A Special Case of Central Configuration for Planar Concave 5-body Problem with Newtonian Potentials

Yangshanshan LIU*

Department of Mathematics, Sichuan University, Chengdu 610064, P.R. China

DOI: 10.36347/sjpms.2020.v07i04.001 | Received: 19.04.2020 | Accepted: 27.04.2020 | Published: 30.04.2020

*Corresponding author: Yangshanshan LIU

Abstract

In this paper we discuss a kind of symmetric configuration for planar concave 5-body problem with four of the five bodies on the vertex of an isosceles trapezoid and the other on the axis of symmetry inside the isosceles trapezoid. Then we give a special case to prove that there exist a set of positive masses to make this configuration a central configuration when the inner body not coincident with the center of mass.

Keywords: Central configurations, n-body problems, celestial mechanics.

INTRODUCTION

From 1687 when Isaac Newton first proposed the 3-body problem in his great work *Philosophiae Naturalis Principia Mathematica* [1], lots of excellent mathematicians in the history have been attracted to this direction. After the groundbreaking work of Henri Poincaré in the end of the 19th century and the beginning of the 20th century, the study of n-body problem has entered a new era, and many important results have been achieved though it’s far from being done. Central configuration is of great significance in the study of this problem, and one of its core problem in this direction is that given any set of positive masses whether or not the classes of central configuration is finite. Naturally we can consider the inverse problem: given a configuration, under what conditions is it possible to choose positive masses that make it a central configuration. More details about N-body problem can be got in [2,3,4,5,6,7,8,9,10,11,12,13].

For N-body problems, According to the Newton’s law of motion and the law of gravitation, the i-th particle under the attraction of the other N-1 particles satisfies the 2rd differential equation.

\[ m_i \ddot{q}_i(t) = F_i = \sum_{j \neq k, j \neq i}^{N} \frac{G m_i m_j (q_j - q_i)}{\left| q_j - q_i \right|^3} = \ddot{U} \frac{\partial}{\partial q_k} \quad k = 1, \ldots, N \]  

(0.1)

in which G is the gravitation constant, and

\[ U = \sum_{1 \leq k < j \leq N} \frac{G m_j m_k}{\left| q_j - q_k \right|} \]  

(0.2)

is the Newtonian potential.

The configuration set of this system collected by N particles is \( \mathbb{R}^d = \{ q = (q_1, q_2, \ldots, q_N) \mid q_k \in \mathbb{R}^d, k = 1, 2, \ldots, N \} \), while the collision set is \( \Delta = \{ q \in \mathbb{R}^d \mid q_j = q_k, j \neq k \} \). Then we call the set \( \mathbb{R}^d \setminus \Delta \) a configuration space of the system.

To simplify calculation we can choose appropriate dimension to make \( G = 1 \).

**Definition 1.1.** [14,15,16]If there exists \( \lambda \in \mathbb{R}^+ \) to make the configuration \( q \in \mathbb{R}^d \setminus \Delta \) satisfying

\[ -\lambda m_i (q_k - q_i) = \ddot{U}(q) \frac{\partial}{\partial q_k}, \]  

(0.3)
or
\[-\lambda m_i (q_i - q_s) = \sum_{j=1}^{N} \frac{G m_j m_i (q_j - q_s)}{|q_j - q_s|^3}, \tag{0.4}\]
then we call \( q \) a central configuration.

The constant \( \lambda \) is uniquely determined by \( \lambda = \frac{U(q)}{I(q)} \). The center of mass is, \( q_c = \frac{\sum_{i=1}^{N} m_i q_i}{\sum_{i=1}^{N} m_i} \), and the moment of inertia is \( I(q) = \sum_{i=1}^{N} m_i |q_i - q_c|^2 \).

Specially, if we put the center of mass \( q_c \) at the origin, the corresponding configuration space is \( \Delta \cap (\mathbb{R}^N)^* \), where \( \Delta = \{ q = (q_1, q_2, \ldots, q_5) \mid \sum q_i = 0 \} \).

In this paper, we study a special case of planar symmetric concave central configuration for 5-body problem with four of the five bodies on the vertex of an isosceles trapezoid and the other on the axis of symmetry inside the isosceles trapezoid.

![Figure 1: Isosceles trapezoid configuration](image)

Now we establish the cartesian coordinate as shown in Figure 1, and the position of the five particles are \( q_1 = (-1,0), q_2 = (0,b), q_3 = (1,0), q_4 = (t,s), q_5 = (-t,-s) \) Respectively as while as the center of mass \( q_c = (c_x, c_y) \). By Definition 1.1, we write down the equations below.

\[
\begin{aligned}
-\lambda (q_i - q_s) &= m_i \left( \frac{q_i - q_1}{|q_i - q_1|^3} + m_j \frac{q_j - q_1}{|q_j - q_1|^3} + m_k \frac{q_k - q_1}{|q_k - q_1|^3} + m_2 \frac{q_2 - q_1}{|q_2 - q_1|^3} + m_3 \frac{q_3 - q_1}{|q_3 - q_1|^3} + m_4 \frac{q_4 - q_1}{|q_4 - q_1|^3} + m_5 \frac{q_5 - q_1}{|q_5 - q_1|^3} 
\right) \\
-\lambda (q_2 - q_s) &= m_1 \left( \frac{q_1 - q_2}{|q_1 - q_2|^3} + m_2 \frac{q_2 - q_2}{|q_2 - q_2|^3} + m_3 \frac{q_3 - q_2}{|q_3 - q_2|^3} + m_4 \frac{q_4 - q_2}{|q_4 - q_2|^3} + m_5 \frac{q_5 - q_2}{|q_5 - q_2|^3} 
\right) \\
-\lambda (q_3 - q_s) &= m_1 \left( \frac{q_1 - q_3}{|q_1 - q_3|^3} + m_2 \frac{q_2 - q_3}{|q_2 - q_3|^3} + m_3 \frac{q_3 - q_3}{|q_3 - q_3|^3} + m_4 \frac{q_4 - q_3}{|q_4 - q_3|^3} + m_5 \frac{q_5 - q_3}{|q_5 - q_3|^3} 
\right) \\
-\lambda (q_4 - q_s) &= m_1 \left( \frac{q_1 - q_4}{|q_1 - q_4|^3} + m_2 \frac{q_2 - q_4}{|q_2 - q_4|^3} + m_3 \frac{q_3 - q_4}{|q_3 - q_4|^3} + m_4 \frac{q_4 - q_4}{|q_4 - q_4|^3} + m_5 \frac{q_5 - q_4}{|q_5 - q_4|^3} 
\right) \\
-\lambda (q_5 - q_s) &= m_1 \left( \frac{q_1 - q_5}{|q_1 - q_5|^3} + m_2 \frac{q_2 - q_5}{|q_2 - q_5|^3} + m_3 \frac{q_3 - q_5}{|q_3 - q_5|^3} + m_4 \frac{q_4 - q_5}{|q_4 - q_5|^3} + m_5 \frac{q_5 - q_5}{|q_5 - q_5|^3} 
\right)
\end{aligned}
\tag{0.5}
\]

Let \( r_{ij} = |q_i - q_j|, i \neq j \), and with the symmetry of isosceles trapezoid we have \( r_{12} = r_{23} = r_{34} = r_{45} = r_{51} = r_{6} \).

Simplify the equations above we can get...
\[
\begin{align*}
\lambda(c_s + 1, c_y) &= \frac{m_2}{r_{12}} + \frac{m_4}{r_{14}} + \frac{m_3 (t + 1, s)}{r_{15}} + \frac{m_5 (1 - t, s)}{r_{15}} \\
\lambda(c_s, c_y - b) &= \frac{m_1}{r_{14}} - \frac{m_2}{r_{12}} + \frac{m_3 (t, s - b)}{r_{14}} + \frac{m_4 (-t, s - b)}{r_{15}} \\
\lambda(c_s, c_y - b) &= \frac{m_1}{r_{14}} - \frac{m_2}{r_{12}} + \frac{m_3 (t - 1, s)}{r_{14}} + \frac{m_4 (-t - 1, s)}{r_{15}} \\
\lambda(c_s - t, c_y - s) &= \frac{m_1}{r_{14}} - \frac{m_2}{r_{12}} + \frac{m_3 (t + 1, -s)}{r_{14}} + \frac{m_4 (2t, 0)}{r_{15}} \\
\lambda(c_s + t, c_y - s) &= \frac{m_1}{r_{14}} - \frac{m_2}{r_{12}} + \frac{m_3 (t, -b - s)}{r_{14}} + \frac{m_4 (t + 1, -s)}{r_{15}} + \frac{m_5 (2t, 0)}{r_{15}} \\
\end{align*}
\]

In (0.6) equation reference goes here into two parts we get

\[
\begin{align*}
\lambda(c_s + 1, c_y) &= m_2 \frac{1}{r_{12}} + m_4 \frac{s}{r_{14}} + m_3 \frac{t + 1}{r_{15}} + m_5 \frac{-t + 1}{r_{15}} \\
\lambda(c_s, c_y - b) &= m_1 \frac{1}{r_{12}} - m_3 \frac{t}{r_{14}} + m_4 \frac{-t}{r_{15}} \\
\lambda(c_s, c_y - b) &= m_1 \frac{2}{r_{12}} - m_2 \frac{1}{r_{12}} + m_3 \frac{t - 1}{r_{14}} + m_5 \frac{-t - 1}{r_{15}} \\
\lambda(c_s - t, c_y - s) &= m_1 \frac{t - 1}{r_{14}} + m_2 \frac{t}{r_{14}} + m_3 \frac{-t + 1}{r_{15}} + m_4 \frac{2t}{r_{15}} \\
\lambda(c_s + t, c_y - s) &= m_1 \frac{2}{r_{12}} + m_3 \frac{s - b}{r_{14}} + m_4 \frac{s - b}{r_{15}} \\
\end{align*}
\]

For \( r_{14} = \sqrt{(t+1)^2 + s^2} \neq \sqrt{(t-1)^2 + s^2} = r_{15} \), 0 < t ≤ 1 , we have

\[
m_1 = m_2, m_3 = m_4.
\]

Substituting (0.9) into the second formula in (0.7) we have

\[
c_s = 0.
\]

Then from (0.9) and (0.10) we can simplify (0.7) and (0.8) as below
\[ \lambda = m_1 \frac{2}{r_{13}} + m_2 \frac{1}{r_{12}} + m_3 \left( \frac{t+1}{r_{14}} - \frac{-t+1}{r_{15}} \right) \]

\[ \lambda t = m_1 \frac{t-1}{r_{13}} + m_2 \frac{t+1}{r_{12}} + m_4 \frac{2t}{r_{14}} \]

\[ \lambda c_r = m_2 \frac{b}{r_{12}} + m_4 \left( \frac{s}{r_{14}} + \frac{s}{r_{15}} \right) \]

\[ \lambda (c_r - b) = m_1 \frac{-2b}{r_{12}} + m_4 \frac{2(s-b)}{r_{14}} \]

\[ \lambda (c_r - s) = m_1 \left( \frac{-s}{r_{14}} + \frac{s}{r_{15}} \right) + m_2 \frac{b-s}{r_{12}} \]

(0.11)

**RESULTS AND DISCUSSION**

Theorem 2.1. If \( q_n \) is not coincident with the center of mass \( q_c \), i.e. \( q_n \neq q_c \), and if \( t = 0.5 \), then there exists regions \( G \) and \( K \) (Figure 1) in the \( b-s \) plane to make the configuration a central configuration.

Firstly by carefully calculating and simplifying we can get the formulas below from (0.11)

\[ m_1 = \lambda \cdot (s-b) \cdot \frac{1}{r_{12}^3} \cdot \left( \frac{1}{r_{24}^3} - \frac{1}{r_{13}^3} \right) \left( \frac{2(s-b)}{r_{12}^3} + b(t+1) - s + b(-t+1) - s \right) \]

\[ m_2 = \lambda \cdot \frac{2b(t+1) - s}{r_{12}^3} + \frac{b(-t+1) - s}{r_{13}^3} \]

\[ m_3 = \lambda \cdot \frac{2s(s-b)}{r_{13}^3} + \frac{2s(s-b)}{r_{14}^3} + \frac{4s(s-b)}{r_{13}^3 r_{14}^3} + \frac{2bst}{r_{13}^3} + \frac{2bst}{r_{14}^3} \]

\[ m_4 = \lambda \cdot \frac{2s(s-b)}{r_{12}^3} + \frac{2s(s-b)}{r_{14}^3} + \frac{s(b(t+1) - s)}{r_{12}^3 r_{14}^3} + \frac{-2s(s-b)}{r_{13}^3 r_{14}^3} + \frac{s(b(-t+1) - s)}{r_{12}^3} \]

\[ Q = \frac{2s(s-b)}{r_{13}^3} + \frac{2s(s-b)}{r_{14}^3} + \frac{4s(s-b)}{r_{13}^3 r_{14}^3} + \frac{2bst}{r_{13}^3} + \frac{2bst}{r_{14}^3} \]

\[ = \frac{4bt(s-b)(b(t+1) - s)}{r_{13}^3 r_{14}^3} + \frac{2s(s-b)(b(t+1) - s)}{r_{13}^3 r_{14}^3} + \frac{2s(s-b)(b(-t+1) - s)}{r_{13}^3 r_{14}^3} \]

(0.16)

With (0.16) we can get some new notifications as below

\[ a_1 = \left( \frac{-2(s-b)}{r_{13}^3} - \frac{b(t+1) - s}{r_{13}^3 r_{14}^3} - \frac{2(s-b)}{r_{13}^3 r_{14}^3} \right) \]

\[ a_2 = \left( \frac{2(s-b)}{r_{13}^3} + \frac{b(t+1) - s}{r_{13}^3 r_{14}^3} - \frac{2(s-b)}{r_{13}^3 r_{14}^3} \right) \]

(0.17)

As while as
\[ Q = -2sa_2 + sa_1 \left( \frac{1}{r_{14}} + \frac{1}{r_{15}} \right) + 2s(s-b) \left( \frac{1}{r_{12}} - \frac{1}{r_{13}} \right) \left( \frac{1}{r_{14}} + \frac{1}{r_{15}} \right) \]
\[ = \frac{s(s-b)}{bt} \left[ \left( \frac{1}{r_{14}} - \frac{1}{r_{15}} \right) a_3 + 2bt \left( \frac{1}{r_{12}} - \frac{1}{r_{13}} \right) \left( \frac{1}{r_{14}} + \frac{1}{r_{15}} + \frac{2}{r_{16}} \right) \right] \]
\[ = \frac{s(s-b)}{bt} Q_i \]

Where
\[ Q_i = \left( \frac{1}{r_{14}} - \frac{1}{r_{15}} \right) a_3 + 2bt \left( \frac{1}{r_{12}} - \frac{1}{r_{13}} \right) \left( \frac{1}{r_{14}} + \frac{1}{r_{15}} + \frac{2}{r_{16}} \right) \]  
(0.18)

Then we define
\[ c_1 = \sqrt{3} - b \]
\[ c_2 = t^2 + (s-b)^2 - b^2 - 1 \]
\[ c_3 = s - b \]

And from simple factorization we easily know that \( r_{15}^2 - r_{12}^2 = 3 - b^2, r_{14}^2 - r_{12}^2 = t^2 + (s-b)^2 - b^2 - 1 \), so \( c_i \) and \( \sqrt{3} - b \), \( c_3 \) and \( t^2 + (s-b)^2 - b^2 - 1 \) share the same sign respectively.

Then we get seven new functions \( a_1, a_2, a_3, Q, c_1, c_2, c_3 \) with variables \( b \) and \( s \).

Secondly we analysis the necessary and sufficient condition which makes \( m_i, i = 1, 2, 4 \) all positive

1) \( a_i, a_2 > 0 \):

\[
\begin{align*}
(1-1) & \quad \begin{cases} Q_i > 0 \\
 a_3 > 0 \\
 c_1 > 0 \\
 c_2 > 0 \end{cases} \quad \text{or} \quad (1-2) \quad \begin{cases} Q_i > 0 \\
 a_3 < 0 \\
 c_1 < 0 \\
 c_2 < 0 \end{cases}
\end{align*}
\]

(0.20)

2) \( a_i, a_2 < 0 \):

\[
\begin{align*}
(2-1) & \quad \begin{cases} Q_i < 0 \\
 a_3 < 0 \\
 c_1 < 0 \\
 c_2 > 0 \end{cases} \quad \text{or} \quad (2-2) \quad \begin{cases} Q_i < 0 \\
 a_3 > 0 \\
 c_1 > 0 \\
 c_2 < 0 \end{cases}
\end{align*}
\]

(0.21)

Thirdly, let \( t = 0.5, b \in (0, 2.5), s \in (0, 4) \), and by using computer we can get the regions that make all \( m_i > 0 (i = 1, 2, 4) \) positive (see Figure 2).

Finally, we list a table to illustrate the shape of central configuration in region \( G \) and region \( K \).
Table 1: Cases of Central configurations in $G$, $K$

<table>
<thead>
<tr>
<th>$t = 0.5$</th>
<th>$m_1 = m_3$</th>
<th>$m_2$</th>
<th>$m_4 = m_5$</th>
<th>$c_1$</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.3,1.5) $\in G$</td>
<td>1.1559 $\lambda$</td>
<td>18.6558 $\lambda$</td>
<td>0.8156 $\lambda$</td>
<td>0.5816</td>
<td>Fig 3</td>
</tr>
<tr>
<td>(1.6,2) $\in K$</td>
<td>3.7249 $\lambda$</td>
<td>0.0554 $\lambda$</td>
<td>0.0969 $\lambda$</td>
<td>0.1208</td>
<td>Fig 4</td>
</tr>
</tbody>
</table>

Keep the four decimal places.

ACKNOWLEDGMENT
The author would like to thank Prof. Zhang Shiqing for his instructive and suggestions.

REFERENCES