-Liouville Problems 

The numerical procedure to calculate the eigenvalues for the fourth-order nonsingular Sturm-Liouville problem is given as 

(𝑞0(𝑥)𝑦′′(𝑥))′′ = (𝑞1(𝑥)(𝑦′(𝑥))′ + (𝜆𝑤(𝑥) − 𝑞2(𝑥))𝑦(𝑥), 𝑥 Є (0 , 1), (3.26) 

 

Subject to some four points specified conditions at the boundary of the domain (two conditions at initial point 𝑎 

and two other conditions at point b). 𝑞0(𝑥), 𝑞1(𝑥), 𝑞2(𝑥) and 𝑤(𝑥) are piecewise continuous functions with 𝑞0(𝑥), 𝑤(𝑥) ≥
0. Ordinary differential equations with boundary value problems explain the many different physical, biological, and 

chemical phenomena that are relevant to theory and application. Variational Iteration Methods [17], are an easy and 

efficient method for approximating solutions to nonlinear differential equations. In this technique, utilize VIM as a basis 

for solving Sturm-Liouville problems, aiming to accurately determine eigenvalues and eigenfunctions. The initial 

approximation v0 is chosen to satisfy two initial conditions at 𝑥 = 𝑎 and includes two parameters, namely 𝑐 and 𝑑. when 

carrying out the numerical details and two conditions are specified initially at 𝑥 = 𝑎, the solution obtained will be a two 

parameter series solution that has the form. 

𝑦m(𝑥, h, 𝜆) =  𝑐𝑓m(𝑥, ħ, 𝜆) + 𝑑𝑔m(𝑥, ħ, 𝜆). 𝑛 >  0, 
 

To fulfill the other requirements, such as: 

𝑦(𝑘, ħ, 𝜆) = 𝑦′(𝑘, ħ, 𝜆) = 𝟶, 

Obtained the following system 

𝑐𝑓m(𝑘, ħ, 𝜆) +  𝑑𝑔m(𝑘, ħ, 𝜆) = 0, 
𝑐𝑓′

m
(𝑘, ħ, 𝜆) +  𝑑𝑔′

m
(𝑘, ħ, 𝜆) = 0, 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.15

0.10

0.05

0.00

0.05

0.10

0.15

x

h

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

x

h



 

    

Sumra Mugheer Shah et al, Sch J Phys Math Stat, Aug, 2025; 12(7): 279-308 

© 2025 Scholars Journal of Physics, Mathematics and Statistics | Published by SAS Publishers, India                                                                                          300 

 

 

the nonzero solution is possible if 

W𝑛(λ)  =  |
fm(𝑘, ħ, 𝜆) 𝑔m(𝑘, ħ, 𝜆)

𝑓′′
m
(𝑘, ħ, 𝜆) 𝑔′′

m
(𝑘, ħ, 𝜆)

|  =  0. 
(3.27) 

As a result, the eigenvalues are the roots of Wm(λ). The following algorithm summarizes the entire method [16]. 

 

Algorithm: 

Step 1: Select the initial approximation of the form v0(x). 

Step 2: Use iteration formula: 

vm(𝑥)  =  𝜒m(vm−1(𝑥))  +  ħ∫ ∫ ∫ ∫ Rm

𝜂2

0

𝜂3

0

𝜂4

0

𝑥

0

(vm−1(𝜂1))𝑑𝜂1𝑑𝜂2𝑑𝜂3𝑑𝜂4. 

 

Step 3: Calculate Wm(λ) = 0. 

Example 3.3.1 Eigenvalue problem 

y""(𝑥)  − λy(𝑥)  =  𝟶, 𝑥 Є (𝟶, 1), (3.28) 

 

the boundary conditions are: 

𝑦(𝟶) =  0, 𝑦′(𝟶) =  𝟶, (3.29) 

𝑦(1) =  𝟶, 𝑦′′(𝟶) = 𝟶, (3.30) 

 

Suppose that the solution of the above equation (3.28) may be represented by a collection of base functions are written as 

v(𝑥)  =  ∑f

∞

i=0

x4i+2 + ∑g

∞

i=0

x4i+3, 
(3.31) 

 

here, f and g are the unknown coefficients to be found out later. By using HAM technique, the auxiliary linear operator and 

nonlinear operator chosen for our analysis are as follows: 

 ℒ[ѱ(𝑥;  𝑝)]  =  ѱ′′′′( 𝑥;  𝑝). 
N[ѱ(𝑥;  𝑝)]  =  ѱ′′′′( 𝑥;  𝑝) −  λѱ(𝑥;  𝑝).  (3.32) 

 

Choose v0(𝑥)  =  
𝑐𝑥2

2
+

𝑑𝑥3

6
 for the simplicity of the initial approximation of v(x). Clearly,v0(𝑥)  =  

𝑐𝑥2

2
+

𝑑𝑥3

6
 

automatically satisfies boundary condition given in equation (3.29), (i.e. v(0) =  0, v′(0) =  0). Therefore, the general 

equation of zero-order deformation and the related limit conditions are also expressed as: 

(1 − 𝑝)ℒ[ѱ(𝑥;  𝑝)  − v0(𝑥)]  =  𝑝ħ𝑁[ѱ(𝑥;  𝑝)] , (3.33) 

 

From equation (3.4) and (3.32) obtained the following 

𝑅m(v m−1(𝑥))  =  vm−1
′′′′ (𝑥) + ( λ)(vm−1(𝑥)). (3.34) 

 

In the above relation, prime( ′ )represents differentiation with respect to x. Now, the solution of the mth-order deformation 

equation(3.3) for m ≥ 1 becomes: 

vm(𝑥) =  χm(vm−1(𝑥)) +  ħ ∫ ∫ ∫ ∫ Rm

η1

0

η2

0

η3

0

𝑥

0

(vm−1(η1))dη1dη2dη3dη4. 
(3.35) 

 

For m =1, the equation (3.34) and (3.35) are becomes: 

v1(𝑥) =  χm(v1−1(𝑥)) +  ħ ∫ ∫ ∫ ∫ R1

η1

0

η2

0

η3

0

x

0

(v1−1(η))dηdη1dη2dη3, 

v1(𝑥) =  ħ ∫ ∫ ∫ ∫ (
η1

0

η2

0

η3

0

𝑥

0

vm−1
′′′′ (η) + ( λ)(vm−1(η)))dηdη1dη2dη3, 

  v1(𝑥) =  ħ ∫ ∫ ∫ ∫ (
η1

0

η2

0

η3

0

𝑥

0

λ)(
cη2

2
+

dη3

6
)dηdη1dη2dη3, 

 v1(𝑥) =  −
1

720
λcħ𝑥6  −

1

5040
λdħ𝑥7, 

For m = 2 

 v2(𝑥) =  χ2(v1(𝑥)) +  ħ ∫ ∫ ∫ ∫ R2

η1

0

η2

0

η3

0

𝑥

0

(v2−1(η))dηdη1dη2dη3, 
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 v2(𝑥) = −(
1

720
λcħ +

1

720
λcħ2)𝑥6  − (

1

5040
λdħ +

1

5040
λdħ2) 𝑥7 + 

 
1

3628800
λ2cħ2𝑥10 +

1

39916800
λ2dħ2𝑥11, 

  

As a result, a few terms from the homotopy analysis technique series are listed below: 

 v1(𝑥) =  −
1

720
λcħ𝑥6  −

1

5040
λdħ𝑥7, 

 v2(𝑥) = −(
1

720
λcħ +

1

720
λcħ2)𝑥6  − (

1

5040
λdħ +

1

5040
λdħ2) 𝑥7 + 

 
1

3628800
λ2cħ2𝑥10 +

1

39916800
λ2dħ2𝑥11, 

 

 v3(𝑥) = −c (
1

720
aħ𝑥6 +

1

360
aħ2𝑥6 +

1

720
aħ3𝑥6) − d (

adħ𝑥7

5040
+

adħ2𝑥7

2520
+

aħ3𝑥7

5040
) +  c (

1

1814400
a2ħ2𝑥10 +

1

1814400
a2ħ3𝑥10) + d(

1

19958400
a2ħ2𝑥11 + 

1

19958400
a2ħ3𝑥11) − c(

1

87178291200
a3ħ3𝑥14) − d(

1

1307674368000
a3ħ3𝑥15), 

 

is generalized as: 

 vm(𝑥;  𝜆, ħ) = cfm(x;  𝜆, ħ) + dgm(𝑥;  𝜆, ħ) , m > 0, 

 

here, fm and gm are constant. Wm(𝑥) has the following form according to the HAM's mth-order approximate solution: 

Wm(𝑥) = ∑vi(𝑥) = cfm(𝑥;  𝜆, ħ) +  dgm(𝑥;  𝜆, ħ).

m

i=0

 
(3.36) 

 

The mth-order approximation solution is depends on parameters c, d, and ħ. The following two equations were obtained 

utilizing the boundary conditions: 

c fm(1;  𝜆, ħ) + dgm(1;  𝜆, ħ)  =  0. 
c fm

′′(1;  𝜆, ħ) + d gm
′′  (1;  𝜆, ħ) =  0. 

 

 

To obtain a nontrivial eigenfunction solution for a specific eigenvalue, we need to solve the equation (3.36) for m = 25 as 

W25(λ)  =  |
f25(1, ħ, 𝜆) g25(1, ħ, 𝜆)

f ′′
25(1, ħ, 𝜆) g′′

25
(1, ħ, 𝜆)

|  =  0. 
(3.37) 

 

The equation (3.37) represents the relation between the eigenvalue λ and the auxiliary parameter ħ. There are 

multiple straight plateaus, all of which correspond to a specific Sturm-Liouville eigenvalue problem. Consider equation 

(3.37) as an example of the HAM uniqueness criteria, which is still dependent on the auxiliary parameters ħ and eigenvalue 

𝜆. Eigenvalue λ can be determined by using equation (3.37) for 𝑚 = 25 by setting ħ =  − 1.02 given in table(3.3.1). 

Against the specific eigenvalue and setting ħ = −1.02 in the solution obtained by using HAM possible to obtain the 

corresponding approximate eigenfunction. 

 

Table: 3.3.1 

k 𝝀𝒌 

1 237.72106751 

2 2496.48743785 

3 10867.58221697 

4 31780.09645427 

5 74000.84934655 

6 148634.47747229 

 

Figures 3.3.1(a − c) show the three distinct λ-plateaus Figure 3.3.1(d) shows the estimated eigenfunction for the 

sixth eigenvalue 𝜆6 = 148634.47747229 against ħ =  −1.02. Figure 3.3.1(e) shows the error profiles in eigenfunction 

according to the sixth eigenvalue as determined by equation (3.28). 

W25(λ)  = f25(𝑥) − (
f25(1)

g25(1)
) g25(𝑥). 
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Figure 3.3.1(a): 𝛌-plateau corresponding to 𝛌4 

 

 
Figure 3.3.1(b): 𝛌-plateau corresponding to 𝛌5 

 

 
Figure 3.3.1(c): 𝛌-plateau corresponding to 𝛌6 
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Figure 3.3.1(d): 𝐄𝐢𝐠𝐞𝐧𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 corresponding to 𝛌6 

 

 
Figure 3.3.1(e): Eigenfunction error corresponding to 𝛌6 

 

 

Suppose that the solution of the above equation (3.38) can be represented by a collection of base functions are given as: 

v(𝑥)  =  ∑di𝑥
2i+1 ,

∞

i=0

 
(3.41) 

 

where, di are the unknown coefficients to be found out later. By using HAM technique by selecting ℒ is the auxiliary linear 

operator and N is the non-linear operator are written as: 

ℒ[𝜑(𝑥;  𝑝)]  =  𝜑′′′′( 𝑥;  𝑝). 

N[𝜑(𝑥;  𝑝)] = φ′′′′(𝑥;  𝑝) − 𝜆𝜑(𝑥;  𝑝) − 0.02𝑥2𝜑′′(𝑥;  𝑝) + 0.04𝑥𝜑′(𝑥;  𝑝) − (0.0001𝑥4 − 0.02)𝜑(𝑥;  𝑝).  (3.42) 

 

Choose v0(𝑥) = c𝑥 + d𝑥3 for the simplicity of the initial approximation v(x). Clearly v0(𝑥)  =  c𝑥 + d𝑥3, automatically 

satisfies the boundary condition equation (3.39), (i.e. v(0) =  0, v′(0) =  0). Therefore, the general equation of zero-order 

deformation and the related limit conditions expressed as: 

(1 − 𝑝)ℒ[𝜑(𝑥;  𝑝)  −  v0(𝑥)]  =  𝑝 ħ 𝑁[𝜑(𝑥;  𝑝)] , (3.43) 

 

From equation (3.4) and (3.42), get the following form. 

𝑅m(vm−1(𝑥))=vm−1
′′′′ (𝑥) − ( 𝜆)(vm−1(𝑥)) −  0.02𝑥2vm−1

′′ (𝑥) +  0.04𝑥vm−1
′ (𝑥) − (0.0001𝑥4 − 0.02)vm−1(𝑥) (3.44) 

 

The solution to the mth-order deformation equation (3.3) for 𝑚 ≥ 1 becomes: 

vm(𝑥)  =   χmvm−1(𝑥))  +  ħ∫ ∫ ∫ ∫ Rm

η1

0

η2

0

η3

0

x

0

(vm−1(η1))𝑑𝜂1𝑑𝜂2𝑑𝜂3𝑑𝜂4. 
(3.45) 
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Putting m =1 from above equation (3.44) and (3.45) are expressed as 

v1(𝑥) =  𝜒𝑚(v1−1(𝑥)) +  ħ ∫ ∫ ∫ ∫ (
𝜂1

0

𝜂2

0

𝜂3

0

𝑥

0
v0

′′′′(𝜂) − ( λ)(v0(𝜂)) − 0.02𝜂2v0
′′(𝜂) +  0.04𝜂v0

′ (𝜂) − (0.0001𝜂4 −

0.02)v0(𝜂))d𝜂d𝜂1d𝜂2d𝜂3,  

v1(𝑥) =  ħ ∫ ∫ ∫ ∫ (
𝜂1

0

𝜂2

0

𝜂3

0

𝑥

0
v0

′′′′(𝜂) − ( λ)(v0(𝜂)) − 0.02𝜂2v0
′′(𝜂) +  0.04𝜂v0

′ (𝜂) − (0.0001𝜂4 −

0.02)v0(𝜂))d𝜂d𝜂1d𝜂2d𝜂3,  
v1(𝑥)  =  0.0005cħ𝑥5 − 0.00833𝑎cħ𝑥5 + 0.000023dħ𝑥7 + 0.000023dħ𝑥7 − .306 × 

 cħ𝑥9 − 1.2626 × 10−8dħ𝑥11, 

for m = 2 

v2 (𝑥) = 𝜒2(v2−1(𝑥)) + ħ∫ ∫ ∫ ∫ (v1
′′′′(𝜂) − ( λ)(v1(𝜂)) −

𝜂1

0

𝜂2

0

𝜂3

0

𝑥

0

 

0.02𝜂2v1
′′(𝜂) 0.04𝜂v1

′ (𝜂) − (0.0001𝜂4 − 0.02)v1(𝜂))d𝜂d𝜂1d𝜂2d𝜂3, 
v2(𝑥) = 0.0004𝑐ħ𝑥5 − 0.0083𝑎𝑐ħ𝑥5 + 0.0004𝑐ħ2𝑥5 − 0.0083𝑎𝑐ħ2𝑥5 + 0.00002𝑑ħ𝑥7 − 0.0011𝑎𝑑ħ𝑥7 +
0.000023𝑑ħ2𝑥7 − 0.0011𝑎𝑑ħ2𝑥7 − 3.306 × 10−8𝑐ħ𝑥9 − 6.283 ×  10−8𝑐ħ2𝑥9 + 3.306 × 10−7𝑎𝑐ħ2𝑥9 − 1.262 ×
10−8𝑑ħ𝑥11 − 1.424 × 10−8𝑑ħ2𝑥11 + 7.816 × 10−8𝑎𝑑ħ2𝑥11 + 1.503 × 10−7𝑎2𝑑ħ2𝑥11 − 8.710 × 10−13𝑐ħ2𝑥13  +
5.048 ×  10−11𝑎𝑐ħ2𝑥13 + 5.979 × 10−13𝑑ħ2𝑥15 + 4.019 ×  10−12𝑎𝑑ħ2𝑥15 + 5.789 ×  10−17𝑐ħ2𝑥17 + 1.357 ×
10−17𝑑ħ2𝑥19, 
 

From the above relation get the following series: 

v1(𝑥)  =  0.0005cħ𝑥5 − 0.00833𝑎cħ𝑥5 + 0.000023dħ𝑥7 + 0.000023dħ𝑥7 − .306 × 

 cħ𝑥9 − 1.2626 × 10−8dħ𝑥11, 

v2(𝑥) = 0.0004𝑐ħ𝑥5 − 0.0083𝑎𝑐ħ𝑥5 + 0.0004𝑐ħ2𝑥5 − 0.0083𝑎𝑐ħ2𝑥5 + 0.00002𝑑ħ𝑥7 − 0.0011𝑎𝑑ħ𝑥7 +
0.000023𝑑ħ2𝑥7 − 0.0011𝑎𝑑ħ2𝑥7 − 3.306 × 10−8𝑐ħ𝑥9 − 6.283 ×  10−8𝑐ħ2𝑥9 + 3.306 × 10−7𝑎𝑐ħ2𝑥9 − 1.262 ×
10−8𝑑ħ𝑥11 − 1.424 × 10−8𝑑ħ2𝑥11 + 7.816 × 10−8𝑎𝑑ħ2𝑥11 + 1.503 × 10−7𝑎2𝑑ħ2𝑥11 − 8.710 × 10−13𝑐ħ2𝑥13  +
5.048 ×  10−11𝑎𝑐ħ2𝑥13 + 5.979 × 10−13𝑑ħ2𝑥15 + 4.019 ×  10−12𝑎𝑑ħ2𝑥15 + 5.789 ×  10−17𝑐ħ2𝑥17 + 1.357 ×
10−17𝑑ħ2𝑥19, 
 

is simplified as 

 vm(𝑥;  λ, ħ) = cfm(𝑥;  λ, ħ) + dgm(𝑥;  λ, ħ), m > 0. 

The mth-order approximate solution by using HAM is represented Wm(x) in the following form: 

Wm(𝑥) = ∑vi(𝑥) = cfm(𝑥;  λ, ħ) +  dgm(𝑥;  λ, ħ).

m

i=0

 
(3.46) 

 

The mth-order approximation solution is depends on parameters c, d, and ħ. The following two equations were obtained 

utilizing the boundary conditions: 

cfm(5;  λ, ħ) + dgm(5;  λ, ħ) =  0. 
c fm

′′(5;  λ, ħ) + dgm
′′  (5;  λ, ħ) =  0. 

W25(λ)  =  |
f20(5, ħ, λ) g20(5, ħ, λ)

f ′′
20(5, ħ, λ) g′′

20
(5, ħ, λ)

|  =  0. 
(3.47) 

 

Equation (3.47) represents the relation between the eigenvalue λ and the auxiliary parameter ħ. There are multiple straight 

plateaus of eigenvalue λ, each of which corresponds to a Sturm-Liouville Problem. The relation given in equation (3.47) 

is still dependent on the auxiliary parameters ħ and eigenvalue λ. Against the specific eigenvalue and setting ħ = −0.9 in 

the solution obtained by using HAM possible to obtain the corresponding approximate eigenfunction. Eigenvalue λ can be 

determined by using equation (3.47) by setting ħ =  −0.9 and m =  20. Figure 3.3.2(a) shows the profile of λ against ħ 

with range [-2, 0] plotted in accordance with the equation (3.47) for m = 20. Eigenvalue λ can be determined by using 

equation (3.47) for m = 20 by setting ħ = - 0.9 given in table(3.3.2). Figures3.3.2(b − d) show the first three distinct λ-

plateaus. 
 

Table 3.3.2: Represents the first six eigenvalues 

k 𝝀𝒌 

1 0.21505086 

2 2.75480888 

3 13.21539518 

4 40.94821490 

5 99.40710013 

6 192.96356062 
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Figure 3.3.2(e) shows the estimated eigenfunction for the third eigenvalue 𝜆3 = 13.21539518 against ħ = −0.9. 

Figure 3.3.2(f) shows the error profiles in eigenfunction according to the third eigenvalue as determined by equation (3.38). 

W20(λ)  =  f20(𝑥) − (
f20(5)

g20(5)
) g20(𝑥). 

 

 
Figure 3.3.2(a): ħ -curve according to equation (3.47) 

 

 
Figure 3.3.2(b): 𝛌-plateau corresponding to 𝛌1 
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Figure 3.3.2(c): 𝛌-plateau corresponding to 𝛌2 

 

 
Figure 3.3.2(d): 𝛌-plateau corresponding 𝛌3 

 

 
Figure 3.3.2(e): Eigenfunction corresponding to 𝛌𝟑 
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Figure 3.3.2(f): Error in Eigenfunction corresponding to 𝛌𝟑 

 

3.4 CONCLUSIONS 
The eigenvalues of the Sturm-Liouville 

problems have been numerically estimated using the 

HAM technique in the present investigation. The 

eigenvalues cannot be all identical. There are a number 

of horizontal plateaus in the plot of λ as a function of h, 

which suggests that there are multiple solutions. By 

utilizing the Homotopy Analysis Method (HAM) with 

the same initial estimate and linear operators ℒ, it 

becomes possible to identify multiple solutions or 

eigenvalues. In this research, the auxiliary parameter ħ, 

which governs the convergence of the HAM 

approximation series solutions, was found to have an 

additional important role. This significant application 

makes numerous solution predictions by taking into 

account the number of plateaus that appear in the ħ -

curve. This approach's fundamental concepts are 

expected to be applied to additional challenges in the 

future. 

 

Nomenclature 

𝐴 Area (m2) 

𝑐 Specific heat (J/kg K) 

𝑐𝑎  Specific heat at temperature Ta (J/kg K) 

𝑉 Volume 

𝑢𝑚 Mth-order approximation 

𝑢 Reduced stream function 

𝑇𝑠 Effective skin temperature (K) 

𝑇𝐼  Initial temperature (K) 

𝑇𝑎 Environment temperature (K) 

𝑇 Temperature (K)  

𝑝 Embedding parameter 

𝒩 Nonlinear operator 

ℒ Auxiliary linear operator 

ħ Auxiliary parameter 

H(δ) Auxiliary function 

ℎ Coefficient of natural convection (W/m2 K) 

 

 

Greek symbols 

𝛽 Constant, volumetric thermal expension 

coefficient (1/K) 

𝜖 Small parameter (-) 

σ Stefan- Boltzman constant (-) 

𝜒𝑚 Two value function (-) 

 

Subscripts 

𝑎 Air  

m Order of approximation 

𝑠 surface 
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